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Abstract. When students first learn programming, they often rely on a simple
operational model of a program’s behavior to explain how particular features
work. Because such models build on their earlier training in algebra, students
find them intuitive, even obvious. Students learning type systems, however, have
to confront an entirely different notation with a different semantics that many find
difficult to understand.
In this work, we begin to build the theoretical underpinnings for treating type
checking in a manner like the operational semantics of execution. Intuitively,
each term is incrementally rewritten to its type. For example, each basic con-
stant rewrites directly to its type and each lambda expression rewrites to an arrow
type whose domain is the type of the lambda’s formal parameter and whose range
is the body of the lambda expression which, in turn, rewrites to the range type.

1 Introduction

This paper represents our first steps in exploring a completely different way to think
about the type checking process. Instead of visualizing type checking as the process
of constructing a proof-tree, we explore type checking as rewriting, in the spirit of
Felleisen-Hieb [11].

We demonstrate our technique in the context of three different type systems: the
simply typed lambda calculus (section 2), Curry/Hindley-style type inference (sec-
tion 3), and Hindley/Milner-style let polymorphism (section 4). Along the way, we
prove that our reformulations of the type systems have the same power as the exist-
ing ones. We also fill a gap in the literature, proving that the binding-depth numbering
scheme used in the SML/NJ compiler [1] (which is similar to the one used in the Caml
implementation [27]) is equivalent to Algorithm W .

In addition to using the proofs in this paper to validate these systems, all of the
rewriting systems have been implemented in PLT Redex [21] and have been carefully
tested (except the system in figure 7, because it is not feasibly executable). They are
available for download at http://www.cs.uchicago.edu/∼gkuan/rwsemtypes/.
To keep the systems in this paper as close to our PLT Redex implementations as possi-
ble, we use a Scheme-like syntax for expressions and types. In particular, arrow types
are written in prefix parenthesized form and the variables bound by λ expressions are
surrounded by parenthesis, rather than suffixed with a dot.



2 Simply Typed λ -Calculus

Fig. 1 contains the grammar and the traditional presentation of the type system
for the simply typed λ -calculus (STLC). Fig. 2 contains the rules that define our type
checking relation, 7→t , which rewrites expressions to their types. The typing context T
dictates that type checking proceeds from left to right. Numeric constants rewrite to the
type num. λ -abstractions rewrite to an arrow type whose domain is the specified type of
the parameter and whose range is the body of the original λ -abstraction, but with free
occurrences of the parameter variable replaced by its type. Application expressions are
rewritten when the function position of an application is an arrow type whose domain
matches the type in the argument position. In that case, they rewrite to the range of
the function type. We dub this rule τβ because it is the type-level analogue of the
application of a function to an argument. Terms that fail to type check get stuck without
producing a final type. For example, (@ 2 3) rewrites to (@ num num), which does not
match any of the rewrite rules.

Because the 7→t relation incrementally rewrites a term to a type, intermediate states
are hybrid expressions (eh ∈ EXPh) that contain a mixture of STLC and type syntac-
tic forms, and encompass both STLC and type expressions (i.e., STLC ⊆ EXPh and
TYPE ⊆ EXPh). To see how such hybrid expressions come about, consider this reduc-
tion sequence (where the redexes have been underlined):

(λ (y (→ num num)) (λ (x num) (@ y x)))
7→t (→ (→ num num) (λ (x num) (@ (→ num num) x))) by [tc-lam]
7→t (→ (→ num num) (→ num (@ (→ num num) num))) by [tc-lam]
7→t (→ (→ num num) (→ num num)) by [tc-τβ ]

We start with a λ expression whose parameter, y, has type (→ num num) and whose
body is another λ expression whose parameter, x, has type num. The inner λ ’s body is
the application of y to x. The first reduction step rewrites the outer λ -abstraction into an
arrow type whose domain is (→ num num) and whose range is the body of the original
λ -abstraction but with all the occurrences of y replaced by (→ num num), producing a
hybrid term. The next step is to rewrite the remaining λ expression, this time replacing
x with num. The final step is a τβ step. It replaces the application expression with num,
because the function position’s domain matches the argument position.

Theorem 1 (Soundness and Completeness for 7→t ).
For any e and τ , /0 ` e : τ ⇔ e 7→∗

t τ .

