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Abstract. Assertion-based contracts provide a powerful mechanism for stating invari-
ants at module boundaries and for enforcing them uniformly. In 2002, Findler and
Felleisen showed how to add contracts to higher-order functional languages, allow-
ing programmers to assert invariants about functions as values. Following up in 2004,
Blume and McAllester provided a quotient model for contracts. Roughly speaking, their
model equates a contract with the set of values that cannot violate the contract. Their
studies raised interesting questions about the nature of contracts and, in particular, the
nature of the any contract.

In this paper, we develop a model for software contracts that follows Dana Scott’s
program by interpreting contracts as projections. The model has already improved our
implementation of contracts. We also demonstrate how it increases our understanding of
contract-oriented programming and design. In particular, our work provides a definitive
answer to the questions raised by Blume and McAllester’s work. The key insight from
our model that resolves those questions is that a contract that puts no obligation on
either party is not the same as the most permissive contract for just one of the parties.

1 A tour of contracts

Assertion-based contracts play an important role in the construction of robust software.
They give programmers a technique to express program invariants in a familiar no-
tation with familiar semantics. Contracts are expressed as program expressions of type
boolean. When the expression’s value is true, the contract holds and the program contin-
ues. When the expression’s value is false, the contract fails, the contract checker aborts
the program, and hopefully, it identifies the violation and the violator. Identifying the
faulty part of the system helps programmers narrow down the cause of the violation and,
in a component-oriented programming setting, exposes culpable component producers.

The idea of software contracts dates back to the 1970s [31]. In the 1980s, Meyer
developed an entire philosophy of software design based on contracts, embodied in his
object-oriented programming language Eiffel [30]. Nowadays, contracts are available in
one form or another for many programming languages (e.g., C [37], C++ [33], C# [29],
Java [1,4,7,20,22,24,26], Perl [5], Python [32], Scheme [14,35], and Smalltalk [3]).
Contracts are currently the third most requested addition to Java.1 In C code, assert
statements are particularly popular, even though they do not have enough information
to properly assign blame and thus are a degenerate form of contracts. In fact, 60% of
the C and C++ entries to the 2005 ICFP programming contest [10] used assertions,
despite the fact that the software was produced for only a single run and was ignored
afterwards.

1 http://bugs.sun.com/bugdatabase/top25 rfes.do as of 1/20/2006

http://www.cs.uchicago.edu/~robby/
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The “hello world” program of contract research is:

float sqrt(float x) { ... }
// @pre{ x >= 0 }
// @post{ @ret >= 0 && abs(x − @ret * @ret) <= 0.01 }

The pre-condition for sqrt indicates that it only receives positive numbers, and its post-
condition indicates that its result is positive and within 0.01 of the square root of its
input. If the pre-condition contract is violated, the blame is assigned to the caller of
sqrt, but if the post-condition is violated, the blame is assigned to sqrt itself.

Until relatively recently, functional languages have not been able to benefit from
contract checking, and with what might seem to be a good reason. Because functional
languages permit functions to be used as values, contract checking must cope with
assertions on the behavior of functions, i.e., objects with infinite behavior. For example,
this contract restricts f’s argument to functions on even integers:

let f(g : (int{even} → int{even})) : int = ... g(2) ...

But what can it mean for a function to only accept functions on even numbers? Accord-
ing to Rice’s theorem, this property is not decidable.2

Rather than try to check a function’s behavior when we first encounter it, we can —
in keeping with the spirit of dynamically enforced contracts — wait until each function
is called with or returns simple values and only at that point check to see if the values
match the contract.3

Once contract checking is delayed, blame assignment becomes subtle. In general,
the blame for a contract violation lies with the party supplying the value at the point
where the contract violation occurs. In a first-order setting, the caller first supplies a
value to a function and it responds with another value. Thus the caller is responsible for
the entire contract on the input and the function is responsible for entire contract on the
result. In the higher-order function world, however, this reasoning is too simplistic.

