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Abstract
Concolic testing is a software testing technique combining concrete
execution of a program (given specific input, along specific paths)
with symbolic execution (generating new test inputs that give
better path coverage than random test case generation). Concolic
testing has so far been applied, mainly at the level of bytecode or
assembly code, to programs written in imperative languages that
manipulate primitive data types such as integers and arrays. In this
paper, we demonstrate its application to a functional programming
language core, a subset of the core language of Erlang, that supports
pattern matching, structured recursive data types such as lists,
recursion and higher-order functions. Moreover, we present CutEr,
a tool implementing this testing technique. We describe CutEr’s
architecture, the challenges that need to be addressed by such a tool,
its current limitations, and report some experiences from its use.

1. Introduction
Testing is, and quite likely will continue to be, the most commonly
used method to ensure the correctness and reliability of software.
In particular, automated testing techniques have the potential to
improve software reliability by discovering more situations (often
“corner cases”) that result in software errors, achieve better coverage,
and reduce the costs of testing compared to manually written tests.

The declarative programming language community in general,
and the community of functional languages in particular, has long
ago realized the benefits of automated testing. However, research in
this area has so far focused primarily on developing techniques for
random testing of properties of programs, also known as property-
based testing. This form of testing is available e.g., in Haskell in
the form of the QuickCheck [6] and SmallCheck [17] libraries, and
in Erlang by the QuviQ QuickCheck [16] and PropEr [13] tools.
Despite its effectiveness, property-based testing is not effortless
as it is only semi-automatic: it requires programmers to write and
maintain properties as well as specify (often non-trivial) generators
for checking these properties.

In imperative programming languages, such as C/C++ and Java, a
fully automatic testing approach, called concolic testing, has gained
popularity during the recent years. Starting with a well-formed
random input, concolic testing consists of concretely executing the
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program unit under test, gathering symbolic constraints on inputs
from conditional branches encountered along the concrete execution.
The collected constraints are then systematically negated and solved
with a constraint solver, whose solutions are mapped to new inputs
that exercise different program execution paths. This process is
repeated, using some appropriate search strategy, in an attempt to
sweep through all/most feasible execution paths of the program.
Any assertion violations or crashes that occur during this process of
concolic execution are reported as test failures and the corresponding
inputs can also be collected in a set of (automatically generated)
tests for the program unit. Using a lot of engineering, this approach
has been fine-tuned and has resulted in very powerful and scalable
testing tools: DART [8] and CUTE [18] for C, and Symbolic Java
PathFinder [15] and jCUTE for Java, to name a few. Concolic testing
tools for Java typically work at the level of JVM bytecode, KLEE [3]
uses LLVM code, while many tools for C work at the level of
assembly. In short, concolic testing has thus far been explored in a
language and implementation level which is quite low.

This paper proposes and demonstrates the use of concolic
execution for testing functional programs at the level of their core
language. At this level, concolic execution needs to address several
challenges. For starters, it needs to take pattern matching and the
presence of structured data types such as lists and tuples into account,
not deal only with integers and bit-vectors. In addition, it needs to
deal effectively with higher-order functions, recursion, and built-ins.
Finally, in our setting, that of Erlang which is a dynamically typed
functional language, the test generation component of a concolic
testing tool needs to be faithful to the operational semantics of the
language and be able to generate new inputs of arbitrary terms, not
necessarily terms of some particular type. (Of course, the tool has to
be able to take type information into account when such information
is available.) To the best of our knowledge, this is the first significant
effort to apply concolic execution in the context of a functional
language. (But we note that an approach to define a framework for
concolic execution of Prolog programs [19] also exists.)

The rest of the paper describes how all these are done in the
context of a mini functional language core (Sections 3 and 4), and
presents CutEr, a concolic unit testing tool for Erlang that we have
developed (Section 5). Some preliminary experiences from using
CutEr are briefly presented in Section 6. To make the paper self-
contained, we begin with some background information.

2. Background
This section briefly reviews concolic testing and Erlang. It also
presents a program that we will use as a running example.

2.1 Concolic Testing
Concolic testing [8, 10, 18] (i.e., testing based on a combination of
concrete and symbolic execution, which is also known as dynamic
symbolic execution) is a method for test input generation where



a given program is executed both concretely and symbolically
in order to achieve high path coverage. In concolic testing, test
inputs are generated from the execution of the actual program
instead of its model. The main idea behind this approach is to
collect, during runtime, symbolic constraints on program inputs that
specify the possible input values that force the program to follow
a specific execution path. Symbolic execution is made possible by
instrumenting the program with additional code that collects the
constraints without disrupting its concrete execution.

In concolic testing, each variable that has a value depending
on inputs to the program has also a symbolic value associated to
it. When a (sequential) program is executed, the same execution
path is followed regardless of the input values until a branching
statement is encountered that selects the first or one of the remaining
branches based on some variable that has a symbolic value. Given
this symbolic value, it is possible to reason about the outcome of
the statement symbolically by constructing a symbolic constraint.
This constraint describes the possible input values that cause the
program to take the first or one of the remaining branches at the
branching statement in question. A path constraint is a conjunction
of symbolic constraints that describes the input values causing the
concrete execution to follow a specific feasible execution path.

In a concolic testing tool, the program under test is first executed
with concrete random input values. During this initial test run,
symbolic execution is used to collect the path constraints expressed
in an appropriate logic, for each of the branching statements along
the execution. These collected constraints are used to compute new
test inputs to the program by using off-the-shelf constraint solvers.
Typical solvers used are SMT (Satisfiability Modulo Theories)
solvers, and typical theories include linear integer arithmetic, arrays,
and bit-vectors. The new test inputs will steer the future test runs
to explore previously untested execution paths. This means that
concolic testing can be seen as a method that systematically explores
all the distinct execution paths of a program. These execution paths
can be expressed as a symbolic execution tree, which is a structure
where each path from root to a leaf node represents an execution
path and each leaf node has a path constraint describing the input
values that force the program to follow that specific path.

The concrete execution in concolic testing brings the benefit that
it makes available accurate information about the program state,
which might not be easily accessible when, e.g., using random test-
ing or static analysis techniques. It is possible to under-approximate
the set of possible execution paths by using concrete values instead
of symbolic values in cases where symbolic execution is not possi-
ble (e.g., when there are calls to libraries of which neither source
code nor other information about them is available). Furthermore, as
each test is run concretely, concolic testing does not report spurious
defects. As a result of all these, various researchers have argued
that for sequential programs concolic testing is more effective than
random testing techniques [8, 9, 15, 18].

2.2 Erlang
Erlang [1] is a strict, dynamically typed functional programming
language that comes with built-in support for actor-based message-
passing concurrency, interprocess communication, distribution, and
fault-tolerance. Although the syntax of Erlang is heavily influenced
by logic programming languages such as Prolog (e.g., all variables
in Erlang start with a capital letter or an underscore, the same list
notation is used, function definitions end with a dot, etc.), its core
is similar to those of modern functional programming languages
such as ML or Haskell. In particular, Erlang variables are single-
assignment, clause selection happens using pattern matching ex-
tended with guards, the language is higher-order and features func-
tion closures, list comprehensions, etc. On the other hand, Erlang
does not support currying. All functions, besides the module and the

function symbol, also have their arity (the number of arguments) as
part of their name. As an example of a higher-order Erlang function,
we show the definition of function lists:foreach/2, i.e., a foreach

function defined in the lists module of the standard library, taking
two arguments: a function of arity one and a list.

foreach(F, [H|T]) -> F(H), foreach(F, T);
foreach(F, []) when is_function(F, 1) -> ok.