Proof. [sketch1] From left to right, the proof is a straightforward induction on the
derivation of /0 ` e : τ . From right to left, we must first construct the CEK machine
analogue of the reduction system [8, 10], making the context search and program vari-
able to type substitutions explicit. This transformation makes it possible to correlate the
structure of the typing derivation tree and the structure of the reduction sequence. ut

1 All of the proofs in this paper have been carried out in the accompanying tech report [16];
proof sketches that show only the essential ideas are presented here.
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e ::= x | (λ (x τ) e) | (@ e e) | number STLC
τ ::= num | (→ τ τ) TYPE

Γ ` number : num
(x : τ ∈ Γ )

[t-var]
Γ ` x : τ

Γ ` e1 : (→ τ1 τ2) Γ ` e2 : τ1 [t-app]
Γ ` (@ e1 e2) : τ2

Γ [x : τ1] ` e : τ2 [t-lam]
Γ ` λx : τ1.e : (→ τ1 τ2)

Fig. 1. Grammar and traditional type system for the simply typed λ -calculus

eh ::= x | (λ (x τ) eh) | (@ eh eh) | number | (→ τ eh)| num EXPh
T ::= (@ T eh) | (@ τ T) | (→ τ T) | 2

T[number] 7→t T[num] [tc-num]
T[(λ (x τ) eh)] 7→t T[(→ τ {x 7→ τ}eh)] [tc-lam]
T[(@ (→ τ1 τ2) τ1)] 7→t T[τ2] [tc-τβ ]

Fig. 2. Grammar and rewriting type system for simply typed λ -calculus (TC)

E ::= (@ E e) | (@ v E) | 2 E[(@ (λ (x τ) e) v)] 7→e E[{x 7→v}e] [ev-βv]
v ::= (λ (x τ) e) | number

Fig. 3. Evaluation Rewriting Semantics

Although Theorem 1 guarantees that the type checker is sensible, we might wish to
relate it directly to evaluation, bypassing the traditional type system. Fig. 3 gives the
standard evaluation contexts and rewrite rules for call-by-value STLC.

A first cut at a direct statement of type soundness for our rewriting type system is to
simply take the union of the the evaluation relation 7→e and the type checking relation
7→t , and then prove that it is confluent, i.e. each intermediate step in the evaluation
sequence reduces to the same type.

Definition 1 (Combined rewrite relation 7→). 7→ = 7→e ∪ 7→t .

For an example of 7→, see Fig. 4. The upper left contains the application of the
identity function to 42. It can rewrite two different ways. Along the top of the diagram,
type checking rules apply, eventually reducing to the type num. Moving down from the
original term, the rule for function application applies, producing 42, which also type
checks to num.

Unfortunately, the union of the relations is not confluent in general. Consider the
example in Fig. 5. It is an ill-typed term, but after a single application becomes well-
typed. Accordingly, the type checking rewrite rules detect the error in the original term,
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Fig. 5. Non-confluent counterexample for combined rewrite relation

but produce type num for the term after β -reduction eliminates the subexpression con-
taining the type error.

Theorem 2 (Non-confluence of 7→). There exists an expression e, such that e 7→ eh, e
7→ e′h, eh 6= e′h, and both eh and e′h are either types or stuck under 7→.

Proof. The expression (@ (λ (x num) 42) (λ (y num) (@ 1 1))) rewrites to both num
and an expression that decomposes into a type checking context with the stuck state (@
num num) in the hole. ut

Nevertheless, we do know that 7→ is confluent for any term that is well-typed, thus
implying a preservation theorem.

Theorem 3 (Preservation). If e 7→∗
t τ & e 7→e e′, then e′ 7→∗

t τ

Proof (sketch). This follows from the observation that, once a term takes a type check-
ing step, it can never again take an evaluation step. That, plus Theorem 1 and a standard
type preservation argument for the traditional type system tells us that the relation is
confluent when the original term is well-typed, and thus the theorem holds. ut
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Fig. 6. Rewriting nondeterministically

e ::= x | (λ (x) e) | (@ e e) UTLC
en ::= x | (λ (x) en) | (@ en en) | number | (→ τ en) | num EXPn
Tn ::= (@ Tn en) | (@ τ Tn) | (→ τ Tn) | 2
τ ::= num | (→ τ τ)