Consider the situation where f (as above) is called with the function λx.x+1, and
f, as shown, calls its argument with the number 2. At this point, a contract violation
occurs, because 3 is produced, but 3 is not an even integer. Clearly, the blame for the
contract violation cannot lie with f, because f called its argument with a valid input.
Instead, the blame for the violation must lie with f’s caller, because it did not provide a
suitable function. In a similar fashion, if f had supplied 3 to its argument, f would be
to blame.

To generalize from the first-order setting, we need to observe that all of the negative
positions in the contract (those positions that occur to the left of an odd number of
arrows) are points at which the context is supplying values and therefore the context
must be blamed for any violations of those parts of the contract. Similarly, all of the

2 Object-oriented programming languages share this problem with higher-order functional lan-
guages. In particular, it is impossible to check whether a contract concerning behavioral sub-
typing holds until the classes are instantiated and the relevant methods are invoked [13,16].
We focus here on the functional setting because it is simpler than the object-oriented one.

3 And thus, in answer to the age-old question, no: the tree does not make a sound if no one is
there to hear it fall. In fact, it didn’t even fall until someone sees it on the ground.

2



positive positions in the contract (those that occur to the left of an even number of
arrows) are points where the function supplies values to its context and thus the function
must be blamed for any violations of those parts of the contract. In our running example,
f is responsible for the inputs to the function it receives, and f’s caller is responsible
for the results of that function.

In the first order setting, the negative and positive positions of the contract match
the pre- and post-conditions for a function, making traditional pre- and post-condition
checking a natural specialization of higher-order contract checking.

The remainder of this paper explores models of higher-order contracts. The next
section introduces the formal setting for the paper. Section 3 shows how our original
contract checker is in fact a disguised version of projections. Section 4 introduces pro-
jections and discusses orderings on projections. Section 5 relates projections to Blume
and McAllester’s model of contracts. Equipped with this background, section 6 revisits
Blume and McAllester’s motivating example, and section 7 concludes.

2 Modeling Scheme and contracts

For the rest of this paper, we focus on an idealized, pure version of Scheme [17,21,27],
and source programs that contain a single contract between two parties in the program.
The syntax and semantics for this language is given in figure 1. A program consists of
a series of definitions followed by a single expression (ellipses in the figure indicate
(zero or more) repeated elements of whatever precedes the ellipsis). Definitions asso-
ciate variables with expressions and expressions consist of λ expressions, applications,
variables, symbolic constants (written as a single quote followed by a variable name),
integers, booleans, if expressions, primitives for cons pairs, the three primitive predi-
cates, procedure? integer?, and pair?, and an expression to assign blame.

The operational semantics is defined by a context-sensitive rewriting system in the
spirit of Felleisen and Hieb [9]. Contexts are non-terminals with capital letters (P, D, E)
and allow evaluation in definitions, from left-to-right in applications, in the test position
of if expressions, and in blame expressions. The evaluation rules are standard: βv for
function application, the predicates procedure?, integer?, and pair? recognize λs,
integers, and cons pairs respectively, car and cdr extract the pieces of a cons pair, and
if chooses between its second and third arguments (unlike in standard Scheme, our if
requires the test to be a boolean). Variables bound by define are replaced with their
values, and finally blame aborts the program and identifies its argument as faulty.

The syntactic shorthands allow us to write examples later in the paper in a clear
manner, but without cluttering the language and it’s semantics unduly. The composition
operator, in particular, is defined to evaluate its arguments before performing the com-
position in order to match a standard functional definition, to avoid variable capture and
associated machinery [8,23], and to make later computations simpler.