This function definition has two clauses. Clause selection happens
using pattern matching, examining the clauses from top to bottom.
Actually, in this particular case, the patterns in the second argument
of the function make the two clauses mutually exclusive and their
order does not matter. Note however that there is no requirement
that pattern matching is exhaustive and the Erlang compiler does not
warn for it. Moreover, as mentioned, the language is dynamically
typed and there is no guarantee that function calls will always have
the right argument types. Instead, the compiler inserts an implicit
catch-all clause as a last clause of all function definitions, which
throws a so called badmatch exception. Thus, the definition above
is implicitly the same as:

foreach(F, [H|T]) -> F(H), foreach(F, T);
foreach(F, []) when is_function(F, 1) -> ok;
foreach(_, _) -> erlang:error(badmatch).

In this definition, the third clause will match if the function is not
called with a proper (i.e., nil-terminated) list in its second argument,
or if the function is called with the empty list in its second argument
but its first argument is not a function of arity one. (If the second
argument is a non-empty list but the first argument is not a function
or does not have the right arity, a runtime error will happen at the
F(H) call.)

In Erlang, pattern matching invokes the built-in =/2, which does
not require that any variables in its left argument are unbound or
occur only once. This provides a very powerful mechanism for
specifying program assertions. For example, the pattern matching
expression [42,X,X| ] = f() asserts that the function call will
return a list of length at least three whose first element is the integer
42 and its second and third elements are the same term, perhaps
some specific one if Xwas previously bound. A badmatch exception,
if raised, signifies that this assertion is violated and an error is found.
This mechanism forms the basis of EUnit [4], Erlang’s unit testing
framework.

2.3 Running Example
Rather than relying on manually written EUnit tests, our aim is
to discover assertion violations and pattern matching exceptions
fully automatically using concolic execution. We will explain how
this is done with the program shown below. Erlang code resides

-module(example).
-export([foo/1]).

foo(L) ->
lists:foreach(fun fcmp/1, L).

fcmp(X) ->
case cmp(X) of
gt -> ok;
lt -> ok

end.

cmp(X) when X > 42 -> gt;
cmp(42) -> eq;
cmp(X) when X < 42 -> lt.

in modules containing func-
tion definitions. Some of these
functions, such as foo/1 here,
are exported and can be called
from other modules using
module-qualified, so called re-
mote, calls. The remaining
functions are local to the mod-
ule. A function name can be
used as a higher-order argu-
ment using the fun keyword.

The example program is
small, but contains most of the
elements of the language that
need to be handled by a con-
colic testing tool. From data types, it involves simple types such
as numbers and atoms (gt, eq, . . .), and recursive structured types
such as lists. Pattern matching is used with patterns only (in function



fcmp/1) but also in conjunction with guards that call built-ins of
the language (in function cmp/1) that do not have any definition
in Erlang itself. Finally, there is a call to a higher-order function
defined in another module, namely a call to the lists:foreach/2
function whose code we presented in the previous section.

As a final note we mention that Erlang comes with a defined
total ordering of all terms. In particular, the </2 and >/2 operators
perform term comparison, not just comparison between numbers.
That is, besides arithmetic inequalities such as 3 < 5, 4.2 < 5.1

and 7.1 < 8, which evaluate to true (notice how the latter cor-
rectly compares between different types of numbers), all pairs of
terms are comparable and the following (term) inequalities are also
true in Erlang: [1, 2, 3] < [1, 4] (two lists are compared lexi-
cographically), 17 < {ok, 42} (an integer is smaller than a tuple),
and {ok, 42} < [17] (a tuple is smaller than a list).

3. Concolic Execution for Erlang
This section outlines, in an informal fashion using our running
example, the way in which concolic testing can be applied to Erlang
programs. Our notion of bug finding is to locate inputs that, if given
to a program, will force execution to terminate with a runtime error.
In Erlang, a runtime error is the occurrence of an assertion violation
or an unhandled exception, abiding to the philosophy of dynamically
typed functional languages.

We assume that each test unit is defined by a function that acts
as the entry point for its execution. The parameters of this function
are considered the input of the test unit. We also assume that some
starting values of these parameters are provided by the user; these
values will act as the seed in concolic testing. In the case of our
running example, the entry point is function example:foo/1 and the
initial input could be L = [17].

3.1 Concolic Execution of the Running Example
As mentioned, most concolic tools employ tracing and emulation on
a low level representation of the program’s code. This approach
has the advantage of emulating optimized code. It works well
for languages like C, Java and the languages of the .NET family,
especially when the type system does not change dramatically from
source code to bytecode. Erlang, on the other hand, does not have a
static type system; programs heavily use list and tuple values and a
suitable representation to be used by a concolic tool would have to
retain type information of (more or less) the same high level.

However, Erlang source code is not suitable as such a represen-
tation either, as it is more expressive than necessary. Fortunately,
there exists a suitable intermediate representation, Core Erlang [5],
that is used internally by the Erlang compiler as a middleware tier
between the high-level textual representation of the source code
and the low-level bytecode. It has simple semantics that allow for a
straightforward translation from Erlang and its main goal is to facili-
tate the development of tools that operate on the Erlang source code.
Furthermore, the Erlang compiler provides a module that translates
Erlang source to Core Erlang in Abstract Syntax Tree (AST) form.

The running example translates to the Core Erlang code shown
in Figure 1. (We took the liberty of slightly simplifying this code,
omitting details that were irrelevant to the purpose of this paper and
would probably confuse readers unfamiliar with Erlang.) As part of
the translation, fresh variables need to be introduced: they all start
with the prefix _cor.

The most important implication of this transformation is that
different function clauses have been merged into one, whose body
contains an outer case expression. Each branch of a case expression
consists of a pattern and a guard. Notice that the translation
introduces branches corresponding to pattern matching failure; e.g.,
the last branch in the definition of fcmp/1 will be used if the function
is called with a value of X that is not equal to gt or lt. In this case, an

module example [foo/1] =
foo/1 = fun (_cor0) ->
call lists:foreach (fcmp/1, _cor0)

fcmp/1 = fun (_cor0) ->
case <apply cmp/1 (_cor0)> of
<gt> when true -> ok
<lt> when true -> ok
<_cor1> when true -> FAIL

end

cmp/1 = fun (_cor0) ->
case <_cor0> of
<X> when call erlang:’>’ (_cor0, 42) -> gt
<42> when true -> eq
<X> when call erlang:’<’ (_cor0, 42) -> lt
<_cor1> when true -> FAIL

end

module lists [..., foreach/2, ...] =
...
foreach/2 = fun (_cor1,_cor0) ->
case <_cor1,_cor0> of
<F,[H|T]> when true ->
do apply F (H)

apply foreach/2 (F, T)
<F,[]> when call erlang:is_function (_cor0, 1) -> ok
<_cor3,_cor2> when true -> FAIL

end
...

Figure 1. Simplified Core Erlang code for the running example.

exception will occur, which is shown here with the shorthand FAIL

instead of an erlang:error(badmatch) call. As we have already
explained, this unhandled exception corresponds to the type of
runtime errors that we want to detect. Notice also the use of Erlang
built-ins, defined in the erlang module, such as erlang:’>’/2 and
erlang:is_function/2.

Figure 2 depicts the control-flow graphs of the four functions
involved in the running example, including lists:foreach/2. Pink
nodes represent the entry points; yellow nodes represent function
calls and intermediate actions, such as assignments; blue diamond-
shaped nodes represent decision points; green nodes correspond to
returned results; finally, the red “FAIL” nodes correspond to unhan-
dled exceptions. Decision nodes correspond to pattern matching.
Each such node has two outgoing edges, which carry labels of the
form “T@i” (true, for a successful pattern matching) and “F@i”
(false, for an unsuccessful one). The usefulness of the labels will
become apparent shortly.