Tn[number] 7→n Tn[num]) [nd-num]
Tn[(λ (x) en)] 7→n Tn[(→ τ {x 7→ τ} en]) [nd-lam]
Tn[(@ (→ τ1 τ2) τ1)] 7→n Tn[τ2] [nd-τβ ]

Fig. 7. Grammar and rewrite rules for nondeterministic (ND) inference calculus

3 Curry/Hindley Type Inference

A conceptually simple way to extend the rewrite system from section 2 to handle
type inference is to erase the type annotation on the bound parameter, yielding the
untyped λ -calculus (UTLC), and re-interpret the [tc-lam] rule, allowing it to rewrite
the bound variable to any type. To see how this plays out, consider the example in
Fig. 6. It begins with the application of the identity function to 5, which decomposes
into a type checking context with (λ (x) x) in the hole. Since there is no longer any
constraint on the bound variable, the λ -expression rewrites to every arrow type whose
domain and range are the same. Although all but one of these choices are ultimately
doomed, they can still each rewrite at least one more step, replacing 5 with num. At this
point, the application rule only applies to the term where the type chosen for x was num
so the top-most sequence in the figure rewrites to num. All of the rest of the choices get
stuck.

Accordingly, we must also refine the notion that an expression has a type to say that
an expression has a type if there exists some reduction sequence from that expression
to that type. This intuition is turned into a formal system in Fig. 7. The [nd-lam] rule
has a τ that only appears on the right-hand side of the rule, indicating that it can be
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instantiated to any type. The n subscript on the 7→n relation indicates that the relation
models the nondeterministic choice of the type of the function parameter.

We can relate the nondeterministic system with the original one via the function E ,
that maps EXPh to EXPn by erasing the type annotations in λ -expressions. In partic-
ular, the nondeterministic choice does not keep us from type checking terms that type
checked before:
Theorem 4 (Completeness of nondeterministic reduction). For any STLC expres-
sion e and type τ ,

e 7→∗
t τ ⇒ E (e) 7→∗

n τ

Proof (sketch). Simply erasing all of the types on the parameters in the reduction se-
quence for 7→t produces a valid reduction sequence for 7→n with the desired properties.

ut

But the implication in the reverse direction does not hold. In particular, the erasure
of the term (@ (λ (x (→ num num)) x) 1) has type num, even though the term itself
does not. Still, it is possible to restore types to any erased term that has a type, in order
to produce a typeable term, as the following theorem shows.

Theorem 5 (Soundness of nondeterministic reduction). For any UTLC expression e
and type τ , if e 7→∗

n τ then there exists a STLC expression e′ such that E (e′) = e and
e′ 7→∗

t τ

Proof (sketch). This proof goes through by induction, once the inductive hypothesis is
strengthened to allow for an arbitrary variable to type substitution to be applied to e. ut

A direct implementation of this system is not feasible, for two reasons. First, it
would require searching an infinitely large space and second, it would not produce a
single best answer. For example, the expression (λ (x) x) reduces to an infinite number
of types, namely all function types whose domain and range are the same. The standard
approach (due to Curry and Hindley [6, 14]) to coping with this problem is to use
unification, and so we add unification to our model, as shown in Fig. 8.

The language in Fig. 8 is the same as the one in Fig. 7, except that expressions
may be wrapped with unify and types may be type variables (ξ ). This system uses type
variables and unify to enforce constraints between types whereas the nondeterministic
system guesses types. In particular, a λ -expression now reduces to an arrow type whose
domain is fresh type variable. Similarly, an application of a type to another type reduces
to a new type variable after wrapping the entire expression with a unify expression
that ensures that the function type on the left hand side of the application matches the
argument type on the right hand side.

