
Run Your Research
On the Effectiveness of Lightweight Mechanization

Casey Klein1 John Clements2 Christos Dimoulas3 Carl Eastlund3 Matthias Felleisen3

Matthew Flatt4 Jay A. McCarthy5 Jon Rafkind4 Sam Tobin-Hochstadt3 Robert Bruce Findler1

PLT
1Northwestern University, Evanston, IL 2California Polytechnic State University, San Luis Obispo, CA

3Northeastern University, Boston, MA 4University of Utah, Salt Lake City, UT 5Brigham Young University, Provo, UT

Abstract
Formal models serve in many roles in the programming language
community. In its primary role, a model communicates the idea of a
language design; the architecture of a language tool; or the essence
of a program analysis. No matter which role it plays, however, a
faulty model doesn’t serve its purpose.

One way to eliminate flaws from a model is to write it down in
a mechanized formal language. It is then possible to state theorems
about the model, to prove them, and to check the proofs. Over
the past nine years, PLT has developed and explored a lightweight
version of this approach, dubbed Redex. In a nutshell, Redex is a
domain-specific language for semantic models that is embedded
in the Racket programming language. The effort of creating a
model in Redex is often no more burdensome than typesetting it
with LaTeX; the difference is that Redex comes with tools for the
semantics engineering life cycle.

In this paper we report on a validation of this form of lightweight
mechanization. The largest part of this validation concerns the for-
malization and exploration of nine ICFP 2009 papers in Redex,
an effort that uncovered mistakes in all nine papers. The results
suggest that Redex-based lightweight modeling is effective and
easy to integrate into the work flow of a semantics engineer. This
experience also suggests lessons for the developers of other mech-
anization tools.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics
General Terms Design, Reliability, Theory
Keywords Lightweight Semantics Engineering

1. The Role of Language Models
Programming language researchers use formal models to commu-
nicate ideas in a concise manner. Many of their models explain a
small piece of language design, perhaps a new linguistic construct
or a new type system. Other models express the essence of a com-
piler transformation, the software architecture of an IDE tool, or
the workings of a program analysis. For decades researchers have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright © 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

used paper and pencil to develop these models. Paper-and-pencil
models come with flaws, however. Since flawed models can lead
to miscommunications, researchers state and prove theorems about
models, which forces them to “debug” the model.

Some flaws nevertheless survive this paper-only validation step,
and others are introduced during typesetting. These mistakes be-
come obstacles to communication. For example, Martin Henz from
National University of Singapore recently shared with one of this
paper’s authors his frustration with a historic paper (Plotkin 1975):

The readability is not helped by the fact that there are lots
of typos, e.g. page 134, Rule II 1: M = N should be M = M.
The rule II 3 on page 136 is missing the subscript 1 above
the bar. [personal communication, 6/4/2011]

Once the reader understands a model, fixing such typos is straight-
forward. But during the initial struggle with the paper, flawed rules
may pose seemingly insurmountable obstacles to the reader. In con-
trast, authors who have spent months or years exploring the intrica-
cies of their model are prone to discount the significance of typos
and small mistakes even if readers report extreme frustration.

Over the past decade, mechanized theorem proving has come
into its own as one alternative to the paper-and-pencil approach (Ay-
demir et al. 2005). In this world, researchers “program” their
models in formal languages, state theorems, and create machine-
checked proofs. We consider this kind of theorem proving heavy-
weight, because it requires more explicit details than programming.

An alternative is to program models in functional languages
such as Haskell: creating interpreters, typecheckers, etc. This ap-
proach provides important mechanical scrutiny, but the gap be-
tween the program and what appears in a paper’s figures tends to
make the task laborious and reduces the strength of the validation.

��������
������
�����

���������
�����

With these considerations in
mind, PLT has developed Re-
dex (Matthews et al. 2004;
Felleisen et al. 2010), an ex-
ecutable domain-specific lan-
guage for mechanizing seman-
tic models. The philosophy of
Redex is to treat semantic mod-
els as software artifacts just
like plain software systems. As
such, semantic models have a
life cycle, and the life cycle idea
for semantic models is similar to
the one of software systems. Using Redex a semantics engineer for-
mulates the syntax and semantics of the model; creates test suites;

�������� � ����
����
����� �� ���� ��
����������
����
���������

(define-language Λc
(e (e e ...)

x
(λ (x ...) e)
call/cc
+
number)

(x variable-not-otherwise-mentioned))

��������������� ��
�������� �� ���� ��

����������
����
���������

�������� ��� � � ����
�����

(define-extended-language
Λc/red Λc
(e (A e))
(v (λ (x ...) e)

call/cc
+
number)

(E (v ... E e ...)
hole))

Figure 1: λ-calculus plus call/cc

���� ��� � ��������

���������� ��� ���� �� ��� �� �������� ����������

��������������

����� �� ����� �� � ������ ��������������� �����

���� ������ ����� ������������ ��� �� � ����

(define red
(reduction-relation

Λc/red #:domain e
(--> (in-hole E (A e))

e
"abort")

(--> (in-hole E (call/cc v))
(in-hole E (v (λ (x) (A (in-hole E x)))))
(fresh x)
"call/cc")

(--> (in-hole E ((λ (x ..._1) e) v ..._1))
(in-hole E (subst e (x v) ...))
"βv")

(--> (in-hole E (+ number ...))
(in-hole E (Σ number ...))
"+")))

Figure 2: The Λc reductions

runs random tests on conjectures; uses graphical tools for visualiz-
ing examples and debugging; and automatically renders the model
as a PDF snippet.

It is our hypothesis that small Redex efforts quickly pay off for
the working semantics engineer. To validate our hypothesis, we
conducted two case studies, and this paper presents the results of
these studies. The first shows how Redex helps test a language
implementation with a language model. The second shows that the
Redex methodology applies to a broad spectrum of contemporary
research papers. Specifically, the authors encoded nine ICFP 2009
papers in Redex; equipped the models with unit tests; translated
formal and informal claims into testable conjectures; and checked
their validity. In the process, we found mistakes in all of the papers,
including one whose essential result had been verified in Coq.

The next section reviews the Redex modeling language and tool
suite. From there, the paper covers ten case studies. Our experience
suggests lessons for the authors of semantic models as well as the
designers of validation tools; we discuss these lessons in the paper’s
final sections, along with related work.

2. Welcome to Redex
Semantics engineers use the Redex language to write down the
grammar, reductions, and metafunctions for calculi or transition
systems. The language is a domain-specific language embedded
in Racket. Redex programmers inherit the DrRacket IDE, a large
standard library, and a large set of user-contributed libraries. The
Redex toolkit covers a variety of tasks related to executing seman-
tics definitions: a stepper for small-step operational semantics; in-
spectors for reduction graphs; a unit testing framework; a tool for
randomized testing à la QuickCheck (Claessen and Hughes 2000);
and automatic typesetting support.

From a linguistic perspective, Redex is a strict functional lan-
guage with a powerful pattern matcher and domain-specific con-
structs supporting operational semantics. This section illustrates
Redex with a model of the λ-calculus, extended with call/cc.

2.1 Grammars
The left-hand side of figure 1 shows the grammar of the language
and the corresponding Redex code. The latter binds the Racket-
level variable Λc to a Redex language, a series of non-terminals
and alternatives. In this case, there are two non-terminals, � and
�. The � non-terminal has six alternatives. The first, application
expressions, uses an ellipsis to indicate repetition. In this case,
the ellipsis amounts to insisting that each application expression
consist of at least one sub-expression. Similarly, the third alterna-
tive uses an ellipsis to indicate that λ expressions can bind an ar-
bitrary number of variables. The fourth and fifth alternatives are
constants, ������� and �, leaving � and ������ , two other non-
terminals. The ������ non-terminal is built-in and matches arbi-
trary Racket numbers. The production for � uses the special key-
word variable-not-otherwise-mentioned. It matches any
symbol except �������, �, and � because they are used as termi-
nal symbols elsewhere in the grammar.

To give a reduction semantics to Λc, we add an alternative to �

and define two extra non-terminals. The right-hand side of figure 1
shows both the mathematical extension and the Redex code.