In Figure 3 we can see a trace of the initial execution example:

foo/1([17]), serializing a path following the control-flow graphs
of Figure 2. Along the blue execution path, the labels show the
outcome of each decision node. Also, at each such node, the red
edge extending to the right shows the path that would have been
taken, had the outcome at the said decision node been the opposite
one. As explained in Section 2.1, in concolic testing, execution
proceeds on two parallel fronts, keeping track simultaneously of
concrete and of symbolic values for all program variables. The left
side of Figure 3 shows both concrete and symbolic bindings. For
example, X 7→ 17 ; hd(L) means that parameter X of function fcmp/1

has the concrete value 17 and, at the same time, the symbolic value
hd(L), that is, it is the head of the list L that was passed as the initial
input to the entry point. (For simplicity, we have kept the names of
function arguments from the original Erlang source code, instead of
using the automatically generated ones introduced by the translation
to Core Erlang.)



example:foo/1(L)

lists:foreach/2(fcmp/1, L)

lists:foreach/2(F, L)

L = [H|T]

F(H)

T@6

foreach/2(F, T)

L = [] and
is_function(F, 1)

F@6

ok

T@7

FAIL

F@7

fcmp/1(X)

Y = cmp/1(X)

Y = gt

ok

T@1

Y = lt

F@1

ok

T@2

FAIL

F@2

cmp/1(X)

X > 42

gt

T@3

X = 42

F@3

eq

T@4

X < 42

F@4

lt

T@5

FAIL

F@5

Figure 2. Control flow graphs for all the functions of the example.

example:foo/1(L)L 7→ [17] ; L

L = [H|T]L 7→ [17] ; L
F@6

X > 42X 7→ 17 ; hd(L)

T@6
T@3

X = 42X 7→ 17 ; hd(L)

F@3
T@4

X < 42X 7→ 17 ; hd(L)

F@4
F@5

Y = gtY 7→ lt

T@5
T@1

Y = ltY 7→ lt

F@1
F@2

L = [H|T]L 7→ [] ; tl(L)

T@2
T@6

L = [] and
is_function(F, 1)

L 7→ [] ; tl(L)
F 7→ fcmp/1

F@6

F@7

ok

T@7

Figure 3. Initial execution of example:foo([17]).

The initial execution trace results in the value ok being returned
and no bug has been found. Concolic execution proceeds by consid-
ering each decision node in this initial trace and by trying to reverse
it, thus exploring more execution paths.

The order in which alternatives are attempted is crucial for the
success of the concolic testing approach. Several heuristics have
been proposed in literature. The heuristic that we use here is based
on path coverage. To explain it simply:

• For each execution path that has already been tried, we choose
to reverse the outcome of the decision node:

(a) whose reversed (red) label has not yet been visited during
concolic execution; and

(b) which is closer to the root (i.e., at the smallest depth).
• We place all execution paths that have already been tried in a

priority queue, ordered by criteria (a) and (b).
• If no decision node exists satisfying criterion (a), we take into

account only criterion (b).
• We choose to stop either when all possible execution paths have

been covered (i.e., all labels in the control-flow graphs have been
visited), or when a certain depth in the search tree of possible
alternatives has been reached.

In fact, in our current implementation we use a slightly different
notion of depth, which only counts case constructs existing at the
Core-Erlang source. In this way, all constraints related to the patterns
and guards of a specific case construct are considered to be at the
same level.

Following this heuristic, the decision node that we will first
attempt to reverse is the one leading to T@3, as F@6 has already
been visited. In order to follow this path, the following must be true:

(L = [H|T]) ∧ (hd(L) > 42) (1)

In other words, we want the condition of the first decision node to be
true, thus taking edge T@6, but we want to reverse the outcome of
the second decision node, thus taking edge T@3. We are therefore



example:foo/1(L)L 7→ [49] ; L

L = [H|T]L 7→ [49] ; L
F@6

X > 42X 7→ 49 ; hd(L)

T@6
F@3

Y = gtY 7→ gt

T@3
F@1

L = [H|T]L 7→ [] ; tl(L)

T@1

T@6

L = [] and
is_function(F, 1)

L 7→ [] ; tl(L)
F 7→ fcmp/1

F@6

F@7

ok

T@7

Figure 4. Second execution of example:foo([49]).

looking for a list that is not empty, whose head contains a term larger
than 42. One possible value of L satisfying the above is L = [49],
and a new execution trace (shown in Figure 4) is generated for this
value. The second execution trace results again in the value ok being
returned and again no bug has been found.

Now there are two paths in the priority queue, those of Figures 3
and 4. In the former, the next alternative to be explored is T@4,
whereas in the latter, the next alternative is F@7; both have not
yet been visited. Our heuristic chooses the former, as it has smaller
depth. Therefore, we are trying to satisfy:

(L = [H|T]) ∧ ¬(hd(L) > 42) ∧ (hd(L) = 42) (2)

or, in other words, we are looking for a list that is not empty and
whose head contains a term equal to 42. One possible solution is
L = [42], which leads us to the third execution trace. This time, this
produces an unhandled exception, as cmp/1 returns eq and this value
is not handled by fcmp/1. We have found a bug!

Concolic testing of our running example does not stop here, as
not all possible execution paths have been explored. Sooner or later,
alternative F@7 will be considered and we will try to find a term L

that satisfies:

¬(L = [H|T]) ∧ ¬(L = []) (3)

(Notice that Erlang is a dynamically typed language and, in the code
of the running example, there is nothing restraining L to be a list.)
This is possible if, e.g., L = 0 and this will be the next reported bug.

Also, notice that the “FAIL” node in cmp/1, is indeed reachable
by edge F@5 (the only remaining unvisited edge). This may seem
strange, at first, as it implies finding a term X satisfying:

¬(X > 42) ∧ ¬(X = 42) ∧ ¬(X < 42) (4)

However, according to the semantics of Erlang, = denotes pattern
matching, i.e., exact term equality (for numbers, arithmetic equality
that coerces integers to floats is denoted by ==). The term 42.0 is
neither smaller nor larger than 42, nor does it match with 42. (In
fact, 42.0 is the only Erlang term for which function cmp/1 throws
an exception.) This results in one more bug found, manifested by
L = [42.0].

module ::= module Atom [ fname1, . . . fnamem ] = fun1 . . . funn
fun ::= fname = fun ( Var1, . . . Varn ) -> expr
fname ::= Atom / Integer

lit ::= Atom | Integer | Float | []
expr ::= Var | lit | fname | [expr1 | expr2] | {expr1, . . . exprn}

| apply expr ( expr1, . . . exprn )
| call exprm : exprf ( expr1, . . . exprn )
| case < expr1, . . . exprn > of clause1; . . . clausem end
| let Var = expr1 in expr2
| do expr1 expr2

clause ::= < pat1, . . . patn > when expr1 -> expr2
pat ::= Var | lit | [ pat1 | pat2 ] | { pat1, . . . patn }

Figure 5. The syntax of Mini Core Erlang.

To sum up, concolic execution for our running example starts
by the user simply specifying an arbitrary call to the function
constituting the entry point of the unit being tested (in this case
example:foo([17])) as a seed, and the process automatically dis-
covers three other calls (example:foo([42]), example:foo(0), and
example:foo([42.0])) that result in three different runtime excep-
tions for this program unit. They correspond to the three places in
Figure 1 where failures can occur.