Since the context where type checking reductions occur does not contain unify, the
unifys must be reduced before any other reductions occur. The last four reductions in
Fig. 8 cover the reductions of the unify expressions2. The first removes the unification
of two identical types. The second distributes the unification of two different arrow

2 Martelli and Montanari introduced a rewriting method for performing unification[20]. Our
unification system is related to theirs. Instead of explicitly transforming equation sets, we
work on unify prefixes, each of which represents one equation.
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p ::= (unify τu τu p) | eu
eu ::= x | (λ (x) eu) | (@ eu eu) | number | (→ τu eu) | num | ξ

Tu ::= (@ Tu eu) | (@ τu Tu) | (→ τu Tu) | 2
τu ::= num | (→ τu τu) | ξ TYPEu
ξ ::= type variables TVAR

Tu[number] 7→u Tu[num] [ch-num]
Tu[(λ (x) eu)] 7→u Tu[(→ ξ {x 7→ ξ} eu)] [ch-lam]

ξ fresh
Tu[(@ τu1 τu2 )] 7→u (unify τu1 (→ τu2 ξ ) Tu[ξ ]) [ch-τβ ]

ξ fresh
(unify τu1 τu1 p) 7→u p [ch-u-eq]
(unify (→ τu1 τu2 ) (→ τu3 τu4 ) p) 7→u (unify τu1 τu3 (unify τu2 τu4 p)) [ch-u-dist]

(→ τu1 τu2 ) 6= (→ τu3 τu4 )
(unify τu ξ p) 7→u (unify ξ τu p) [ch-u-orient]

τu 6= ξ

(unify ξ τu p) 7→u {ξ 7→ τu}p [ch-u-inst]
ξ /∈ ftv(τu)

ftv(τ) = set of type variables occurring in τ .

Fig. 8. Grammar and rewrite rules for Curry/Hindley calculus

types to the unification of their domains and their ranges. The third reduction orients
the unify reduction; if the second argument to unify is a type variable and the first is
not, the reduction swaps the arguments. The final reduction performs a unification of a
type variable and another type not containing that type variable by substituting the type
for that type variable.

Unlike the 7→n relation, the 7→u relation is deterministic. For example, this is the
reduction sequence for the example from Fig. 6:

(@ (λ (x) x) 5)
7→u (@ (→ ξ ξ ) 5)
7→u (@ (→ ξ ξ ) num)
7→u (unify (→ ξ ξ ) (→ num ξ ′) ξ ′)
7→∗

u num

The first step generates a fresh type variable and replaces the λ -expression with an
arrow type whose domain and range are that type variable. As in Fig. 6, the next step
replaces 5 with num. The next step generates the unification problem that ultimately
results in the type num as the final answer.

Where the first step in the 7→n relation generated an infinite number of next states,
the 7→u relation generates a schematic expression that represents all of those states.
Throughout the course of a complete ND reduction sequence, we may encounter a num-
ber of these reductions that generate multiple next states. For any particular combination
of choices of next states, we can construct a ground type substitution γ : TVAR→ TYPE
that instantiates the type variables in the CH reduction sequence to those types chosen
in the ND reduction sequence. We can exploit this correspondence to make the relation-
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ship between the two type checking relations precise, via the ground type substitution
γ for a complete ND reduction sequence e 7→∗

n τ .

Theorem 6 (Nondeterministic & Curry/Hindley typing relationship).
Let e ∈ UTLC.

Completeness If e 7→∗
n τ then there exists a τu and a type variable to type substitution

γ such that e 7→∗
u τu and γτu = τ .

Soundness If e 7→∗
u τu then for all ground types τ that are instantiations of τu, e 7→∗

n τ .

Proof (sketch). This proof hinges on the observation that the structure of the complete
reduction sequences in 7→n and 7→u are related by a ground type substitution γ for the
complete ND reduction sequence, as shown in this diagram:

eu′

en′en

eu

γγ

uu

n

(unify ...  eu)

Most of the work in this proof is verifying the conditions of the above diagram. To
prove these conditions, we need to build the ground type substitution.

For the completeness part of the theorem, only [nd-lam] reductions in the ND re-
duction sequence produce terms that instantiate type variables in the corresponding CH
terms. Each [nd-lam] step in the complete ND reduction sequence replaces a bound
variable xi with a parameter type τi. For each [nd-lam] step, associate a fresh type vari-
able ξi. The ground type substitution maps each ξi to τi. The [ch-lam] steps should use
ξi for the fresh type variable when reducing the λ -binder for xi.