The first position in a define-extended-language form
names the new language and the second names to the to-be-
extended language. Non-terminals appearing in the body of define-
extended-language replace those of the same name in the old
language, unless a appears, in which case the non-terminal is
extended. In this case, we extend � with the expression form �� �� ,
which we use to give a reduction semantics for continuations.

Figure 3: A screenshot of Redex’s reduction visualizer

The other non-terminals, v and E, for values and evaluation
contexts, respectively, are used to formulate standard reduction
rules. The definition of E uses hole, a pattern matching construct
that represents the hole in a context. Our running example uses two
alternatives for evaluation contexts: the first mandates a left-to-right
order of evaluation by insisting that evaluation can only take place
to the right of values; the second says that a context can be a hole.

2.2 Reduction Relations and Metafunctions
Figure 2 contains the reductions for Λc on the left and the corre-
sponding Redex source code on the right. A reduction relation is
defined as a series of rules of the form

(--> pat_1 pat_2)

where any expression matching pat_1 is transformed into pat_2.
The #:domain keyword specifies a contract, in this case declaring
that red relates terms matching the pattern e.

With (in-hole E e) a Redex programmer specifies a context
decomposition, ����, meaning the first rule aborts the computation
by dropping the context around � expressions.

The second rule of red rewrites �������� �� into an application
of � to a function that behaves like a continuation. The (fresh
x) annotation in the rule demands that the parameter of the new
function does not appear anywhere else in the rewritten expression.

The left-hand side of the third rule uses ellipses with subscripts
(..._1) to specify that the lengths of the two sequences must
match, thus restricting the rule to applications without arity errors.
The rule’s right-hand side appeals to the metafunction subst,
which Redex requires to be defined explicitly.

The define-metafunction keyword defines a metafunction;
the first two positions specify a language and a contract, followed
by the cases of the function, each enclosed in a pair of square brack-
ets. The subst function recurs on a list of bindings, repeatedly ap-
plying a single-variable substitution function:

(define-metafunction Λc/red
subst : e (x v) ... -> e
[(subst e (x_1 v_1) (x_2 v_2) ...)

(subst-1 x_1 v_1 (subst e (x_2 v_2) ...))]
[(subst e) e])

The single-variable substitution function is defined as usual.1
The final rule appeals to a Σ metafunction. This metafunction

exploits Redex’s embedding in Racket:

(define-metafunction Λc/red
Σ : number ... -> number
[(Σ number ...)
,(foldr + 0 (term (number ...)))])

The right-hand side begins with an unquote (written as a comma),
meaning that it is evaluated in Racket, and the Racket expression is
expected to return a term that is the result of the metafunction. In
this case, the function exploits the representation of Λc’s numbers
as Racket numbers to compute their sum. The expression (term
(number ...)) produces a list of the numbers supplied as argu-
ments to Σ. In general, term behaves like quote, but also picks up
the bindings of pattern variables (number in this case) and supports
ellipses to indicate repetition.

Finally, Redex provides apply-reduction-relation to ex-
periment with reduction relations. It accepts a relation and a term
and returns a list of all contractions of the term:

> (apply-reduction-relation
red (term (+ 1 (A (+ 2 3)))))

’((+ 2 3))

2.3 Exploring Examples
Redex provides visualization tools for exploring the behavior of
examples. The traces function accepts a reduction relation and a
term and shows the entire reduction graph of the term. To demon-
strate the value of these tools, we adjust our reduction system to
model an unspecified order of evaluation in the spirit of C:2

1 In this case, it is an exact copy of the example model’s substitution
function from the Redex website: http://redex.racket-lang.org/.
2 Scheme’s unspecified order of evaluation is more sophisticated than C’s,
but Redex is up to the task (Matthews and Findler 2005; Sperber et al. 2007).

http://redex.racket-lang.org/

(define-extended-language
any-which-way-Λc Λc/red
(E (e ... E e ...)

hole))

This extension replaces the � non-terminal entirely, allowing re-
ductions to occur in any position inside an application expression.

Next, we use extend-reduction-relation to replace the
language of the reduction relation (without adding any reductions):

(define any-which-way-red
(extend-reduction-relation
red any-which-way-Λc))

That is, this extension merely re-interprets the existing rules with
the new definition of �.

This extended language does not satisfy the Church-Rosser
property, as a quick experiment with traces shows:

> (traces any-which-way-red
(term (+ 1 (call/cc

(λ (k)
(+ (k 2) (k 3)))))))

Figure 3 displays a screenshot of the resulting window. Each
box contains a term that the original reduces to and the arrows are
labeled with the reduction rule’s name that connects the two terms.
The arrows connected to the term underneath the mouse cursor are
darkened to make them easier to pick out.

2.4 Randomized Testing
Redex’s randomized testing support follows QuickCheck. A pro-
grammer writes down a property with redex-check (Klein and
Findler 2009) and Redex generates instances of the property in an
attempt to falsify it. Specifically,

(redex-check G n e)

tests the boolean-valued expression e, interpreted as a predicate
universally quantified over n, by evaluating it at random terms
generated from the non-terminal n of the grammar G.

For example, we can test the property that every expression in
Λc is a value or reduces to another expression. To check whether
an expression is a value, we use redex-match, which tests
whether a particular term matches a given pattern; to check whether
an expression reduces, we check whether apply-reduction-
relation’s result is non-empty:

> (redex-check
Λc/red e
(or (redex-match Λc/red v (term e))

(cons?
(apply-reduction-relation
red (term e)))))

counterexample found after 9 attempts:
S

Of course, there are a number of stuck states and Redex quickly
finds a simple one, namely a free variable. If we add an explicit
reduction to error as a way to signal an error for a free variable:

(--> (in-hole E x) error "free variable")

and then iteratively run the test above, fixing errors as they are
discovered, redex-check eventually finds all of the (known) stuck
states in the model.

2.5 Typesetting
Redex provides automatic typesetting support which transforms a
language, reduction relation, metafunction, or a term into PostScript

or PDF to be included in a paper. Indeed, all of the typeset versions
of elements of the Λc model shown in this paper are generated
automatically using Redex.

This example shows Redex’s vanilla support for rendering a
reduction relation:

> (render-reduction-relation red)
���� ��� ��������
�

���������� ��� ����������
���� �� ��� �� ��������

��������������

����� �� ����� �� � ������ �����
����������� �� ��� ��� �� �

���� ������ ����� ����
������������ ��� �� �

The main difference between this rendering of the reduction rela-
tion and the one shown on the left in figure 2 is that the rules are
oriented vertically instead of horizontally. Adjusting the orienta-
tion is a matter of passing a flag to control the basic layout option.
In addition, the substitution function is shown here using Redex’s
default typesetting for metafunctions, ��������� �� ��� ��� �� . Redex
also provides hooks for tuning the rendering of calls to metafunc-
tion, which may be used to render substitution in the conventional
style, ������������.

When a reduction relation or a metafunction escapes to Racket,
Redex renders the Racket code in a monospaced font but with a
pink background so it stands out:

> (render-metafunction Σ)
���������� ��� �� ��� ������ � � ������� �����

Redex programmers can then set hooks to adjust how such frag-
ments are typeset.

3. Redex Models for Production Systems
Redex can help language designers validate their implementations
against their specifications with low cost. To demonstrate this the-
sis, we conducted a case study using the model of delimited control
by Flatt et al. (2007). Figure 4 shows the model’s complete internal
syntax, including forms left out of the original paper’s presentation.
At the time of the publication of that paper, the model’s authors
had implemented a Redex model,3 built a thorough test suite, and
mechanically generated their paper’s figures from the Redex defi-
nitions. They did not, however, employ randomized testing; Redex
had no built-in support for it at the time. This section explains how
we revisited that model to see if randomized testing could find more
issues in a well-tested model. It did: we found mistakes in both the
implementation and specification of delimited control.

3.1 Randomized Testing in Redex
The obvious use of randomized testing is to check a paper’s claims.
Flatt et al. do not explicitly state any theorems, but all is not
lost—they do imply that the model is a faithful abstraction of the
production Racket implementation. We can therefore test the claim
that the implementation produces the result predicted by the model:

(redex-check
delim-cont-grammar e
(equal? (model-eval (term e))

(racket-eval (term e))))

In this claim, model-eval uses Redex to reduce its argument to a
value and racket-eval evaluates the term via Racket.