3.2 Mini Core Erlang
For presentation purposes, we define here a subset of Core Erlang
that will be used in the following sections. The syntax of Mini Core
Erlang is defined in Figure 5.

In Mini Core Erlang, terms can be atoms, integers, floats, lists,
tuples or functions. A module is a list of function definitions where
some functions are exported. A function definition consists of the
function’s name, its parameters and the expression that represents
its body. Expressions also include call, apply, case, let and do.

The difference between the first two is that apply expressions are
used for module-local function applications, while call expressions
are module-qualified function applications. First the expressions
that denote the module and the function are evaluated. These must
evaluate to atoms. Then, the actual parameters are evaluated and
subsequently the function application is performed.

Case expressions are the only control statements in this grammar.
The list of supplied expressions is matched against a sequence of
guarded patterns. The first pattern that matches will be selected.
The patterns are tried in the order they appear. Evaluation continues
from the body of the selected pattern. As mentioned, the Core Erlang
compiler ensures that all case expressions become exhaustive by
adding catch-all clauses if it cannot verify that the programmer
provided an exhaustive match.

Built-in functions, such as comparison operators, is_function/2,
etc., can be included as predefined functions in Mini Core Erlang.
Most Erlang built-ins are part of the special module erlang, e.g.,
erlang:’<’/2.

We should note that Core Erlang is more expressive than the
language defined in Figure 5. For example, it supports letrec
definitions, unnamed functions, try-catch blocks for handling
exceptions, and receive expressions for message passing between
processes. Here we have restricted the language only for presentation
purposes. Our tool handles the complete set of Erlang expressions.

3.3 Constraint Generation for Patterns and Guards
Concolic execution involves running an instrumented program both
concretely and symbolically. The symbolic execution follows the
execution path dictated by the concrete execution. We perform these



two tasks simultaneously. A program is essentially interpreted by
evaluating its Core Erlang representation, where every node of the
AST is evaluated both concretely and symbolically.

During evaluation, we keep two separate environments: one
mapping variables to concrete values, and one mapping variables
to symbolic values. Both types of values are subsets of terms;
environments are functions mapping variables to such values:

Env = Var → Val

We will denote the concrete environment by Γc and the symbolic
environment by Γσ .

The evaluation function eval takes an expression and the two
environments. It returns two values, one concrete and one symbolic,
representing the result of the evaluation. It also returns the execution
path that led to the returned result.

eval : expr × Env × Env → Val ×Val × Path

Paths are lists of nodes, such as the ones shown in Figures 3 and 4.
We are primarily interested in decision nodes. For each such node,
we keep the logical proposition that corresponds to a test performed
during evaluation (e.g., a pattern matching) and the two labels: first
the one that was followed during evaluation, and then the one that
possibly remains to be followed by a subsequent evaluation.

For evaluating a variable, we simply look up its value in the
concrete and the symbolic environment. Evaluating literals is even
simpler; both values coincide with the literal itself. In both cases,
the execution path is empty. Evaluating lists and tuples is a bit
more involved. Their subexpressions must first be evaluated; their
concrete and their symbolic values form, respectively, the concrete
and the symbolic value of the result. Furthermore, the execution path
is the concatenation of the execution paths of the subexpressions.

Evaluating call and apply expressions again requires that
subexpressions be evaluated. The concrete value of the function
to be applied is then used to determine the function’s body, which
starts being evaluated with the updated concrete and symbolic
environments (mapping the function’s formal parameters to the
concrete and symbolic values of the actual parameters, respectively).
Again, the execution path is the concatenation of the execution paths
of the subexpressions and the function’s body.

It is the evaluation of case expressions which actually generates
constraints, adding nodes to execution paths. When a case is
evaluated, its subexpressions must first be evaluated. Subsequently,
pattern matching is driven by the concrete values. Whenever a
pattern match is attempted, a decision node is generated and added
to the execution path. The order in which the labels appear depends
on whether the match was successful (in which case the bottom
label is T@i and the side label is F@i) or unsuccessful (in which
case, the two labels are reversed). The evaluation of guards also
generates decision nodes; a guard is roughly equivalent to one more
expression in a case, pattern matched against true and false.

Let’s see, for example, what happens during the evaluation of
example:foo([17]) of the running example. Evaluation starts in the
body of example:foo/1 with:

Γc = {L 7→ [17]}
Γσ = {L 7→ L}

where the last L is a symbolic variable corresponding to the initial
input. When evaluation reaches the case expression in the body of
lists:foreach/1, the two environments are:

Γc = {F 7→ fcmp/1, L 7→ [17]}
Γσ = {F 7→ fcmp/1, L 7→ L}

The first pattern matches with the concrete value of L, which is
indeed a non-empty list, binding H and T to the head and tail of this
list, respectively. Just before F(H) is evaluated, the two environments

are:

Γc = {F 7→ fcmp/1, L 7→ [17], H 7→ 17, T 7→ []}
Γσ = {F 7→ fcmp/1, L 7→ L, H 7→ hd(L), T 7→ tl(L)}

Furthermore, the decision node with the constraint “L = [H|T]”
is added to the execution path, following label T@6 and leaving
label F@6 for further exploration. Notice that the guard expression
always evaluates to true and therefore no decision node needs to be
generated for it, in this case.

3.4 Constraint Generation for Built-in Functions
Whenever concolic execution reaches a function call, we try to
access the source code of the function in order to interpret it.
We can also do the same in the case of library functions, such
as lists:foreach/1, as long as we have access to their source
code. However, some functions are preloaded to the Erlang runtime.
Such functions are called built-in functions (BIFs) and are typically
written in C. Most of them belong to the erlang module, but there
are more in other commonly used modules. For such functions, we
do not have access to their bodies in Core Erlang form, and therefore
we cannot evaluate them. Examples of BIFs that we already saw in
our example are erlang:’>’/2 and erlang:is_function/2.

For built-in functions, we can easily evaluate the concrete value
of the returned result, by calling them directly with the concrete
arguments. It is not clear, however, what the symbolic value of the
result should be.

The obvious approach is to introduce them directly as unin-
terpreted functions to our language of symbolic expressions. For
example, in the environment:

Γσ = {H 7→ hd(L)}
the symbolic value of the expression H < 42 or H > 42 will be
hd(L) < 42 or hd(L)> 42. For efficiency reasons, a better option is
to introduce a fresh symbolic variable for the result of each built-in
function, to avoid possible exponential growth when generating sym-
bolic expressions. (Such exponential growth is not only witnessed
when serializing terms with shared subterms; in Erlang, it can also
be problematic even if such terms are only kept in memory, as term
sharing is not always preserved by the Erlang VM [14].)

Using this approach, in the example above where the BIFs
erlang:’<’/2, erlang:’>’/2, and erlang:or/2 are used, the sym-
bolic result could be T3 and the symbolic environment would be
extended to contain three more fresh variables: T1, T2, and T3.

Γσ =

{
H 7→ hd(L), T1 7→ H < 42,
T2 7→ H > 42, T3 7→ T1 or T2

}
Of course, having BIFs like erlang:’<’/2, erlang:’>’/2, and

erlang:or/2 as uninterpreted functions in our symbolic expressions
is not sufficient for our purpose. If we are to use such expressions
in the generated constraints, the solver that we will use needs
to interpret them, specifically to treat them as term comparison
operators and logical disjunction, faithfully to the semantics of
Erlang. For this to happen, equivalent operators must exist or be
representable in the logic of the constraint solver. This is true in the
case of arithmetic, comparison and logical operators, or BIFs such
as erlang:hd/1 and erlang:tl/1.