Contracts belong on module boundaries, mediating the interaction between coher-
ent parts of a program. Rather than build a proper module system into our calculus,
however, we divide the program into two parts: an arbitrary context (not just an eval-
uation context) and a closed expression in the hole of the context, with a contract at
the boundary. We call the context the client and the expression the server; the contract

3



syntax

p = d ... e
d = (define x e)
e = (λ (x ...) e) | (e e ...) | x | ’x | i | #t | #f | (if e e e)
| cons | car | cdr | procedure? | integer? | pair? | (blame e)

P = dv ... D d ... e | dv ... E
D = (define x E)
E = (v ... E e ...) | (if E e e) | (blame E) | �

dv = (define x v)
v = (λ (x ...) e) | (cons v v) | ’x | i | #t | #f
| cons | car | cdr | procedure? | integer? | pair?

i = integers
x = variables

operational semantics

P[((λ (x ...) e) v ...)] −→ P[{x/v ...}e] ;; #x = #v
P[(integer? i)] −→ P[#t]
P[(integer? v)] −→ P[#f] ;; v not an integer
P[(procedure? (λ (x ..) e))] −→ P[#t]
P[(procedure? v)] −→ P[#f] ;; v not a λ expression
P[(pair? (cons v1 v2))] −→ P[#t]
P[(pair? v)] −→ P[#f] ;; v not a cons pair
P[(car (cons v1 v2))] −→ P[v1]
P[(cdr (cons v1 v2))] −→ P[v2]
P[(if #t e1 e2)] −→ P[e1]
P[(if #f e1 e2)] −→ P[e2]
P[x] −→ P[v] ;; where (define x v) is in P
P[(blame ’x)] −→ x violated the contract

syntactic shorthands

(define (f x ...) e) = (define f (λ (x ...) e))
(let ([x e1] ...) e2) = ((λ (x ...) e2) e1 ...)
(cond [e1 e2] [e3 e4] ...) = (if e1 e2 (cond [e3 e4] ...))
(cond) = #f
(e1 ◦ e2) = (let ([x1 e1][x2 e2]) (λ (y) (x1 (x2 y))))

Fig. 1. Syntax and semantics for a core Scheme

governs the interaction between the client and the server. Separating the program in this
manner is, in some sense, the simplest possible model of a module language. Although
it does not capture the rich module systems available today, it does provide us with a
simple setting in which to effectively study contracts and contract checking.

As examples, consider the following clients, contracts, and servers:
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Client Contract Server
(� 2) odd → odd (λ (y) y)
(� 3) odd → odd (λ (y) (− (* y y) y))
(� (λ (x) (+ x 2))) (odd → odd) → even (λ (f) (f 1))

The first contract says that the server must be a function that produces odd numbers
and that the client must supply odd numbers, but when plugging the server expression
into the hole (�) in the client context, the client calls the server function with 2, so
it is blamed for the contract violation. In the second line, the client correctly supplies
an odd number, but the server produces an even number, and so must be blamed. In
the third line, the client supplies a function on odd numbers to the server. The server
applies the function to 1, obeying the contract. The server then receives 3 from the
client, discharging the client’s obligation to produce odd numbers, but the server returns
that 3, which is not an even number and thus violates the contract; this time, the server
broke the contract and is blamed for the violation.

3 Re-functionalizing the contract checker

A specification of contracts for a language with atomic values and single-argument
functions boils down to three functions:

flat : (α → boolean) → contract α

ho : contract α × contract β → contract (α → β)
guard : contract α × α × symbol × symbol → α

The flat and ho functions are combinators that build contracts. The function flat
consumes a predicate and builds a contract that tests the predicate. Usually, flat is
applied to predicates on flat types, like numbers or booleans. In languages that have
richer function types, e.g., multi-arity functions or keyword arguments, flat can be
used to construct contracts that test flat properties of functions, such as the arity or
which keywords the function accepts. The function ho builds a contract for a function,
given a contract for the domain and a contract for the the range. As an example, (ho
(flat odd?) (flat odd?)) is the contract from the first example in section 2, given
a suitable definition of odd?. To enforce a contract, guard is placed into the hole in
the client context, around the server expression. Its first argument is the contract (built
using flat and ho). Its second argument is the server, and its last two arguments name
the server and the client, and are used to assign blame. When fully assembled, the first
example from section 2 becomes:

((guard (ho (flat odd?) (flat odd?))
(λ (y) y)
’server ’client)

2)