3 Available online: http://www.cs.utah.edu/plt/delim-cont/

http://www.cs.utah.edu/plt/delim-cont/

�������������� � ��
���������������� � ������������� � ������� � � �������� � � � ��

������ � � ���������� � ��
����������� � ��������� �� ���� ���������� � ���������� ��

���������������������������������������
�������������������������
����������������������������������

������������
�����������������������������������
��������� �� ����
��������������� � � � ���
�������������� � ��
������������� ��� � � ������������� � ������� � � ��

�������� � �������� � � ��
���������������� � � �� ���

Figure 4: The syntax of the delimited control model.

Unlike in QuickCheck, where users specify test generators for
the data types they define, Redex derives naive test generators au-
tomatically from the language’s grammar. In this case, the derived
generator has two immediate problems. First, Redex’s grammar
specifications do not address variable binding. As a result, the gen-
erator often produces expressions with free variables, which Racket
statically rejects. Second, the � non-terminal in figure 4 includes
non-surface syntax such as ����� �� that Racket programmers
cannot write directly. Since our goal is not to prove a proposition
but to falsify it, we begin with simple solutions to these problems.

3.2 A Weak Attempt
One possibility is to discard test expressions that contain free vari-
ables and to avoid non-surface forms entirely:

(redex-check
delim-cont-grammar e
(with-handlers ([free-var-exn? (λ (_) #t)])
(equal? (model-eval (term e))

(racket-eval (term e))))
#:prepare drop-non-surface)

; drop-non-surface : expr -> expr
(define (drop-non-surface e) --)

This revision discards open expressions by catching unbound iden-
tifier errors with an exception handler that reports the test as a suc-
cess. It eliminates uses of non-surface forms in the generated ex-
pression by rewriting them using drop-non-surface, which re-
places non-surface expressions with one of their sub-expressions or
a random constant if there are no sub-expressions.

This approach is naive, but it reveals three previously unknown
errors, one in the portion of the semantics shown in the published
paper and two in elided definitions:

1. The error visible in the paper’s figures4 is in the definition of
evaluation contexts �, reproduced in figure 4. A prompt ex-
pression �� � � �� has three sub-expression: a tag used by the
other control operators to identify the prompt, a body, and a
handler expression that receives values thrown by ����� ex-
pressions within the dynamic extent of the body. The expres-
sions should be evaluated from left to right, but the definition of
� lacks evaluation contexts corresponding to the first and third

4 See p. 174 of the 2007 ICFP proceedings.

sub-expressions. For example, this omission causes evaluation
of the following expression to get stuck:

> (model-eval (% (+ 1 2) 3 (λ (x) x)))
’stuck

2. The model defines function application with a rule like this one:

(--> ((λ (x ...) e) v ...)
(subst* (x ...) (v ...) e)
"beta")

Unlike the corresponding rule in section 2.2, the ellipses have
no subscripts. Thus, the rule also applies to expressions with
arity mismatches, e.g., ��� �� �� ��. Reducing this expression
with Redex raises a meta-level error because the formal param-
eters and actual arguments cannot be paired.

3. The reduction rule for ����� expressions may also raise a
meta-level exception. The model’s Redex encoding, which rep-
resents numbers as Racket numbers and primitive operators like
� as Racket symbols, appeals to Racket’s zero? function to re-
duce ������ �� redexes. But the zero? function carries a con-
tract that restricts its application to numbers, making reduction
of the expression ������ ��, for example, raise a meta-error
instead of producing ��.

3.3 Refining the Test Generator
Despite our initial success, there is good reason to explore more
sophisticated test generation strategies. To start, in one sample
of 10,000 expressions produced by Redex’s naive generator, only
1,220 contain no free variables, and only 599 of those are not val-
ues. We can avoid discarding so many tests by supplying a function
close that replaces unbound variables with random bound ones or
constants when none are bound:

(redex-check
delim-cont-grammar e
(equal? (model-eval (term e))

(racket-eval (term e)))
#:prepare (compose close drop-non-surface))

; close : expr -> closed-expr
(define (close e) --)

For this particular model, though, we do not discover any new
errors this way.

Redex’s test coverage tool suggests another improvement, how-
ever. Executing one round of 10,000 random tests fails to exercise
20 of the 30 reduction rules even once. Three more rules, including
the βv rule shown in section 3.2, fire only a few times each.

To exercise these rules, the test generator must make several
fortuitous choices. In the case of the βv rule, the generator must
first choose to place an application expression in a position that
will ultimately be evaluated. Second, in the application’s operator
position, the generator must construct an expression that evaluates
to a function. Third, in the operand positions, the generator must
construct expressions that do not result in runtime errors or discard
the continuation containing the application. Fourth, the generator
must choose to construct the right number of operands.

We can encourage these choices by providing redex-check
the hint that it should occasionally use the rules’ left-hand sides
instead of the more general pattern e as its basis for test generation.
The left-hand side of the βv rule, for example, directly addresses
the second and fourth choices above.

Many of the patterns in the rules’ left-hand sides, however, re-
fer to non-surface forms, and so we must first replace the pass
that removes non-surface expressions with one that transforms

them into equivalent surface expressions. For example, expressions
equivalent to ���� values can be constructed from � (prompt),
���������, and �����. We implement this transformation, as well
as ones for the other non-surface forms for which it is possible
(see section 3.4), using a function transform-non-surface and
supply it to redex-check, along with the hint to use the delim-
cont-rules reduction relation.

(redex-check
delim-cont-grammar e
(equal? (model-eval (term e))

(racket-eval (term e)))
#:prepare (compose close transform-non-surface)
#:source delim-cont-rules)

; transform-non-surface : expr -> expr
(define (transform-non-surface e) --)

This technique finds six more previously unknown errors.
Two of these six are mistakes in the model made available with

the paper, though they did not appear in the publication:

1. The model includes a semantics for continuation marks, a
feature for associating name-value pairs with continuation
frames (Clements et al. 2001). The expression �������� �� �� ���

marks the active continuation frame with key �� and value ��

then applies the thunk ��. The expression �������������� �� ���

collects all marks for key �� on frames up to the nearest enclos-
ing prompt tagged with �� .

The model’s reduction rule for ������������� appeals to a
metafunction that traverses the delimited context to construct
a list of its mark values. This metafunction, however, lacks a
case for contexts of the form ��� � � ��, making mark collection
undefined within the dynamic extent of the test position of �� ex-
pressions. For example, evaluation of the following expression
raises a meta-level error:

(% 0
(call/cm 1 #t

(λ ()
(if (first (current-marks 1 0))

2
3)))

(λ (x) x))

2. The model’s definition of capture-avoiding substitution is
wrong. To perform the substitution ���������� ��� �� ���� ��� �� ,
the model takes care to rename �� to a variable not free in �� ,
but it fails to avoid choosing �� or the free variables of �� .

The remaining four errors are in the implementation of Racket
(version 5.0.2). These errors eluded a hand-crafted test suite and
years of production use, but randomized testing finds them quickly:

3. Continuation marks are not represented directly on continua-
tion frames. Instead, a stack of marks is kept in parallel with the
stack that represents the continuation. Delimited continuations
therefore capture parts of the mark stack, and different slices
of the stack involve different base offsets. While restoring part
of a continuation to execute a ������������ pre-/post-thunk,
one of the offsets is installed incorrectly. The resulting crash
would only happen for a pre-/post-thunk that is captured in a
continuation that is itself captured as an extension of a com-
posed continuation, possibly with a few more ingredients we
have yet to identify.

4. This error is similar to the previous one. Like continuation
marks, ������������ frames are kept in a separate stack that

is synchronized with the continuation stack. An offset connect-
ing the two stacks is forced to an incorrect value when com-
posing continuations in certain cases. The mistake produces a
crash only after one more round of continuation capture and
invocation.

5. Non-composable continuations store a prompt tag and, when
they are invoked, the implementation checks that the current
continuation includes a prompt with the same tag. Composable
continuations come without a tag. The two kinds of continua-
tions share much of the implementation infrastructure, however,
and this shared implementation incorrectly stores and checks
prompt tags for composable continuations.