For other BIFs, we can follow a different approach: we can
replace them with equivalent, ordinary functions, written in
Erlang, and evaluate those symbolically. As an example, the BIF
erlang:length/1 returns the length of a list and cannot be repre-
sented efficiently in the logic of most constraint solvers, because of
its recursive nature. It is, however, equivalent to the following, which
can be transformed to Core Erlang and executed symbolically:

length([]) -> 0;
length([H|T]) -> 1 + length(T).



As a last resort, in the case of BIFs which are too complicated or
impossible to express in the constraint solver’s logic, nor to emulate
using Erlang code, we can ignore symbolic evaluation completely
and use the concrete result also in the place of the symbolic value.
We should avoid this option, if possible, as we completely lose track
of the data flow of symbolic values. However, this is the only viable
option for BIFs such as os:timestamp/0. Furthermore, disabling
symbolic evaluation allows us to incrementally support progressively
larger subsets of Erlang BIFs.

Some BIFs impose additional constraints on the values of their
arguments. For example, roughly speaking, erlang:’+’/2 requires
that both its arguments be numeric values. When such BIFs are
evaluated, additional decision nodes must be generated to reflect
these constraints. This is automatically achieved if these BIFs are
emulated, as suggested above, using Erlang code.

3.5 Constraint Solving
As explained in Section 3.1, concolic testing is driven by constraint
solving. After each execution, a new input must be found that will
drive execution to yet unexplored paths. Constraint solving is the
process of creating a properly encoded path predicate, based on the
symbolic constraints that were recorded along an execution path,
negating the selected constraint and then invoking a suitable solver
to find a solution that satisfies the constraints. This solution will be
used as the input for the next execution.

There are several types of constraints generated by the process
described in Sections 3.3 and 3.4. Some of them involve determining
the type of an Erlang term, e.g., whether X is an atom, an integer, a
non-empty list, a tuple of five elements, etc. Others involve equality
with specific term literals, e.g., whether X is identical to the term
42. Finally, some constraints are specific to BIFs that implement
arithmetic, comparison, and logical operators, e.g., whether X
equals the sum of Y and Z, whether it is greater than the term
W , etc. A set of constraints to be solved is a set of such simple
constraints or their negations, interpreted as a logical conjunction.

As the solution to such constraints is a set of Erlang terms that
will be used as the next program input, the constraint solver needs to
be aware of the structure of Erlang terms. If the solver’s logic is not
expressive enough to represent terms as elements of a “data type” or
equivalent definition, then they will have to be appropriately encoded
using values supported by the solver, such as integer numbers.

We must always keep in mind that most constraint solvers are
incomplete. A solution may exist for a set of constraints, yet a solver
may be unable to find it. Typically, in this case, a solver will either
give “unknown” as an answer, or will take a long time trying to find
the solution and, eventually, time out. In both cases, there is not
much we can do: we have to proceed to the next execution path and
try to negate the next possible constraint. Similarly, this is also what
we do if a solver answers that a set of constraints is unsatisfiable.

4. Support for Type Specifications
Let us come back to our running example. Recall that, starting from
the seed example:foo([17]), concolic testing revealed three in-
put terms that crashed the test unit, namely [42], 0, and [42.0].
The last two may come as a surprise to readers used to stati-
cally typed programming languages. In fact, because of the call
lists:foreach(fun fcmp/1, L) in example:foo/1, most Erlang
programmers would not consider the case L=0 as an actionable error,
on the grounds that lists:foreach/2 should take a list as its second
argument, and 0 is not a list.

Although Erlang is a dynamically typed language, it supports a
notation for declaring sets of Erlang terms that belong to specific
types. These types can then be used to provide function specifica-
tions, in other words, to specify the subset of terms that form a
function’s intended arguments and the subset of terms that may be

returned as the function’s result. Besides documentation, such type
information can be used by tools, such as Dialyzer [12], performing
static analyses to detect definite type errors.

A simplified specification of lists:foreach/2 reads:

-spec foreach(fun((T) -> term()), [T]) -> ok.

According to this, the function expects two arguments: (1) a function
expecting an argument of type T and returning an Erlang term (of
some unspecified type), and (2) a proper list of elements of type T. It
can only return the atom ok. Type T can be any subtype of term().

If this specification is taken into account, then example:foo/1

can be given, by the programmer or automatically by a tool such as
TypEr [11], the following specification:

-spec foo([term()]) -> ok.

This expresses the programmer’s intention that this function is to be
called with proper lists as arguments, not any Erlang term.

Type specifications can be used during concolic testing to
impose additional constraints on program inputs. Such constraints
act as preconditions: they can be thought of as special nodes
in the beginning of execution paths, which need to be satisfied
upon program entry and are not to be negated. Were the above
type specification for example:foo/1 be used in Section 3.1, the
constraint paths (1), (2), (3), and (4) would be, respectively:

1. is_list(L) ∧ (L = [H|T]) ∧ (hd(L) > 42)

2. is_list(L) ∧ (L = [H|T]) ∧ ¬(hd(L) > 42) ∧ (hd(L) = 42)

3. is_list(L) ∧ ¬(L = [H|T]) ∧ ¬(L = [])

4. is_list(L) ∧ X = hd(L)∧
¬(X > 42) ∧ ¬(X = 42) ∧ ¬(X < 42)

where is_list(L) is a predicate that should guide the solver to only
generate solutions for L that are proper lists of terms.

Now, the first, second and fourth are still satisfiable, producing
the same solutions as in Section 3.1. On the other hand, the third one
is not satisfiable anymore, as it requires a list to be neither empty,
nor non-empty. Thus, the reported program input L = 0 which leads
to an unhandled exception, is now eliminated.

Going one step further, let us now suppose that the programmer
has given a stricter specification for example:foo/1:

-spec foo([integer()]) -> ok.

Now, the function should only be called with arguments that are
lists of integer numbers (not any other type of terms). This would
result in is_integer_list(L) being used, instead of is_list(L) in
all four constraint paths. For the first two, the solutions would be
the same as in Section 3.1, as they involve lists of integer numbers.
The third one would again be ruled out as unsatisfiable, because a
list of integer numbers cannot be neither empty, nor non-empty.

The interesting part, however, is that this additional constraint
rules out the fourth constraint path as unsatisfiable. This is because
of the following axiom, which should be adopted by the solver:

is_integer_list(L) =⇒
L = [] ∨ (is_integer(hd(L)) ∧ is_integer_list(tl(L)))

With this axiom, the fourth constraint path would expand to:

4. X = hd(L) ∧ is_integer(X)∧
¬(X > 42) ∧ ¬(X = 42) ∧ ¬(X < 42)

which would now be unsatisfiable. Therefore, with this specification,
the only bug found would be L = [42].

We note in passing that another way of avoiding the generation of
L = [42.0] as a test case that crashes this unit would be to declare
the following type specification for cmp/1:

-spec cmp(integer()) -> gt | eq | lt.



Figure 6. High-level architecture of CutEr.

More generally, concolic testing of programs written in dynami-
cally typed languages such as Erlang can start even from a program
containing no specifications, or only loose ones. Then, a fully au-
tomatic process of concolic execution can generate test cases that
violate assertions or result in errors. Subsequently, the user can
gradually add or refine some type specifications to impose extra
constraints that filter out unintended uses or unwanted errors. Note
however, that this process depends heavily on the expressiveness
of the specification language and also whether the additional con-
straints can be processed by the underlying constraint solver.