For the soundness part, the ground type substitution is the composition of two sub-
stitutions. First, we need the composition of all the unification substitutions that are
produced by performing the unifications introduced by the [ch-τβ ] reduction. The com-
position of all the unification substitutions is certainly a solution for any of the individ-
ual unification problems because solved type variables are eliminated and will never be
reintroduced in the CH reduction sequence. Furthermore, we need a substitution that
instantiates all the residual unconstrained type variables to arbitrary types. In a com-
plete ND reduction sequence, all [nd-lam] reductions must instantiate with a type that
is an instance of the final unification solution for the type variable ξ introduced by the
corresponding [ch-lam] reduction.

Three other essential facts must be established. First, we need to establish that
ground type substitutions distribute over a CH type checking context decomposition
to yield an ND context decomposition, i.e., γ(Tu[eu]) = (γTu)[γeu] and γTu is a Tn and
γeu is an en. Second, that the composition of two most general unifiers is also a most
general unifier (due to Robinson [28]) and finally that the unify reductions perform uni-
fications consistent with a most general unifier. ut
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e ::= x | (λ (x) e) | (@ e e) | number | (let (x e) e) UTLC`

ep ::= x | (λ d (x) ep) | (@ ep ep) | number | (let d (x ep) ep) | τ | σ

Tp ::= (let d (x Tp) ep) | (@ Tp ep) | (@ τ Tp) | (→ τ Tp) | 2
p ::= (unify τ τ p) | ep
τ ::= num | ξ d | (→ τ τ)
σ ::= (∀ α ({ξ 7→ α}τ))
d ::= 0 | 1 | . . . | ∞

Fig. 9. Grammar for Hindley/Milner calculus

4 Hindley/Milner inference

As a practical matter, it is important to add a let-form to our language so that pro-
grammers can bind a single value and use it with multiple types. A let expression has
the form (let (x e1) e2), where x is a program variable, e1 is the definiens, whose value is
bound to x in e2, the body. The meaning of let expressions is the same as an application
of an explicit λ expression: ((λ (x) e2) e1).

Type checking a let expression by replacing it with such an application, however,
yields a type checker that rejects too many programs. In particular, imagine that the
expression bound to the variable is the identity function and that the body of the let
expression uses the identity function on both booleans and integers. Rewriting the let
expression as above would produce a program that does not type check, even though
the original program certainly is safe.

A naive type checker could overcome this problem by rewriting let expressions
via substitution, replacing the each free occurrence of the let-bound variable by the
definiens (i.e. β -reducing the redex that the let expression abbreviates). Then each re-
sulting occurrence of the argument expression could be type checked separately in its
own context within the body, allowing the type checker to infer different types for dif-
ferent uses of the bound variable.

Unfortunately, such a scheme involves redundant work in the type checker and pos-
sibly duplicated type error messages. To avoid this redundancy, Milner developed a type
checking algorithm [4, 24] that achieves the same result as the substitution by splitting
the type checking of the definiens into two phases: first determining a generic type that
is independent of the context of use, and then for each use of the defined variable de-
termining an instance of the generic type that fits its context. It does this by first type
checking the definiens in the context of the whole let expression, and then partition-
ing the unconstrained type variables in the result into two sets: polymorphic variables
that can be safely instantiated to different types at each occurrence of the let-bound
vaiable, and those that cannot because they are constrained by the outer context. The
result is represented as a polymorphic type ∀α.τ , where the type variables in α are the
polymorphic, or generalizable, variables.

If we try to modify the Curry/Hindley rewriting system to generalize types at let
bindings, the problem is that the context of outer bound variables will already have been
eliminated by the [ch-lam] rule, making it difficult to calculate generalizability of type
variables. An alternative approach to determining generalizability is based on an idea
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E[(@ (λ (x) ep) v)] 7→e E[{x 7→ v}ep] [ev-beta]
E[(let d (x ep1) ep2)] 7→e E[{x 7→ ep1}ep2] [ev-let]

Tp[number] 7→p Tp[num] [tcp-num]
Tp[(λ d (x) ep)] 7→p Tp[(→ ξ d ({x 7→ ξ d}ep))] [tcp-lam]

ξ d fresh
Tp[(@ τ1 τ2)] 7→p (unify τ1 (→ τ2 ξ ∞) Tp[ξ ∞]) [tcp-τβ ]

ξ ∞ fresh
Tp[(let d (x τ) ep)] 7→p Tp[{x 7→ (∀ α τ1)} ep] [tcp-let]

α fresh and τ1 = {G (τ , d) 7→ α}τ

Tp[(∀ α τ)] 7→p Tp[{α 7→ ξ ∞}τ] [tcp-poly]
ξ ∞ fresh

(unify ξ d τ p) 7→p (L (τ , d))({ξ d 7→ τ}p) [tcp-u-inst]
ξ d /∈ ftv(τ)
The other Curry-Hindley rewrite rules, [ch-u-eq], [ch-u-dist], and [ch-u-orient]
carry over with the u subscripts replaced by p.