6. This error is similar to the previous one. The implementation
also performs a prompt-tag check after each the application of
each ������������ pre-thunk during the process of apply-
ing a non-composable continuation. For composable continu-
ations, the implementations should not perform such prompt-
tag checks, but once again, the shared implementation performs
these checks for both kinds of continuations.

At the time of writing, we still do not fully understand the
behavior of the test that discovered the first of these four errors,
making the prospect of manually devising a test like it appear
dismal. Fortunately, the repair was clear from the resulting core
dump.

The implementation’s hand-crafted test suite contains tests that
get close to finding these errors, but the suite’s author did not
have the patience to construct tests of the necessary complexity.
Patience aside, finding these errors seems to require a degree of
uninhibited creativity that is difficult to achieve. Hanford (1970),
one of the first to apply randomized testing to the implementation
of programming languages, observes about his test generator for
PL/1—dubbed “syntax machine”—that

[a]lthough as a writer of test cases, the syntax machine is
certainly unintelligent, it is also uninhibited. It can test a
[language] processor with many combinations that would
not be thought of by a human test case writer.

3.4 Unwelcome Errors
In addition to these nine errors, we found many more which we
would have preferred to avoid—errors in the specification relating
the model to its implementation and errors in the post-generation
passes. We mention their discovery not as successes of randomized
testing but as a reminder of its cost.

Formalizing the relationship between the model and its imple-
mentation with enough precision to test it is a non-trivial task. The
primary challenge is to decide which non-surface expressions from
figure 4 are well-formed. For example, the grammar includes con-
tinuation frames that contain two marks at a single key, but such
configurations should not occur. Developing a specification that
includes these invariants takes some effort. We used randomized
testing to find expressions where violations of unknown invariants
yield different behaviors in the model and implementation. There is
no guarantee that this sort of randomized test-driven development
results in a complete specification, but we are satisfied as long as
the working draft avoids false positives in our tests.

The source of most unwelcome errors was our implementation
of the passes that enforce well-formedness of non-surface expres-
sions, transform well-formed ones into surface expressions, and
remove free variables. Together, these passes comprise 259 non-
comment, non-whitespace lines of code.

4. An Empirical Study of ICFP Papers
To improve our understanding of how lightweight metatheory
mechanization can help authors with their papers, we used Re-
dex to explore nine papers from the ICFP 2009 proceedings. The
papers were chosen because we considered them suitable for mech-
anization in Redex, but some turned out to be challenges.

The nine papers include two which had already been mecha-
nized. We chose two such papers not really expecting to find errors,
but to see if we would learn something about Redex when imple-
menting papers that already had a significant mechanized metathe-
ory effort put into them.

We found mistakes in all nine papers, with less effort in each
case than exhibited in section 3. We explain most of the er-
rors we found below, in the order in which the papers appear in
the 2009 proceedings. We omit some uninteresting errors com-
mon to multiple systems (e.g., confusing the particular object-
language variable x with the meta-variable V that ranges over
object-language variables). The authors of the papers we stud-
ied have confirmed the errors described here. The Redex models
are available online: www.eecs.northwestern.edu/~robby/
lightweight-metatheory/

4.1 Safe functional reactive programming through dependent
types by Neil Sculthorpe and Henrik Nilsson

Sculthorpe and Nilsson (2009) define a functional reactive pro-
gramming language embedded in Agda (Norell 2007). The embed-
ded language’s dependent type system rules out domain-specific
errors such as loops with immediate feedback and uses of uninitial-
ized signals. Its operational semantics, given as an Agda function
defining discrete evaluation steps, carries a machine-checked proof
of type safety since Agda accepts the function as total.

The paper does not show the Agda definition; it instead presents
the semantics in the usual inference rules notation for big-step
semantics. Encoding the paper’s formulation in Redex revealed
one error, introduced in the manual translation of the Agda code
to nearly three full pages of figures. Specifically, the conclusion
of the φ1-DSW-EV rule in the paper’s figure 6 applies to switch
expressions; it should apply to dswitch expressions.

This paper has since been revised (Sculthorpe 2011).

4.2 Causal commutative arrows and their optimization by Hai
Liu, Eric Cheng, and Paul Hudak

Liu et al. (2009) define a class of recursive arrows that they call
causal commutative arrows (CCA) and show how they can be
compiled into a single imperative loop. Our focus was the portion
of the transformation that they describe formally, a procedure for
computing an efficient normal form they call causal commutative
normal form (CCNF).

The procedure takes the form of a normalization relation ⇓ that
reduces expressions bottom-up using a relation 7→ based on the
standard arrow axioms (Hughes 2000). For example, the normal-
ization rule for sequential compositions e1 ≫ e2 normalizes the
sub-expressions, reduces the result, then normalizes the contrac-
tum.

e1 ⇓ e′1 e2 ⇓ e′2 (e′1 ≫ e′2) 7→ e e ⇓ e′

e1 ≫ e2 ⇓ e′

Using randomized testing to check whether ⇓ is indeed a func-
tion with the claimed domain and codomain found two problems:

1. In addition to arrow constructors, the language on which ⇓ is
defined includes functions and pairs; consequently, some arrow-
typed expression do not have arrow constructors at their roots.
The proof in the paper’s appendix mentions that such expres-

sions must first be β-reduced, but there are no corresponding
steps in the ⇓ definition.

2. Reduction via the 7→ relation creates arrows built from the
loopB combinator, defined in terms of the primitive CCA con-
structors. To account for loopB expressions, the ⇓ relation in-
cludes the following rule:

f ⇓ f ′ loopB i f ′ 7→ e e ⇓ e′

loopB i f ⇓ e′

For some f, loopB i f ′ is already in normal form. In these cases
there is no e such that loopB i f ′ 7→ e, leaving the rule’s second
premise unsatisfiable (and the implied procedure stuck).

This paper has since been revised (Liu et al. 2011).

4.3 Partial memoization of concurrency and communication
by Lukasz Ziarek, KC Sivaramakrishnan, and Suresh
Jagannathan

Ziarek et al. (2009) show how memoization can be applied in a
concurrent language with synchronous message-passing primitives.
To show that memoization preserves meaning, they define two
evaluators for a concurrent language, one that uses memoization
and one that does not. Encoding these systems in Redex exposed
two mistakes:

1. The paper’s theoretical result is a safety theorem guaranteeing
that when memoized evaluation takes a state P to a state P′,
then non-memoized evaluation takes T JPK to T JP′K, where the
meta-function T erases the extra structure used for memoiza-
tion. As randomized testing quickly discovers, this theorem is
false. It fails to exclude states in which the memo table incor-
rectly predicts the behavior of some function. The correspon-
dence appears to hold for executions beginning with the empty
table (the important case), but the proof’s inductive structure
requires a generalized claim about states with non-empty but
well-formed tables. A proof typically gives this generalization
explicitly, since well-formedness conditions for such accumu-
lated data structures tend to be complex.

2. The non-memoizing evaluator operates on program states P
taken from the following grammar, in which t ranges over
thread identifiers and e ranges over expressions:

P ::= P ‖ P | t[e]
Because a state P contain sat least one thread, the following
communication rule cannot apply in the absence of a third
thread:

P = P′ ‖ t[E[send(l,v)]] ‖ t′[E′[recv(l)]]
P 7−→ P′ ‖ t[E[unit]] ‖ t′[E′[v]]

The same problem exists with the memoizing evaluator.

4.4 A concurrent ML library in Concurrent Haskell by Avik
Chaudhuri

Chaudhuri (2009) describes a way to implement the Concurrent
ML primitives (Reppy 1999) in a language that supports only first-
order message passing, such as Concurrent Haskell (Jones et al.
1996). He builds an abstract machine that abstracts the message-
passing model common to Concurrent Haskell and other concurrent
systems and then shows how programs using the Concurrent ML
primitives may be compiled into terms in his abstract machine,
while preserving safety, progress, and fairness.

We encoded this abstract machine, source language, and com-
piler in Redex. In addition to writing test cases by hand, we used
randomized testing to check a weak variant of the paper’s correct-
ness theorem. Randomized testing did not produce any counterex-

amples to the theorem, but it did lead us to programs for which
the abstract machine consumes unbounded resources where proper
Concurrent ML implementations would not.