An example of a function for which the current type language of
Erlang is not expressive enough to fully describe its intended uses is
lists:nth/2. Its type specification:

-spec nth(pos_integer(), [T,...]) -> T.

although already more expressive than simply specifying that its
first argument is an integer and its second argument is a list (in the
type language of Erlang, the notation [T,...] specifies a non-empty
list of type T), does not express the fact that its first argument is
“expected” to be an integer between 1 and N , where N is the length
of the list in its second argument. As a result, the concolic execution
of this function started with seed lists:nth(1, [a,b]) will report
that the call lists:nth(39, [0]) leads to a runtime error.

5. CutEr: Concolic Unit Testing Tool for Erlang
To demonstrate the feasibility and evaluate the proposed approach,
we have developed CutEr, a concolic unit testing tool for Erlang.
For the most part, CutEr itself is implemented in Erlang. A small
part is implemented in Python.

CutEr aims to apply the idea of concolic testing to detect bugs
in Erlang applications, especially bugs that are very difficult to find
using other methods. The applications under test need not be simple
sequential programs, like the ones shown in the previous sections.
They can also be concurrent programs, spawning multiple processes,
or they can be distributed over more than one Erlang nodes, possibly
running on different machines over a network. Although in the rest
of this section we describe how the architecture of CutEr supports
concurrency and distribution, in this paper we focus on applying
concolic testing to the functional subset of Erlang. CutEr currently
handles concurrent and distributed applications, with limitations; a
thorough discussion of how concolic testing can be applied in the
presence of concurrency is beyond the scope of this paper.

5.1 Architecture
CutEr comprises three main components, each responsible for a
different task: one for concolic execution, one for constraint solving,
and one for execution path exploration. In the rest of this section,
we briefly present the architecture of the tool, shown in Figure 6,
and outline how these components interact with each other.

Figure 7. Concolic execution of distributed Erlang applications.

During execution, a number of processes are spawned within the
concolic execution component. They belong to four categories:

Interpreter processes. These are the worker processes where execu-
tion actually takes place. Each interpreter process emulates the
execution of a single program process and records the symbolic
constraints. If the program would spawn multiple processes,
when executed by the Erlang VM, then multiple interpreter pro-
cesses will be required, in a one-to-one relationship.

Code server processes. Interpreter processes need to access the
Core Erlang AST of the (fragment of the) program that they
execute. A dedicated type of process, the code server process,
performs the task of compiling source code and providing the
Core Erlang AST to the interpreter processes that ask for it. We
normally spawn one code server process per Erlang node.

Monitor processes. The basic goal of CutEr is to look for exceptions
in the execution of a program. To achieve this, we use a dedicated
type of process, which acts as a monitor for interpreter processes
and is notified by the Erlang VM, whenever an unhandled
exception occurs in any of them. Again, we normally spawn
one monitor process per Erlang node.

Supervisor processes. These processes are responsible for supervis-
ing concolic execution and there is one for each such execution,
i.e., for each program input that is passed to the entry point.
The supervisor process intercepts notifications from monitor
processes and performs regulatory actions as needed. During
execution, the supervisor waits to be notified for two kinds of
events: either normal program termination, or the occurrence
of an unhandled exception. In both cases, it notifies the path
exploration component, to schedule the next concolic execution.

Figure 7 shows the architecture supporting the concolic execution
of distributed Erlang applications. The figure shows three Erlang
nodes. Notice that only the concolic execution component spans on
all three nodes. Furthermore, there is just one supervisor process,
running on the first node, where also the path exploration and
constraint solving takes place. For scalability reasons, as constraint
solving is typically expensive in terms of time and memory, it may



Algorithm 1. Exploration of execution paths.
1: R := ∅ — errors found
2: Q := ∅ — priority queue
3: visited := ∅ — the set of visited labels
4: D := ∅ — mapping of inputs to depths
5: Dmax := 20 — maximum depth of the search tree

6: function STOREEXECUTION(input , result , `)
7: if result is not normal termination then
8: R := R ∪ {〈input , result〉}
9: CS := ∅

10: i := 0
11: for all 〈C,LT , LF 〉 ∈ ` do
12: visited := visited ∪ {LT }
13: if D[input ] ≤ i ≤ Dmax then
14: ENQUEUE(Q, 〈CS ∪ {N(C)}, i, LF 〉)
15: CS := CS ∪ {P (C)}
16: i := i + 1

17: function REQUESTINPUT()
18: while Q 6= ∅ do
19: 〈CS , i, LF 〉 := DEQUEUE(Q)
20: answer := SMTSOLVE(CS )
21: if answer = 〈sat, input〉 then
22: D[input ] := i + 1
23: return input

be a reasonable choice to use more than one solvers, distributed in
more than one nodes.

5.2 Heuristics and Coverage
The component for execution path exploration performs a search on
the space of all possible execution paths. As explained in Section 3.1,
the order in which execution paths are considered is crucial for
the effectiveness of concolic testing; the search strategy that we
use has been informally described in the same section. In the rest
of this section, we formalize the search strategy and outline its
implementation in CutEr.

This component is implemented as a stateful server which
provides two functions, STOREEXECUTION(input , result , `) and
REQUESTINPUT(), shown as parts of Algorithm 1. Both functions
are re-entrant, so they can be used in a setting where multiple
concolic executions and solvers are executed concurrently.

Function STOREEXECUTION(input , result , `) is used when-
ever a concolic execution is finished, to store the input and the result
of execution. The complete execution path ` is stored together with
the input and result. Let us recall that ` is a sequence of nodes and, in
particular, decision nodes such as the ones shown in Figures 3 and 4.
Each such node is represented as a triple of the form 〈C,LT , LF 〉,
where C is a recorded constraint, LT is the (blue) label that was
followed and LF is the (red) label that was not followed. On the
other hand, function REQUESTINPUT() in order to ask for a new
input is used, which will be used to start a new concolic execution.

The state of the server consists of the following elements:

• The set R of inputs that lead to runtime errors.
• The priority queue Q of collected path predicates that await to

be supplied to the solver, in order to generate new inputs.
• The set visited which keeps track of the labels in the control

flow graph that have been “visited”, i.e., those corresponding to
paths that have been explored.

• The mapping D from generated inputs to integer numbers. If a
program input is generated by negating the constraint of the i-th

node of some execution path, then this input will be mapped to i
while its concolic execution is performed.

• The maximum depth Dmax of nodes in the search tree that we
consider, during exploration. Once execution goes deeper than
this number, we stop recording constraints and we continue the
execution only for its concrete result.

Storing execution information. Once an execution with some
input yielding some concrete result and a constraint path ` has
been completed, function STOREEXECUTION(input , result , `) is
called. If result is an error, this instance is properly archived. Then
we traverse the constraint path ` and generate sets of Z3 constraints,
at the same time updating the visited set with the labels that were
followed. The constraints along this path that we will attempt to
negate are those of order i, where i is not smaller than D[input ] (i.e.,
the point where this concolic execution started exploring possibly
new paths) and not larger than Dmax. We place each such negated
path in the priority queue, to be explored later in the process.

Requesting a new input. Whenever a new input is required, to
start a new concolic execution, function REQUESTINPUT() is called.
Assuming that Q is not empty (in that case, all paths have been
explored and we can stop), an element 〈CS , i, LF 〉 is removed from
the head of Q and its set of constraints is supplied to the solver. This
means that the solver will try to find input that will lead execution
along a path that coincides with a previously executed path in the
first i − 1 nodes and follows a different label at the i-th node. If
the set of constraints is satisfiable, the solver will calculate a model
which we interpret as a program input. We add this input to mapping
D, thus stating that we are only interested in what happens after the
i-th node of constraint paths, generated by this input. On the other
hand, if it is not satisfiable or if Z3 is unable to solve it, we proceed
with the next element in the queue.