G : τ×depth→ ξ list
G (τ,d) = {ξ d′ ∈ ftv(τ) | d < d′}
L : τ×depth→ ξ depth substitution
L (τ,d) = {ξ d′ 7→ ξ d | ξ d′ ∈ ftv(τ) and d < d′}

Fig. 10. Rewrite rules for Hindley/Milner Type Inference

originally suggested by Damas [7] in the early 1980s and refined and used in compilers
like SML/NJ in the mid 1980s. The idea is to assign a binding depth or rank to type
variables that reflects the level of the outermost variable binding they are associated
with. Substitution for a ranked type variable must preserve a maximal rank property,
namely, that the ranks of type variables in the term substituted cannot exceed the rank
of the type variable being substituted for. The invariant is that if a type variable ξ d has
rank d, it occurs in the type of a lambda binding at nesting depth d, but in no shallower
binding. If a type τ is substituted for ξ d , then its type variables now also appear in
the type of this d level binding, and they should also have rank d, or possibly lower
if they also appear in bindings at even lower depths. Thus substitution for a variable
of rank d entails globally resetting depths of type veriables found the substituted type
to have rank at most d to reflect their new binding depth. Now the test for whether
a type variable appears in the binding context of an expression being typed reduces
to comparing its rank with the current binding depth – if its rank is greater than the
current binding depth, then it does not appear in the context and thus can be considered
polymorphic.3 The fresh type variables used to generically instantiate the polymorphic
type of a let-bound variable occurrence start with rank ∞, reflecting the fact that they
initially are not free in the type of any lambda-bound variables.

3 Some rank systems, like the one described here and the one used in the SML/NJ type checker,
are based on nesting levels of lambda bindings. Other closely related systems, such Rémy’s
[27] and McAllester’s [23], are based on nesting levels of let bindings.
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Our rewriting system for Hindley/Milner inference is presented in Figs. 9 and 10.
We first pre-label the binding constructs of the expression being typed with their lambda
binding depths. For instance, here is an example of a term e and its depth-labeled ver-
sion.

(λ (x) (λ (y) (let (z (λ (u) y)) (@ (@ z x) (@ z 1)))))
(λ 1 (x) (λ 2 (y) (let 2 (z (λ 3 (u) y)) (@ (@ z x) (@ z 1)))))

The rewriting system operates on such labeled expressions from the ep grammar. When
a type variable ξ d is generated by applying the [tcp-lam] rule to an expression (λ d (x)
e), it is initially assigned the depth d of its λ -binding to indicate that it is associated with
this depth d binder. The label d is a positional indicator that supports a short-cut method
of determining the binding scope of a type variable. In the above example, x, y, and u
will be assigned type variables ξ 1

x ,ξ 2
y , and ξ 3

u respectively. Fresh type variables used to
create a generic instance of a polytype in rule [tcp-poly] are given a depth of ∞, since
they are (initially) not associated with any lambda-bound variable. For example, the
polymorphic type of the identity function is (∀α (→ α α)), but [tcp-poly] will reduce
the type to (→ ξ ∞ ξ ∞). The unification rule [tcp-u-inst] can instantiate a type variable
to a type τ that may contain other type variables. This rule enforces the maximal rank
property discussed above by applying a depth-adjustment substitution L (τ,d). The
substitution acts on the full expression p to ensure that the adjustment is performed
globally on all occurrences of the affected type variables.