For example, consider the following source expression, in
which c is a fresh channel:

select(in c, out c)

This expression permanently blocks any thread that evaluates it
because select cannot perform either communication. In Con-
current ML, garbage collection reclaims this thread because no
other thread can reach the channel; the abstract machine, on the
other hand, performs infinitely many steps for this expression—
effectively busy waiting for an event that cannot occur. This error
also shows up in the released implementation of the Concurrent ML
library for Concurrent Haskell based on the abstract machine.

4.5 Automatically RESTful web applications: marking
modular serializable continuations by Jay McCarthy

McCarthy (2009) extends a technique for implementing first-
class continuations via continuation marks (Pettyjohn et al. 2005),
adding support for source programs that themselves use contin-
uation marks. Despite a pencil-and-paper proof of correctness, a
combination of manual and randomized testing found five errors in
the translation’s specification, as well as three errors in the seman-
tics of its source and target languages:

1. The translation consists of four mutually recursive functions:
one for translating values and expressions that would be values
if not for a variable in some component, one for redexes, one for
evaluation contexts, and a driver function that either defers to
the values translation or decomposes the input and applies the
translations for redexes and evaluation contexts. This schema
relies on a unique decomposition lemma that turns out not to
hold, due to four mistakes in the grammars for redexes and
evaluation contexts.

2. The source and target languages are variants of A-normal
form (Flanagan et al. 1993), but the translation of evaluation
contexts inserts applications in a position that does not allow
them. Adapting translation to preserve A-normal form seems to
require abandoning the invariant that evaluation contexts trans-
late to evaluation contexts rather than more general contexts,
which the translation for continuation values assumes. In prac-
tice, there is no need to translate such values anyway, since they
do not appear in the source text of realistic programs.

3. In translated programs, call/cc produces a procedure that dis-
cards the current continuation using abort then calls a function
resume for rebuilding the captured continuation from a data
representation of its frames. A mistake in the definition of re-
sume, however, causes it to leave some frames out of the rebuilt
continuation.

4. The translation’s handling of continuation marks in the original
program involves installing an additional mark on each frame.
This mark holds a data structure that records all of the other
marks on the associated frame. To maintain this cumulative
mark, the translated program first fetches its current value using
c-w-i-c-m (“call with immediate continuation mark”), which
has the following signature:

c-w-i-c-m: key (α -> β) α -> β

This function examines the active frame’s marks and calls the
provided function with the value associated with the given key
or the provided default value if there is no such mark. The trans-
lation’s c-w-i-c-m call forgets the mandatory third argument.

5. The translation lacks recursive calls for two of the three posi-
tions inside the (w-c-m e e e) form, used for installing con-
tinuation marks.

6. Instead of including an explicit form for dereferencing store
pointers, the source language semantics has two rules for each
form that demands its operand. For example, in addition to the
usual βv rule, there is a rule that applies when the function
position holds a pointer σ:

Σ/E[(σ v)] −→SL Σ/E[e[x 7→ v]]
where Σ(σ) = (λ (x) e)

But with the usual definition of store-lookup (the author’s in-
tention), this strategy does not handle pointers to pointers to
functions.

7. The source language semantics lacks a rule like the following,
for indirect continuation application.

Σ/E[(σ v)] −→SL Σ/E′[v]
where Σ(σ) = κ.E′

8. The source and target languages provide a form (c-c-m e
...) for collecting continuation marks. This form is simi-
lar to the current-marks operator explained in section 3.3,
but there are two differences. First, c-c-m has no prompt-tag
operand, since the source and target languages do not provide
delimited control. Second, c-c-m collects the marks for several
keys at once. Its result should be a list of lists, in which the inner
lists contain the marks on each continuation frame; as defined
in the semantics, however, the marks for the final frame become
the list’s tail instead of its last element.

4.6 Control-flow analysis of function calls and returns by
abstract interpretation by Jan Midtgaard and Thomas P.
Jensen

Midtgaard and Jensen (2009) systematically derive a tail-call sen-
sitive control-flow analysis using abstract interpretation and then
prove that their analysis is equivalent to a CPS-based one from ear-
lier work. We discovered two problems with the paper:

1. The CPS transformation’s domain contains expressions with
constants, but there is no case in the transformation functions to
deal with the constants. This leads to a problem in lemma 5.1,
which states that transforming a program to CPS and then
transforming it back results in the original program. As stated,
this lemma is only true for programs that contain no constants.

2. The paper defines ≡ to be the least equivalence relation on
expressions satisfying these two equations:
let x = t in s ≡ s let x = t0 t1 in s ≡ s

and the analysis result includes a mapping from representa-
tive elements of this equivalence class to the values that the
corresponding expressions have at runtime. This definition of
≡ breaks the equivalence of the direct-style and CPS analysis
(theorem 5.1). Specifically, the direct-style analysis imprecisely
predicts that id2 might be returned by the term
let W = fn N. (N N) in

let id1 = fn x1. x1 in
let id2 = fn x2. x2 in

let J = (fn t. id2) id1
let d = (W W) in id2

but the CPS analysis correctly predicts that it never returns.
The problem is, the equivalence relation equates the two oc-
currences of id2 in the above program but should not.

This paper has since been revised (Midtgaard and Jensen 2012).

4.7 Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-transform
by Tiark Rompf, Ingo Maier, and Martin Odersky

Rompf et al. (2009) describe an implementation of delimited con-
tinuations for Scala. They define a type system that distinguishes
expressions with control effects, allowing continuations to be im-
plemented by a selective CPS transformation that leaves expres-
sions in direct style when they do not reify their continuations.

As we discovered while encoding the system in Redex, the pa-
per merely sketches the typing and transformation rules. A modest
Redex model can close the gap between a sketch and a consistent
description, and our model uncovered a significant omission in the
paper’s explanation. The definition of the transformation function
J.K neglects necessary recursive calls on sub-expressions (e.g., on
the operand of shift).

We did discover one inaccuracy not arising from the rules’ infor-
mal nature. The transformation, which operates on expressions in
A-normal form, distinguishes two classes of non-tail calls that reify
their continuations—those where the expression e following the
call also reifies its continuation (a behavior indicated in e’s type)
and those where e does not. In the latter case, the transformation
has an optimization opportunity. In an attempt to exploit the oppor-
tunity, the definition of J.K mistakenly dispatches on the type of JeK
instead of the type of e, causing it to apply the optimization even
when it is unsound.5

4.8 A Theory of typed coercions and its applications by Nikhil
Swamy, Michael Hicks, and Gavin M. Bierman

Swamy et al. (2009) define a proof system for validating partic-
ular program rewritings and give conditions under which various
program-rewriting systems operate unambiguously. For all results
except the ones on rewriting using polymorphic coercions, they
provide Coq proof scripts.6

We discovered two problems with an example in the section ex-
plaining polymorphic coercions. First, one instantiation of a poly-
morphic coercion is missing. Second, the example is based on the
assumption that the rewriting process will leave one particular ex-
pression alone when, in fact, it might be rewritten.

4.9 Complete and decidable type inference for GADTs by Tom
Schrijvers, Simon Peyton Jones, Martin Sulzmann, and
Dimitrios Vytiniotis

Schrijvers et al. (2009) define a type system for generalized alge-
braic datatypes (GADTs), giving both a declarative specification
and a sound and complete inference algorithm. Encoding the algo-
rithm in Redex uncovered three flaws in the paper’s definition:

1. The type system that Schrijvers et al. consider most natural for
GADTs is undecidable. Their key insight is that decidability
can be recovered by designating sets of unification variables
called untouchables that may not be unified to solve certain
constraints. The rules for let expressions, typed-annotated let
expressions, and individual case clauses introduce these vari-
ables, which stand for unknown types. The third of these three
rules, however, designates the wrong variables as untouchable.

5 In an email exchange (Feb. 2, 2011 – Mar. 3, 2011), the paper’s lead
author stated that they did not intend their model as a precise description.
He also explained that they meant for the J.K function to be applied by
a driver function whose operation accounts for the absent recursive calls.
The paper does not mention this driver. This author also reported that the
Scala implementation does not make the same optimization mistake as the
transformation sketch.
6 Available online: http://research.microsoft.com/~nswamy/
papers/coercion-proofs.tgz

2. The rule for entire case expressions correctly insists that all of
its clauses produce a result of the same type β. But instead of
assigning the entire case the type β, the rule gives it the type α,
a meta-variable that does not appear anywhere else in the rule
though the notation α does appear.