Ordering of paths and implementation of the priority queue.
The priority queue Q plays a very important role in our search
strategy. Elements of the form 〈CS , i, LF 〉 are placed in this queue,
where CS is a set of axioms corresponding to a desired constraint
path, which will be given to Z3 in order to find a possible model,
i is the order of the constraint that was negated to obtain this path,
and LF is the label in the control-flow graph that will be followed,
if execution follows this path. As explained in Section 3.1, the
ordering of elements in the priority queue follows two rules:

1. Elements whose labels are not in the visited set come before
elements whose labels are in the visited set. Therefore, we
favour unvisited labels as a first priority.

2. If two elements have labels that are either both visited or both
unvisited, the one with the smallest i comes first. Therefore, we
perform a breadth-first search as a second priority.

As function STOREEXECUTION updates the visited set, the
ordering of elements in the priority queue is dynamic, and this
can be problematic, at least from the point of view of the queue’s
implementation. However, notice that labels are only added to the
visited set, never removed. This means that elements already placed
in the queue may have to be moved “downward”, i.e., scheduled
at a lower priority, never “upward”; this will happen if their label
becomes visited as the result of executing a different path that was
higher in the queue. This remark allows us to ignore the dynamic
reordering of the queue. Instead, we keep a marker in the queue
that separates the elements whose labels were unvisited when they
were placed in the queue from those whose labels were visited.
(In practice, we could equivalently keep two separate queues.)
Whenever we remove an element from a position before the marker,
we check its label and, if it is now visited, we immediately put it
back in the queue. To simplify presentation, this optimization is not



Term, TList, IList = Datatypes(’Term, TList, IList’)

Term.declare(’int’, (’ival’, IntSort()))
Term.declare(’real’, (’rval’, RealSort()))
Term.declare(’atm’, (’aval’, IList))
Term.declare(’lst’, (’lval’, TList))
Term.declare(’tpl’, (’tval’, TList))

TList.declare(’nil’)
TList.declare(’cons’, (’hd’, Term), (’tl’, TList))

IList.declare(’anil’)
IList.declare(’acons’, (’ahd’, IntSort()), (’atl’, IList))

Figure 8. The representation of Erlang terms in Z3.

shown in Algorithm 1, where the priority queue is assumed to be
ordered dynamically.

5.3 Solving Constraints with Z3
The SMT solver that CutEr currently uses is Z3 [7], a solver
developed at Microsoft Research and recently gone open-source. It
is an efficient SMT solver that is targeted at solving problems in
software analysis and software verification. It supports the SMT-
LIBv2 standard [2] and provides APIs for C/C++, .NET, OCaml
and Python. CutEr uses the Python API, namely Z3Py.

The choice for Z3 was made primarily because Z3 also supports
algebraic data types, in addition to basic types like booleans, integers,
floats, arrays and bit-vectors. Algebraic data types are an essential
feature in our approach, as it allows us to easily represent Erlang
terms at a higher level.

Representing Erlang terms in Z3. The most general type in
Erlang is term(), representing all valid terms. For Mini Core
Erlang, as defined in Figure 5, we consider term() to consist of
integers, floating-point numbers, atoms, lists, and tuples. To simplify
presentation, we will consider only proper lists, i.e., lists terminating
with []. Notice that Erlang (and, in fact, also the syntax in Figure 5)
allows improper lists, such as [1|2].

In the notation of Z3, we declare an algebraic type Term for this
purpose, as shown in Figure 8. We also declare two auxiliary types
TList and IList, representing lists of terms and lists of integers,
respectively. The latter is used in the internal representation of
atoms, which are modeled as lists containing the ASCII codes of
the characters that form them.

Integers and floating-point numbers are built-in types in Z3. In
the notation above, the algebraic data type Term is defined, having
five constructors: int, real, atm, lst, and tpl. Similarly, TList is
defined with two constructors: nil and cons. The constructor cons
takes two parameters, the first being a Term and the second a TList.
The names hd and tl are used to extract these two parameters from
a cons element.

For example, the Erlang terms 42, [17,42] and {42,ok} can be
represented in Z3 as follows:

t1 = Term.int(42)
t2 = Term.lst(TList.cons(Term.int(17),

TList.cons(Term.int(42), TList.nil)))
t3 = Term.tpl(TList.cons(Term.int(42),

TList.cons(Term.atm(
IList.acons(111, IList.acons(107, IList.anil))

), TList.nil)))

It is relatively straightforward to define a function M(t), map-
ping an Erlang term t to its encoding in Z3. This function can be
extended to also support variables; we assume that each Erlang vari-
able corresponds to a Z3 variable and, for simplicity, that they have
the same name.

Table 1. Encoding of constraints in Z3.

Constraint C Positive axiom P (C) Negative axiom N(C)

t = t′ M(t) = M(t′) M(t) 6= M(t′)

t 6= t′ M(t) 6= M(t′) M(t) = M(t′)

t = [] Term.is_lst(M(t))
TList.is_nil(Term.lval(M(t)))

t = [_|_] Term.is_lst(M(t))
TList.is_cons(Term.lval(M(t)))

t is tuple of
size n

# calculate axioms in As

As = [Term.is_tpl(M(t))]
tx = Term.tval(M(t))
for i in range(n):

As.append(TList.is_cons(tx))

tx = TList.tl(t)

As.append(TList.is_nil(tx))

t is integer Term.is_int(M(t))

t is real Term.is_real(M(t))

t is number Or(Term.is_int(M(t)), Term.is_real(M(t)))

t is atom Term.is_atm(M(t))

t is list Term.is_list(M(t))

t is tuple Term.is_tpl(M(t))

Encoding constraints in Z3. The path predicate of an execution
is a conjunction of constraints C1, C2, . . . , Cn, witnessed during
the execution. The task of the solver is to take the first k of these
constraints (k < n), add the negation of Ck+1, and find a model
that makes all of them true, i.e., appropriate values for unbound
variables such that every one of these constraints is true.

We therefore need a way to encode constraints in Z3; for this
purpose, we define a function P (C), mapping a constraint C (such
as the ones we generated in Sections 3.3 and 3.4) to a set of
axioms that can directly be asserted in Z3. (Notice that we interpret
sets of constraints as their conjunction; the same is true for Z3
axioms.) Although Z3 obviously supports negation, instead of taking
N(C) = Not(P (C)) as the encoding of the negation of C, we
choose to define a separate function N(C) for this purpose, the
reason being that, often, we can generate simpler Z3 constraints
in this way, e.g., by avoiding double negation. Using these two
functions, we simply assert axioms P (C1), . . . , P (Ck), N(Ck+1)
and ask Z3 for a consistent model.

The definition of functions P (C) and M(C) is pretty straightfor-
ward. They are given in parallel in Table 1, following the syntactic
structure of the constraints. In this table, wherever we do not specify
a value for N(C), we take N(C) = Not(P (C)).