As an example of how the system operates, consider the labeled expression

(λ 1 (x) (let 1 (f (λ 2 (y) (@ x y))) (@ f 5)))

The type rewriting of this expression proceeds as follows:

(λ 1 (x) (let 1 ( f (λ 2 (y) (@ x y))) (@ f 5))) (1)
7→∗

p (→ ξ
1
x (let 1 ( f (→ ξ

2
y (@ ξ

1
x ξ

2
y ))) (@ f 5))) (2)

7→p (unify ξ
1
x (→ ξ

2
y ξ

∞
3 ) (→ ξ

1
x (let 1 ( f (→ ξ

2
y ξ

2
3 ))) (@ f 5)))) (3)

7→p (→ (→ ξ
1
y ξ

1
3 ) (let 1 ( f (→ ξ

1
y ξ

1
3 ))) (@ f 5)))) (4)

7→p (→ (→ ξ
1
y ξ

1
3 ) (@ (→ ξ

1
y ξ

1
3 ) 5)))) (5)

7→∗
p (→ (→ num ξ

1
4 ) ξ

1
4 ) (6)

The expression at line (2) is obtained by two applications of [tcp-lam] to rewrite the λx
and λy binders, introducing the rank 1 type variable ξ 1

x and the rank 2 type variable ξ 2
y .

At line (3), the application in the definiens of f is rewritten using [tcp-τβ ], introducing
the fresh type variable ξ ∞

3 to represent the type of the result of the application and
adding a unify prefix. Rewriting this with rule [tcp-u-inst] produces line (4), where the
substitution for ξ 1

y is accompanied by the reduction of the ranks of ξ 2
y and ξ ∞

3 to 1.
At line (5), the rule [tcp-let] has been used to rewrite the let-expression. Because the
let is at depth 1, and all the type variables in the rewritten definiens are rank 1, the set
of generalizable variables G ((→ ξ 1

y ξ 1
3 ),1) is /0, so in this case no polymorphism is

introduced and f is replaced by the nonpolymorphic type (→ ξ 1
y ξ 1

3 ). In this example
the lack of polymorphism is due to the occurrence of x, which is bound in an outer
scope, in the body of the definition of f . If on the other hand the definition of f had
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been (λ 2 (y) y), then the definiens would have rewritten to (→ ξ 2
y ξ 2

y ) and [tcp-let]
would have generalized this to (∀α (→ α α)).

We prove the correctness of this typing rewrite system for let-polymorphism, which
we will call HM, by showing that it is equivalent to a slightly modernized variant [17] of
Milner’s Algorithm W [24]. We assume this Algorithm W defines a function W (Γ ,e),
where Γ is a type assignment mapping variables to types, returning a pair (θ ,τ), where
θ is a type substitution mapping type variables to types (either monomorphic or poly-
morphic). W has the property that:

W (Γ ,e) = (θ ,τ) =⇒ θ(Γ ) ` e : τ

Theorem 7 (HM Rewrite Soundness and Completeness relative to W ).
For any closed UTLC` expression e, let el be the depth-labeled version of e.
Then el 7→∗

p τ iff W ( /0,e) = (θ ,τ).

Proof (sketch). To prove the theorem, as in Section 2, we use an abstract stack machine.
The machine serves to make the type substitutions and the typing environment explicit,
allowing us to prove that both Algorithm W and the rewriting system in Fig. 10 are
equivalent to the machine and thus equivalent to each other.

In this case the machine is an analogue of a CEK machine, augmented with a type
variable substitution register. Each machine state is of the form (ep,Γ ,Σ ,K) where ep
is the control (C), Γ is an environment mapping program variables to types (E), Σ (the
extra register) is a list of substitutions that map type variables to types, and K is the
type checking context. The Σ register is used to maintain a correspondance between the
machine’s states and the substitutions that recursive calls in Algorithm W produce. The
type checking context is similar to Tp, but rather than being a context, it is represented
as a list of context frames (in some cases augmented with a little extra information).

There are three kinds of rules. The first kind searches for the next reducible expres-
sion. For example, this rule

((@ e e′), Γ ,Σ ,K) 7→pm (e, Γ ,Σ , (@ 2 e′)::K)

pushes into the left-hand side of an application. The second kind of rules are analogues
of the rules in Fig. 10. For example, this rule:

((@ τ p τ ′p), Γ ,Σ , K) 7→pm ((unify τ p (→ τ ′p ξ ) ξ ), Γ ,Σ , K) ξ is fresh

is the analogue of the [tcp-τβ ] rule. Finally, the third kind of rule manipulates the
environment. For example, this rule:

(x, Γ ,Σ , K) 7→pm (Γ (x), Γ ,Σ ,K)

looks up a variable in the environment. The Σ register is maintained by the unification
rules, and the rules that pop contexts. The complete set of rules are given in the first
author’s master’s paper [16].