3. The constraint solving algorithm lacks a rule for arrow types.

4.10 Our Effort § Tests LOC Props
4.1 24 1196 1
4.2 10 849 5
4.3 32 1197 5
4.4 55 1445 4
4.5 105 1548 3
4.6 148 1159 8
4.7 97 1223 5
4.8 57 1335 3
4.9 67 1143 1
Mean 66 1233 3.88

Our case studies required two
kinds of efforts. First, each in-
vestigator had to understand his
assigned paper to a sufficient
degree so that he could formu-
late a paper-and-pencil model.
Second, the investigator had to
implement the model in Redex.
The adjacent table quantifies the
second kind of effort. Each row
shows the number of lines of
code, the number of test cases, and the number of properties tested
for each of the models in the above subsections. On the average, a
model consists of 1,200 lines of code, including 66 tests and three
or four claims.

5. Lessons Learned
Our experience suggests lessons for the authors of programming
languages papers, for us as the developers of Redex, and for the
developers of other validation tools.

5.1 Lessons for Authors
Redex supports mechanization in a form that accommodates time-
pressed semantics engineers and still uncovers common errors.
Although we do not have precise effort logs for the case study
of section 4, we estimate that encoding and testing each model
required less time than understanding the content of the paper.
As our case studies show, lightweight mechanization reduces the
number of mistakes in a model and thus increases its value as a
communication vehicle.

Flaws aside, we would not have managed to understand these
papers without their models. Prose is too imprecise and frequently
too brief to build more than a superficial understanding. For exam-
ple, one of the authors of the present paper would have rated him-
self an expert reviewer for the paper in section 4.5, having seen the
semantics for continuation marks many times and having worked
with continuation-based web servers. Despite this preparation, he
failed to understand the paper’s intuitive explanation of the system
until he studied its formal model. In such cases, where the reader
primarily relies on the model for explanation, typos—even ones
obvious to experts in hindsight—can become significant barriers to
communication.

Lightweight mechanization enables interactive exploration, ex-
panding the means with which authors and readers communicate.
In the case of every paper, we found that executing examples im-
proved our understanding—even after we had already understood
enough of the system to encode at least part of it in Redex. When
we were unsure if we understood a definition or if its implications
appeared problematic, we ran examples. Often the ones we choose
would have been too tedious or too error-prone to work out by hand.
Sometimes the experiment confirmed our hypothesis; other times it
revealed a mistake in our reasoning. Either way, the exercise im-
proved our understanding of the system.

http://research.microsoft.com/~nswamy/papers/coercion-proofs.tgz
http://research.microsoft.com/~nswamy/papers/coercion-proofs.tgz

5.2 Lessons for Redex
Our experience suggests that Redex is a mature technology but also
highlights gaps in its ecosystem.

Redex offers little support for handling binding constructs in
object languages. It provides a generic function for obtaining a
fresh variable but no help in defining capture-avoiding substitution
or α-equivalence. Three of the nine papers in section 4 require
definitions of one these concepts, and definitions of these concepts
facilitate testing in two other papers and the model of section 3.
In one case (section 4.4), managing binding in Redex constituted
a significant portion of the overall time spent studying the paper.
Redex should benefit from a mechanism for dealing with binding,
starting from the recently studied approaches (Gabbay and Pitts
2002; Lakin 2010; Pottier 2005; Sewell et al. 2010).

Next, Redex lacks direct support for non-algorithmic relations
such as the coercion-insertion theory of Swamy et al. and the
declarative typing rules of Schrijvers et al. When we modeled these
systems, we were forced to escape to Redex’s host language or
to adopt an elaborate encoding, which we would not expect a ca-
sual Redex user to be comfortable with. Extending Redex with
support for logic programming, as in Typol (Despeyroux 1984),
Twelf (Pfenning and Schürmann 1999), αProlog (Cheney and Ur-
ban 2004), or αML (Lakin 2010) should solve this problem.

At present, Redex also provides no mechanism for specifying
structural congruence. This gap complicates the encoding of transi-
tion rules such as those Ziarek et al. and Chaudhuri define on con-
current programs. We hope to adapt Maude’s (Clavel et al. 2003)
associative-commutative matching to Redex’s notion of patterns.

Finally, while is often a boon that Redex’s random test case gen-
erators require little programmer intervention, sometimes they are
not as effective as they could be. The generator derived from the
grammar in section 3, for example, requires substantial massaging
to achieve high test coverage. This deficiency is especially press-
ing in the case of typed object languages, where the massaging
code almost duplicates the specification of the type system.7 The
dynamic-monitoring technique behind Korat (Boyapati et al. 2002)
may be effective in automatically constructing tests from the orig-
inal specification. Alternatively, αProlog’s counterexample-search
strategies (Cheney and Momigliano 2007) are possibilities with the
addition of more declarative support for binding specifications and
inference rules.

5.3 Lessons for Developers of Other Tools
Last but not least, our case study suggests several lessons that
should apply to all validation tools, regardless of how much they
differ from Redex.

First, the lessons for authors concern developers too, since au-
thors require tool support to apply the lessons. In particular, sup-
port for execution enables interactive exploration, benefiting au-
thors and readers alike.

Second, tests complement proofs. We encountered five papers
in which explicitly claimed theorems are false as stated. In three
cases (section 4.2, section 4.6, and section 4.9), we could fix the
problems; in the others (section 4.3 and section 4.5), we were
unable to find and verify a fix in a modest time frame. In every case,
though, rudimentary testing discovered errors missed with pencil-
and-paper proofs.

Indeed, we claim that tests complement even machine-checked
proofs. As one example, two of the POPLmark solutions that con-
tain proofs of type soundness use call-by-name beta in violation of
the specification (Crary and Gacek, personal communication). We
believe unit testing would quickly reveal this error.

7 See Klein et al. (2010, section 7) for another example.

αML αProlog K Ott Redex Ruler
Execution X X X X X X
Unit Tests X X
Automated Tests X X X
Typesetting X X X X
Binding X X X X
Visualization X X

Figure 5: A comparison of lightweight semantics engineering tools

Even better, one can sometimes test propositions that cannot be
validated via proof. Our experience with the model of Racket’s de-
limited control operators provides one example, as no formalization
currently exists of the more than 230,000 lines of C and assem-
bly in the Racket implementation. Testing also removes another
obstacle to proof, the requirement that we first state the proposi-
tion of interest. Due to its exploratory nature, testing can inadver-
tently falsify unstated but desired propositions, e.g., that threads
block without busy waiting (section 4.4). This is especially true for
system-level and randomized testing. To some degree, the same is
true of proving, but testing seems to be more effective at covering a
broad space of system behaviors. Many other validation tools pro-
vide some level of support for executing examples without requir-
ing an algorithm to be specified separately; αProlog and Isabelle go
so far as to provide tools for automatically falsifying conjectures.

Third, mechanized typesetting avoids many transcription errors.
Given the apparent frequency with which we observed typos in
ICFP papers and their potential impact on communication, mechan-
ically generating figures from a source subjected to some form of
mechanical scrutiny seems justified. Ott (Sewell et al. 2010) and
Isabelle (Nipkow et al. 2011) already support this workflow.

Fourth, example visualization aids debugging. We relied ex-
tensively on Redex’s visualization features while investigating the
flaws described in section 4, as well as the many more introduced
by the manual process of translating figures to Redex. The features
have been similarly useful in other efforts, e.g., the formalization of
Typed Racket (Tobin-Hochstadt and Felleisen 2008, section 3.4).
We conjecture that all validation tools would benefit from visual-
ization components.

6. Related Work
The closest form of related work would be other studies that at-
tempt to validate semantics engineering tools on published formal
models, but we are unaware of any such studies. Accordingly, this
section focuses on tools that could be used for such studies, large
formal models that have been subjected to lightweight forms of val-
idation, and studies of the validity of research results in general.