In earlier work [14], we provided the first implementation of that interface. In that
implementation, the contract construction functions were just record constructors and
the interesting code was in the guard function, as shown in figure 2. The flat1 and ho1
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;; data Contract1 α where
;; Flat :: (α → Bool) → Contract α

;; Ho :: Contract α → Contract β → Contract (α → β)

(define (flat1 p) p)
(define (ho1 dom rng) (cons dom rng))

(define (guard1 ctc val pos neg)
(cond

[(procedure? ctc)
(if (ctc val) val (blame pos)))]

[(pair? ctc)
(let ([dom (car ctc)]

[rng (cdr ctc)])
(if (procedure? val)

(λ (x)
(guard1 rng

(val (guard1 dom x neg pos))
pos
neg))

(blame pos)))]))

Fig. 2. Original contract library implementation

functions collect their arguments. The guard1 function is defined in cases based on the
structure of the contract. If the contract is a flat contract, the corresponding predicate
is applied and either blame is assigned immediately, or the value is just returned. If
the contract is a higher-order function contract, the value is tested to make sure it is a
procedure; if so, another function is constructed that will, when applied, ensure that the
inputs and outputs of the function behave according to the domain and range contracts.
The last two arguments to guard1 are reversed in the recursive call for the domain
contract, but remain in the same order in the recursive call for the range contract. This
reversal ensures proper blame assignment for the negative and positive positions of the
contract.

Without types, we can represent a higher-order function contract as a pair of con-
tracts and a flat contract as the corresponding predicate, but written in this manner,
the program would not type-check in SML or Haskell. It does type-check, however, if
we use the generalized abstract datatype [19,42] Contract1, shown as a comment in
figure 2.

The Contract1 datatype constructors can be viewed as two defunctionalized func-
tions [36], and guard1 as the defunctionalized version of apply.4 To re-functionalize
the program, we can move the code in the first cond clause of guard1 to a function in
the body of the flat contract combinator, move the code from the second cond clause

4 Yang [43] and Danvy & Nielsen [6] have also explored similar transformations, in more detail.
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;; type Contract2 α = symbol × symbol → α → α

(define (flat2 pred?)
(λ (pos neg)

(λ (val)
(if (pred? val) val (blame pos)))))

(define (ho2 dom rng)
(λ (pos neg)

(let ([dom-p (dom neg pos)]
[rng-p (rng pos neg)])

(λ (val)
(if (procedure? val)

(λ (x) (rng-p (val (dom-p x))))
(blame pos))))))

(define (guard2 ctc val pos neg) ((ctc pos neg) val))

Fig. 3. Re-functionalized, cleaned up contract implementation

to a function in the body of the higher-order contract combinator, and replace the body
of guard1 by a function application. The new type for contracts is thus a function that
accepts all of the arguments that guard1 accepts (except the contract itself), and pro-
duces the same result that guard1 produces. If we clean up that implementation a little
bit by currying contracts and then lifting out partial applications in the body of ho, we
get the code in figure 3.

These two transformations lead to a significantly improved implementation, for two
reasons:

– The new implementation is more efficient. PLT Scheme comes with a full featured
contract checking library that includes over 60 contract combinators and several
different ways to apply contracts to values [35, Chapter 13]. We changed PLT
Scheme’s contract library from an implementation based on the code in figure 2
to one based on the code in figure 3 and checking a simple higher-order contract
in a tight loop runs three times faster than it did before the change. Of course,
PLT Scheme does not contain a sophisticated compiler, and the performance im-
provement for such a implementations is likely to be less dramatic. For example, in
ghc-6.4.1 [40] on a 1.25 GHz PowerPC G4, the figure 3 version of a toy contract
library is 25% faster than a version similar to the one in figure 2, but written with
pattern matching.