An important technical element for relating the rewrite system, the abstract ma-
chine, and Algorithm W is a demonstration that the depth label mechanism correctly
models the usual type variable generalization criterion based on type environments or
binding prefixes. The proof of this hinges on stating the correct invariant regarding the
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depth labeling of type variables occurring in the definiens of a let-expression and any
pending unification problems throughout the process of rewriting of the definiens into
its type. The invariant states that if ξ d is one of these type variables, and if the depth of
the let is d0, then d < d0 if and only if ξ d appears in the binding prefix derived from the
context of the let. ut

5 Related Work

Prior approaches to type checking and inference using rewriting derive type con-
straints from expressions and then use rewriting to solve these constraint sets. The
Stratego/XT program transformation language [3] offers an example of a term rewrit-
ing system for type checking for a simple arithmetic language. Pašalić et al [26] give a
graph rewriting system for the original formulation of Hindley/Milner inference with-
out explicit generalization. In contrast, our term rewriting systems operate directly on
expressions to transform them into their types.

Type checking via rewriting has a similar feel to abstract interpretation. Each rewrite
step takes us a little bit closer to the knowledge of the type of the term, much in the
way that abstract interpretation gathers information about the program text. Cousot [5]
has formulated type checking as an abstract interpretation; our work has a concrete,
operational flavor where his is more denotational. Kahrs [15] has a different formulation
of type checking via abstract interpretations; while his is more operational, like ours,
it is based on a translation to a machine-like language; ours operates directly on the
program text.

There have been several alternative presentations of type inference algorithms. Wand’s
algorithm [31] performs a Curry/Hindley style type inference by performing a syntac-
tic traversal of an expression collecting equational constraints and then solving these
constraints by unification. Much of the prior work on explaining Algorithm W type
inference focuses on retaining information from intermediate steps of the process. Soo-
saipillai [29] maintains a list of the types inferred for each subexpression. Duggan and
Bent [9] as well as Wand [30] retain a list of the instantiations of all type variables.
This method is similar to Rémy’s keeping around a constraint set corresponding to in-
stantiations and unification problems. Instead of retaining specific information during
inference, we present the entire process in terms of simple rewrite steps. We also apply
the substitutions from unification and do not retain them.

There has been significant work done to improve the quality of error messages gen-
erated by type systems, especially in languages that have type inference [2, 12, 13, 17,
18, 19, 22, 25, 32, 33]. Like that work, we too are motivated by the desire to make type
checking easier to understand. Generally speaking, that work augments existing type
checking algorithms with more information or improves existing type checking algo-
rithms in order to improve the error messages produced by the type checker. Our work,
in contrast, is an entirely different way to think about the behavior of a type checker.

6 Conclusion

Our vision is that this work forms the technical foundation for a more ambitious
program to make type checkers easier to understand. Our goal is to lay the groundwork
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for two related efforts in bringing modern type systems to the ordinary programmer:
education and debugging. Because the rewrite-based type checkers are based directly
on the program text and the rewrite rules are relatively straightforward counterparts to
evaluation, we believe students can more easily gain an intuition for how a type checker
behaves by studying them. Similarly, we expect to be able to exploit the operational
flavor of the type checking rewrite rules to build debuggers to help more experienced
programmers understand why ill-typed programs fail to type check.

Although we believe this work succeeds in providing an accessible model for typing
the simply typed λ -calculus and for the Curry-Hindley type inference system, the need
to resort to the depth-labeling scheme for the Hindley/Milner system leads to a rewrit-
ing system that is not as simple and elegant as we would like. Nevertheless, we have
managed to produce a correct version of Hindley-Milner polymorphism and to provide,
to the best of our knowledge, the first proof that an algorithm based on depth-numbering
is equivalent to Algorithm W .

Looking to the future, we expect to continue to work on Hindley-Milner and to
explore other features of modern type systems and static analyses looking for more op-
portunities to exploit the operational point of view based on rewriting.
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