Other tools. The development of Redex draws inspiration from
Alloy (Jackson 2002), a system designed to provide software engi-
neers with a lightweight alternative to theorem proving. With Alloy,
software engineers build models of software systems and explore
them with mechanical support. Redex seeks to provide a similar
experience to semantics engineers.

The Typol system for natural semantics supports a range of
tools, providing execution by compilation to Prolog (Despeyroux
1984), a debugger and mechanized typesetting (Despeyroux 1988),
and a bridge from lightweight to heavyweight validation (Terrasse
1995). These features and more survive in Redex and other con-
temporary tools.

Figure 5 provides a comparison between Redex and other mod-
ern lightweight semantics engineering tools. All of αML (Lakin
2010), αProlog (Cheney and Urban 2004), K (Rosu and Serbanuta

2010), Ott (Sewell et al. 2010), Redex, and Ruler (Dijkstra and
Swierstra 2006) provide support for executing definitions, though
in the case of Ott, the precise level of support depends on the
particular proof assistant chosen as the backend. αProlog features
an automated testing tool similar to redex-check but based on
bounded-exhaustive search rather than randomized testing. Simi-
larly, K can exploit’s Maude’s model checker to check predicates.
K, Ott, Redex, and Ruler all support mechanized typesetting, but
Redex’s approach to fine-tuning the output differs—users write
Racket code to transform Redex parse trees instead of annotating
definitions with LaTeX snippets. αML, αProlog, K, and Ott provide
the sort of binding support Redex lacks. Only Redex provides a li-
brary of domain-specific constructs for unit-testing and interactive
visualization, but K users can write jUnit tests.

Thanks in part to the impetus of the POPLmark Challenge (Ay-
demir et al. 2005), semantics engineers increasingly use proof as-
sistants (Nipkow et al. 2011; Norell 2007; Pfenning and Schürmann
1999; Slind and Norrish 2008; The Coq Development Team 2010)
to validate semantic models. These tools have various levels of sup-
port for executing examples, but none share Redex’s beginning-to-
end support for the semantics engineering life cycle—yet.

Testing Language Definitions. Several groups report success
with testing techniques where proof systems fail. For example,
Fox (2003), Hardin et al. (2006), Sarkar et al. (2009), and Fox
and Myreen (2010) check that they have defined correct models
of various assembly and machine languages by comparing their
models’ answers to the answers produced by actual hardware or by
off-the-shelf compilers. Ellison and Rosu (2011) employ similar
techniques for C using K. Some of their efforts exploit random-
ized testing. Klein et al. (2010) also use a randomized technique
to compare a model of the Racket virtual machine to the produc-
tion implementation. The formal model of the R6RS (Sperber et al.
2007) helped catch bugs in the informal, prose specification.

Research Validity. This paper reveals mistakes in our own work
and the work of our colleagues. While we did not discover any
flaws that invalidate the essential contributions of any of the pa-
pers we studied, others have done so. Dwyer et al. (2006) examine
several bug-finding systems and invalidate a number of published
claims on lowering the search cost; their basic insight is that fac-
tors outside the control of an investigator—e.g., the search order for
path-sensitive bug-finding tools—may heavily influence the perfor-
mance of such tools. Similarly, Arcuri and Briand (2011) conduct
“a systematic review of the use of randomized algorithms in se-
lected software engineering venues in 2009 [and] show that ran-
domized algorithms are used in a significant percentage of papers
but that, in most cases, randomness is not properly accounted for.
This casts doubts on the validity of most empirical results assess-
ing randomized algorithms”. Further afield, studies concerning the
quality of research results are common in the biomedical commu-
nity. Young et al. (2008), for example, write that “an empirical eval-
uation of the 49 most-cited papers on the effectiveness of medical
interventions, published in highly visible journals in 1990–2004,
showed that a quarter of the randomised trials and five of six non-
randomised studies had already been contradicted or found to have
been exaggerated by 2005.”

7. Conclusion
Our validation project confirms the “lightweight mechanization”
conjecture. Specifically it establishes Redex as an effective tool
that can uncover mistakes in mathematical models of programming
languages. The two case studies contribute two different insights.

With the survey of nine ICFP papers we validate the folklore
claim that all mathematical papers contain mistakes. Our conclu-
sion is not to blame the ICFP authors or reviewers for these mis-

takes but to suggest the routine use of lightweight tools to write
such papers. Every mistake in a published model narrows the com-
munication channel between authors and readers; conversely, we
can widen this channel when we equip papers with executable
lightweight models that readers can easily explore interactively.

With the case study of delimited continuations in production
systems we illustrate how an implementor can benefit from the
designers’ lightweight model. Redex can help expose errors in an
implementation, even a heavily-tested one, merely by testing the
correspondence between it and a model. This aspect of semantics
engineering is overlooked and deserves more attention, especially
for large languages that evolve over many years.

Acknowledgments Thanks to Gavin Bierman, Avik Chaudhuri,
Michael Hicks, Suresh Jagannathan, Thomas Jensen, Hai Liu, Jan
Midtgaard, Tiark Rompf, Neil Sculthorpe, and Dimitrios Vytiniotis
for patient and candid discussions of their work. Thanks also to
Henrik Nilsson for helpful comments on a draft of this paper.

The authors gratefully acknowledge support for this research
from the NSF, DARPA, and AFOSR.

Bibliography
Andrea Arcuri and Lionel C. Briand. A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In Proc.
Intl. Conf. Soft. Eng. , pp. 1–10, 2011.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Wash-
burn, Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory
for the masses: the POPLMark Challenge. In Proc. Intl. Conf. Theorem
Proving in Higher Order Logics, Lecture Notes in Computer Science
volume 3603, pp. 50–65, 2005.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:
automated testing based on Java predicates. In Proc. Intl. Symp. Soft.
Testing and Analysis, pp. 123–133, 2002.

Avik Chaudhuri. A concurrent ML library in Concurrent Haskell. In Proc.
ACM Intl. Conf. Functional Programming, pp. 269–280, 2009.

James Cheney and Alberto Momigliano. Mechanized metatheory model-
checking. In Proc. Intl. Conf. Principles and Practice of Declarative
Programming, pp. 75–86, 2007.

James Cheney and Christian Urban. αProlog: a logic programming lan-
guage with names, binding, and α-equivalence. In Proc. Intl. Conf.
Logic Programming, Lecture Notes in Computer Science volume 3132,
pp. 269–283, 2004.

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for ran-
dom testing of Haskell programs. In Proc. ACM Intl. Conf. Functional
Programming, pp. 268–279, 2000.

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martí-Oliet, José Meseguer, and Carolyn Talcott. Maude 2.0 system. In
Proc. Intl. Conf. Rewriting Techniques and Applications, Lecture Notes
in Computer Science volume 2706, pp. 76–87, 2003.

John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an alge-
braic stepper. In Proc. Euro. Symp. Programming, pp. 320–334, 2001.

Thierry Despeyroux. Executable specification of static semantics. In Proc.
Intl. Symp. Semantics of Data Types, Lecture Notes in Computer Sci-
ence volume 173, pp. 215–233, 1984.

Thierry Despeyroux. Typol: a formalism to implement natural semantics.
INRIA, Research Report No. 94, 1988.

Atze Dijkstra and S. Doaitse Swierstra. Ruler: programming Type rules. In
Proc. Intl. Symp. Functional and Logic Programming, Lecture Notes in
Computer Science volume 3945, pp. 30–46, 2006.

Matthew B. Dwyer, Suzette Person, and Sebastian G. Elbaum. Controlling
factors in evaluating path-sensitive error detection techniques. In Proc.
ACM Symp. Foundations of Soft. Eng. , pp. 92–104, 2006.

Chucky Ellison and Grigore Rosu. An Executable Formal Se-
mantics of C with Applications. University of Illinois,
http://hdl.handle.net/2142/25816, 2011.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics
Engineering with PLT Redex. MIT Press, 2010.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Proc. ACM Intl. Conf.
Functional Programming, pp. 237–247, 1993.

Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen.
Adding delimited and composable control to a production programming
environment. In Proc. ACM Intl. Conf. Functional Programming, pp.
165–176, 2007.