– The new implementation is easier to extend. Adding contracts for compound data
like pairs and lists is simply a matter of writing additional combinators. For exam-
ple, a combinator for immutable cons pairs can be defined without changing the
existing code:
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;; pair/c : contract α × contract β → contract (α × β)
(define (pair/c lhs rhs)
(λ (pos neg)
(let ([lhs-p (lhs pos neg)]

[rhs-p (rhs pos neg)])
(λ (x) (if (pair? x)

(cons (lhs-p (car x)) (rhs-p (cdr x)))
(blame pos))))))

4 Contracts as pairs of error projections

Even more striking than the implementation improvements is that the text of the body
of the ho2 contract combinator is identical to Scott’s function space retract and the text
of the body of the pair/c contract combinator is identical to his retract for pairs [39].
The correspondence between our contracts and Scott projections is not mere syntactic
coincidence; there is a semantic connection and the rest of this paper explores that
connection in depth.

Scott defined projections (p) as functions (technically, elements in the domain Pω)
that have two properties:

1. p = p◦ p
2. p v 1

The first, called the retract property, states that projections are idempotent on their
range. The second says that the result of a projection contains no more information
than its input. The equations also make intuitive sense for contracts. The first means
that it suffices to apply a contract once; the second means that a contract cannot add
behavior to a value. The second rule is not quite right for a contract checker, however,
because the contract must be free to identify erroneous programs by signaling errors.
Instead, we insist on a slightly different property, namely that the only behavior that a
contract adds are such errors, and otherwise the contract leaves its input untouched. We
call such functions error projections. The ho contract combinator always produces error
projections from error projections and flat produces error projections for first-order in-
puts and produces error projections when its predicate does not explore the higher-order
behavior of its argument (as we showed in earlier work [12]).

Retracts have a natural ordering, as defined by Scott [39]

a◦< b if and only if a = a◦b

When viewed as an ordering on contracts, it relates two retracts a and b if a signals
a contract violation at least as often as b, but perhaps more. Intuitively, it captures the
strength of the contract. A contract that ignores its argument and always signals an error
is the smallest contract (i.e., it likes the fewest values), and the identity function is the
largest contract (i.e., it likes the most values).

Given this ordering and the ho2 contract combinator, it is natural to ask if the or-
dering is contra-variant in the domain and co-variant in the range of ho2, analogous to
conventional type systems. Disappointingly, as noted by Scott, it is co-variant in the
domain.
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Theorem 1. (Scott [39]) For any retracts, d1, d2, and r, if d1 ◦< d2, then (ho2 d1 r)
◦< (ho2 d2 r).

Proof. Assume that d1 ◦< d2, and consider the composition of (ho2 d1 r) and (ho2
d2 r)

(ho2 d1 r) ◦ (ho2 d2 r)
= (λ (f) (λ (x) (r (f (d1 x))))) ◦

(λ (f) (λ (x) (r (f (d2 x)))))
;; definition of ho2

= (λ (f) ((λ (f) (λ (x) (r (f (d1 x)))))
((λ (f) (λ (x) (r (f (d2 x)))))
f)))

;; definition of
;; composition & let,
;; and βv

= (λ (f) ((λ (f) (λ (x) (r (f (d1 x)))))
(λ (x) (r (f (d2 x))))))

;; βv

= λ (f) (λ (x) (r ((λ (x) (r (f (d2 x))))
(d1 x))))

;; βv

= (λ (f) (λ (x) (r (r (f (d2 (d1 x))))))) ;; βω [38]
= (λ (f)

(λ (x) (r (f (d2 (d1 x))))))
;; apply retract law,
;; to eliminate one r

= (λ (f) (λ (x) (r (f (d1 x))))) ;; by assumption & lemma 3
= (ho2 d1 r) ;; definition of ho2 2

The steps above use the lemma that for retracts a and b, a = a◦b implies a = b◦a. ut

Thus, because functions are naturally contra-variant in their arguments, this order-
ing fails to properly capture the ordinary reasoning rules about functions. Inspecting the
analogy between contracts and error projections, we see that the Scott ordering ignores
the blame associated with contracts. To cope with blame, we must first separate each
contract into two projections: one that assigns blame to the client and one that assigns
blame to the server, and then we can compare the projections separately. A violation
of the first projection in the pair indicates the server is to blame and a violation of the
second indicates the client is to blame.