For example, the constraint path (3) on page 5 will be translated
as the following set of axioms:

Not(And(Term.is_lst(L), TList.is_cons(Term.lval(L))))
Not(And(Term.is_lst(L), TList.is_nil(Term.lval(L)))))

Unfortunately, none of the other constraint paths shown as examples
in Section 3.1 have simple translations, so we do not show them here.
They all contain occurrences of term comparisons, using Erlang
BIFs such as erlang:’>’/2, which are emulated using Erlang code.
In fact, a constraint coming from a term comparison, such as X > 42,
would not occur in a constraint path, as the BIF erlang:’>’/2 is
emulated by code, a fragment of which is shown in Figure 9. As
a result, the constraints that must be encoded in Z3 are simpler
comparison constraints between terms of the same simple type,
e.g., lt_int and lt_float. Even lt_list, which compares two



-spec ’>’(term(), term()) -> boolean().
%% arithmetic comparison, including coercions
’>’(X, Y) when is_integer(X), is_integer(Y) -> lt_int(Y, X);
’>’(X, Y) when is_float(X), is_float(Y) -> lt_float(Y, X);
’>’(X, Y) when is_integer(X), is_float(Y) ->
lt_float(Y, float(X));

%% ...
%% numbers are smaller than other terms
’>’(X, _Y) when is_number(X) -> false;
’>’(X, Y) when is_atom(X), is_number(Y) -> true;
%% atoms are compared lexicographically
’>’(X, Y) when is_atom(X), is_atom(Y) ->
lt_list(atom_to_list(X), atom_to_list(Y));

%% atoms are smaller than other terms except numbers
’>’(X, _Y) when is_atom(X) -> false;
%% ...

Figure 9. Fragment of CutEr’s code for emulating erlang:’>’/2.

list terms lexicographically, is emulated as a recursive function in
Erlang, eventually comparing values of simple types.

Simplifying complex sets of axioms. If the set of axioms given to
Z3 is too complex, the solver may not be able to find a model and
resort to replying unknown. In these cases, we try to simplify the set
of axioms, aiming to obtain one whose satisfiability can be verified.
For example, operations that the solver cannot handle, such as some
non-linear operations, are not recorded at all as symbolic constraints
during execution.

A useful kind of simplification is obtained by limiting the number
of variables in the universe. Let S be the set of the variables in our
model. In the initial query, we consider all variables as unknown, i.e.,
free. If this query returns unknown, we can try again, this time fixing
the values of a subset F ⊂ S of the variables to their respective
concrete values. Notice that although this procedure may help us
determine that our set of constraints is satisfiable, it does not help
us if no solution is found after trying all possible subsets F ⊂ S.

5.4 Current Limitations
The current version of CutEr can only handle the types of Mini
Core Erlang; in particular, it does not support Erlang binaries and
maps. Also, in its current version, CutEr does not emulate all of
Erlang’s BIFs in such a way so as to be able to reason about their
results in symbolic form. We do not expect any serious difficulties in
supporting binaries, or in emulating more BIFs in a future version.

Also, even though CutEr currently supports higher-order func-
tions, it cannot reason about functional terms. For example, if the
entry function takes a functional parameter and the initial execution
instantiates this with function f, CutEr will treat this as a concrete
value; it will not try to generate other functions that, when given as
arguments in the place of f, will drive execution to an unhandled ex-
ception. We believe that some limited support for such higher-order
functions can be implemented in a future version of CutEr, using
uninterpreted functions in Z3. However, full support of higher-order
functions as first-class citizens in concolic testing is bound to hit a
wall, not only with Z3 but with most off-the-shelf solvers.

On a related note, the effectiveness of concolic testing tools in
general is sensitive to the capabilities of their constraint solver. In
this respect, it would be nice to allow solvers other than Z3 to be
used as plugins.

Another current limitation is that CutEr does not support many
search strategies. Also, from a user’s perspective point-of-view, it
would be nice for the tool to report some indication of the path
coverage that it managed to achieve in case of incomplete searches.

6. Some Experiences
Let us, once more, re-examine our running example. Recall that
once its code gets extended with a type specification that constraints
the input to the foo/1 function to be a list of integers, the only error
remaining is with L = [42]. This error is due to the case statement
of the fcmp/1 function not handling the atom eq, which is one of
the possible return values of cmp/1. One could argue, of course, that
this error is something that even some more lightweight method,
e.g., a pattern matching non-exhaustiveness analysis, would also be
able to discover given sufficient type information. More generally,
the reader may be wondering whether all/most errors that CutEr
discovers are pattern matching failures that are as simple as that.

Our experience is that this is not the case. We chose this rather
simplistic example on purpose, in order to ease the exposition of the
constraints that are generated in its concolic execution and keep the
presentation of the techniques that CutEr uses simple. In a pragmatic
programming language such as Erlang, a similar error can easily
remain hidden under an arbitrary number of function calls, perhaps
type-converting ones, that can manage to confuse even the strongest
of analyses. Below, we show a semantically equivalent variant of
the fcmp/1 function where its case statement has been turned into
an assertion:

fcmp(X) -> % 116 is ASCII for ’t’
116 = hd(tl(atom_to_list(cmp(X)))),
ok.

No doubt this version may initially manage to confuse some readers,
but it does not succeed in deceiving CutEr! The tool still easily
manages to report that the program crashes with L = [42].

Another, somewhat surprising, experience is that sometimes the
failing test cases that CutEr generates are not so “expected”. For
example, consider the following function, which calls the fcmp/1

function, either the one in the running example or the one above:

-spec bar([integer()]) -> ok.
bar(L) when length(L) < 4 -> ok;
bar(L) -> fcmp(lists:sum(L)).

The only purpose of this made up example is to test the capabilities
of the tool by forcing the generation of a list with at least four
elements. CutEr, starting from the call bar([]), quickly discovers
that concolic execution of this function will fail for the input list:
L = [1323,1888,-12894,9725]. This shows both the power of the
tool, but also its dependence on its SMT solver component, which
works not only as a black box but as black magic in this case.

As mentioned in Section 4, an issue is that the language of
type specifications is not expressive enough to capture the actual
constraints of all types. This is currently something to address for
the fully automatic use of the tool in all situations. For example,
the calendar module of the standard library defines essentially the
following data type:

-type date() :: {Year::non_neg_integer(), 1..12, 1..31}.

which is then used in various functions of this module. CutEr reports
that these functions will fail when supplied with {42,4,31}, i.e.,
31st of April, as input.

Similar issues exist in some library functions that have hidden
preconditions. For example, Erlang defines an orddict data type,
which essentially is a key-value dictionary where a list of pairs is
used to store the keys and values and the list is ordered after the
keys. Its type declaration reads:

-type orddict(Key, Val) :: [{Key::term(), Val::term()}].

Most functions of this module work with dictionaries that contain ar-
bitrary terms as keys and values. Some others like orddict:append/3
have extra constraints. Its type specification is:



-spec append(Key, Value, orddict(Key, Value)) ->
orddict(Key, Value) when Key::term(), Value::term().

but its manual page reads:

This function appends a new Value to the current list of
values associated with Key. An exception is generated if the
initial value associated with Key is not a list of values.

CutEr, which has not RTFM, quickly finds that the function will fail
for the call:

orddict:append(0, 1, [{0,17}, {3,[12]}, {7,29}]).

However, note that the function does not insist that all values are
lists; for example, the following call returns successfully:

orddict:append(3, 1, [{0,17}, {3,[12]}, {7,29}]).

7. Concluding Remarks and Future Work
We have presented an approach to apply concolic testing to func-
tional programs at the level of their core language, rather than at
the level of their low-level implementation. Moreover, we have pre-
sented the architecture and implementation technology of CutEr, a
concolic testing tool for the functional subset of Erlang that imple-
ments this approach. We are not aware of any other attempt to apply
concolic testing at this high-level or any such similar tool, not only
for Erlang but for functional programming languages in general.

Still, our work is only a (very important) first step in this effort.
Besides working on lifting the limitations described in Section 5.4,
a concolic testing tool also requires a variety of search strategies but
also significant engineering effort in order to become scalable and
effective. Last but not least, for a language like Erlang, an effective
concolic testing tool also needs to handle the concurrency part of the
language, not only its functional part. CutEr actually already handles
some of Erlang’s concurrency constructs, such as receive, but the
description of the techniques it employs and its implementation is
left for another paper.
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