Anthony Fox. Formal specification and verification of ARM6. In Proc.
Intl. Conf. Theorem Proving in Higher Order Logics, Lecture Notes in
Computer Science volume 2758, pp. 25–40, 2003.

Anthony Fox and Magnus O. Myreen. A trustworthy monadic formaliza-
tion of the ARMv7 instruction set architecture . In Proc. Intl. Conf. In-
teractive Theorem Proving, Lecture Notes in Computer Science volume
6172, pp. 243–258, 2010.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing 13(3–5),
pp. 341–363, 2002.

Kenneth V. Hanford. Automatic generation of test cases. IBM Systems
Journal 9(4), pp. 244–257, 1970.

David S. Hardin, Eric W. Smith, and William D. Young. A robust machine
code proof framework for highly secure applications. In Proc. Intl.
Wksp. ACL2 Theorem Prover and its Applications, pp. 11–20, 2006.

John Hughes. Generalizing monads to arrows. Science of Computer Pro-
gramming 37(1–3), pp. 67–111, 2000.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Trans. Software Enginering and Methodology 11(2), pp. 256–290, 2002.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Proc. ACM Symp. Principles of Programming Languages,
pp. 295–308, 1996.

Casey Klein and Robert Bruce Findler. Randomized testing in PLT Redex.
In Proc. Scheme and Functional Programming, pp. 26–36, 2009.

Casey Klein, Matthew Flatt, and Robert Bruce Findler. The Racket vir-
tual machine and randomized testing. 2010. http://plt.eecs.
northwestern.edu/racket-machine/

Matthew R. Lakin. An Executable Meta-Language for Inductive Definitions
with Binders. PhD dissertation, University of Cambridge, 2010.

Hai Liu, Eric Cheng, and Paul Hudak. Causal commutative arrows and their
optimization. In Proc. ACM Intl. Conf. Functional Programming, pp.
35–46, 2009.

Hai Liu, Eric Cheng, and Paul Hudak. Causal commutative arrows. J.
Functional Programming 21(4-5), pp. 467–496, 2011.

Jacob Matthews and Robert Bruce Findler. An operational semantics for
R5RS Scheme. In Proc. Scheme and Functional Programming, pp. 157–
165, 2005.

Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias
Felleisen. A visual environment for developing context-sensitive term
rewriting systems. In Proc. Intl. Conf. Rewriting Techniques and Appli-
cations, Lecture Notes in Computer Science volume 3091, pp. 301–311,
2004.

Jay McCarthy. Automatically RESTful web applications: marking modu-
lar serializable continuations. In Proc. ACM Intl. Conf. Functional Pro-
gramming, pp. 299–309, 2009.

Jan Midtgaard and Thomas P. Jensen. Control-flow analysis of function
calls and returns by abstract interpretation. In Proc. ACM Intl. Conf.
Functional Programming, pp. 287–298, 2009.

Jan Midtgaard and Thomas P. Jensen. Control-flow analysis of function
calls and returns by abstract interpretation. Information and Computa-
tion, 2012. http://www.cs.au.dk/~jmi/ANF-CFA

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL—A Proof Assistant for Higher-Order Logic. Springer
Verlag, 2011.

Ulf Norell. Towards a Practical Programming Language Based on Depen-
dent Type Theory. PhD dissertation, Chalmers University of Technol-
ogy, 2007.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and
Matthias Felleisen. Continuations from generalized stack inspection. In
Proc. ACM Intl. Conf. Functional Programming, pp. 216–227, 2005.

Frank Pfenning and Carsten Schürmann. System description: Twelf—a
meta-logical framework for deductive systems. In Proc. Intl. Conf. Au-
tomated Deduction, pp. 202–206, 1999.

Gordon D. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theo-
retical Computer Science 1(2), pp. 125–159, 1975.

François Pottier. An overview of Cαml. In Proc. ACM SIGPLAN ML Wksp.
, Electronic Notes in Theoretical Computer Science volume 148, pp.
27–52, 2005.

John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class
polymorphic delimited continuations by a type-directed selective CPS-
transform. In Proc. ACM Intl. Conf. Functional Programming, pp. 317–
328, 2009.

Grigore Rosu and Traian Florin Serbanuta. An Overview of the K Semantic
Framework. J. Logic and Algebraic Programming 79(6), pp. 397–434,
2010.

Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom
Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave. The se-
mantics of x86-CC multiprocessor machine code. In Proc. ACM Symp.
Principles of Programming Languages, pp. 379–391, 2009.

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios
Vytiniotis. Complete and decidable type inference for GADTs. In Proc.
ACM Intl. Conf. Functional Programming, pp. 341–352, 2009.

Neil Sculthorpe. Towards Safe and Efficient Functional Reactive Program-
ming. Ph.D. dissertation, University of Nottingham, 2011.

Neil Sculthorpe and Henrik Nilsson. Safe functional reactive programming
through dependent types. In Proc. ACM Intl. Conf. Functional Program-
ming, pp. 23–34, 2009.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strniša. Ott: effective tool sup-
port for the working semanticist. J. Functional Programming 20(1), pp.
71–122, 2010.

Konrad Slind and Michael Norrish. A brief overview of HOL4. In Proc.
Intl. Conf. Theorem Proving in Higher Order Logics, Lecture Notes in
Computer Science volume 5170, pp. 28–32, 2008.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten,
Richard Kelsey, William Clinger, Jonathan Rees, Robert Bruce Findler,
and Jacob Matthews. Revised [6] report on the algorithmic language
Scheme. Cambridge University Press, 2007.

Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. A Theory of typed
coercions and its applications. In Proc. ACM Intl. Conf. Functional
Programming, pp. 329–340, 2009.

Delphine Terrasse. Encoding natural semantics in Coq. In Proc. Intl. Conf.
Algebraic Methodology and Software Technology, Lecture Notes in
Computer Science volume 936, pp. 230–244, 1995.

The Coq Development Team. The Coq Proof Assistant Reference Manual.
Version 8.3, 2010. http://coq.inria.fr/

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementa-
tion of Typed Scheme. In Proc. ACM Symp. Principles of Programming
Languages, pp. 395–406, 2008.

Neal S. Young, John P.A. Ioannidis, and Omar Al-Ubaydli. Why Current
Publication Practices May Distort Science. PLoS Med 5(10), pp. 1418–
1422, 2008.

Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan. Partial
memoization of concurrency and communication. In Proc. ACM Intl.
Conf. Functional Programming, pp. 161–172, 2009.

http://plt.eecs.northwestern.edu/racket-machine/
http://plt.eecs.northwestern.edu/racket-machine/
http://www.cs.au.dk/~jmi/ANF-CFA
http://coq.inria.fr/

	1 The Role of Language Models
	2 Welcome to Redex
	2.1 Grammars
	2.2 Reduction Relations and Metafunctions
	2.3 Exploring Examples
	2.4 Randomized Testing
	2.5 Typesetting

	3 Redex Models for Production Systems
	3.1 Randomized Testing in Redex
	3.2 A Weak Attempt
	3.3 Refining the Test Generator
	3.4 Unwelcome Errors

	4 An Empirical Study of ICFP Papers
	4.1 Safe functional reactive programming through dependent types by Neil Sculthorpe and Henrik Nilsson
	4.2 Causal commutative arrows and their optimization by Hai Liu, Eric Cheng, and Paul Hudak
	4.3 Partial memoization of concurrency and communication by Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan
	4.4 A concurrent ML library in Concurrent Haskell by Avik Chaudhuri
	4.5 Automatically RESTful web applications: marking modular serializable continuations by Jay McCarthy
	4.6 Control-flow analysis of function calls and returns by abstract interpretation by Jan Midtgaard and Thomas P. Jensen
	4.7 Implementing first-class polymorphic delimited continuations by a type-directed selective CPS-transform by Tiark Rompf, Ingo Maier, and Martin Odersky
	4.8 A Theory of typed coercions and its applications by Nikhil Swamy, Michael Hicks, and Gavin M. Bierman
	4.9 Complete and decidable type inference for GADTs by Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios Vytiniotis
	4.10 Our Effort

	5 Lessons Learned
	5.1 Lessons for Authors
	5.2 Lessons for Redex
	5.3 Lessons for Developers of Other Tools

	6 Related Work
	7 Conclusion