Concretely, we represent contracts as pairs of error projections that are parameter-
ized over the guilty party. We assume, however, that the parameterized projection does
not dispatch on the symbol, and when it does assign blame, it always assigns blame to
the symbol is received as an argument. Figure 4 shows the new implementation of the
contract combinators.

As before, the sense of the blame is reversed for the domain side of a function
contract. This reversal is captured in this version of the combinators by using the client’s
part of the domain (ac) in the server part of ho’s result (the car position) and using the
server’s part of the domain (as) in the client part in the result (the cdr position).

To show that the new higher-order contract combinator checks the contracts in the
same manner as the one in figure 3, we can construct suitable inputs for both com-
binators from a single set of error projections, and show that they produce the same
higher-order projection.

Theorem 2. For any values a, b, c, d : symbol → α → α

(ho2 (λ (pos neg) ((a pos) ◦ (b neg)))
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;; type Contract3 α = (symbol → α → α) × (symbol → α → α)

(define (flat3 f)
(cons (λ (s) (λ (x) (if (f x) x (blame s))))

(λ (s) (λ (x) x))))

(define (ho3 a b)
(cons (λ (s)

(let ([ac ((cdr a) s)]
[bs ((car b) s)])

(λ (val)
(if (procedure? val)

(λ (x) (bs (val (ac x))))
(blame s)))))

(λ (s)
(let ([bc ((cdr b) s)]

[as ((car a) s)])
(λ (val)

(if (procedure? val)
(λ (x) (bc (val (as x))))
val))))))

(define (guard3 ctc val pos neg)
(let ([server-proj ((car ctc) pos)]

[client-proj ((cdr ctc) neg)])
(client-proj (server-proj val))))

Fig. 4. Contract combinators for contracts as pairs of projections

(λ (pos neg) ((c pos) ◦ (d neg))))
=
(let ([pr (ho3 (cons a b)

(cons c d))])
(λ (pos neg)
((car pr) pos) ◦ ((cdr pr) neg)))

Proof (sketch). The proof is an algebraic manipulation in Sabry and Felleisen’s equa-
tional theory λβvX [34,38] (without ηv) extended with δ rules for if [28]. For the full
details, see appendix A. ut

To define a blame-sensitive ordering, we must take into account the difference be-
tween contracts that blame the client and contracts that blame the server. In particular,
assigning blame more often to the client means that more servers are allowed, whereas
assigning blame less often to the client means fewer servers are allowed.
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Definition 1 (◦<< ).

(cons as ac) ◦<< (cons bs bc)

if and only if
(as s)◦< (bs s) and (bc s)◦< (ac s) for any symbol s.

Theorem 3. The relation ◦<< is a partial order.

Proof. Follows directly from the fact that ◦< is a partial order (Scott [39]). ut

Theorem 4. For any error projections, d1, d2, and r, and symbol s,

d1 ◦<< d2 implies (ho3 d2 r) ◦<< (ho3 d1 r).

Proof (sketch). This proof is an algebraic manipulation using the equations in the proof
of theorem 2 and Clift [9] used for blame, plus the lemma that, for any two retracts a
and b, if a = a◦b then a = b◦a. For the full details, see appendix B. ut

In short, a blame-sensitive ordering provides one that is naturally contra-variant in
the domain of the functions.

5 Ordering contracts in the Blume-McAllester model

The quotient model of contracts proposed by Blume and McAllester [2] also leads to an
ordering on contracts. This section revisits their model and connects the ◦<< ordering
to the ordering in their model.

In Blume and McAllester’s work, contracts (c) are either function contracts or pred-
icates that never signal errors, diverge, or get stuck.5

c = c → c | (λ (x) e)

The meaning of each contract is a set of terms representing values that satisfy the
contract. The values inhabiting higher-order function contracts are procedures that,
when given an input in the domain contract, produce an output in the range contract
or diverge. The values inhabiting flat contracts are the safe values that match the flat
contract’s predicate. Safe values are either first-order values, or functions that map safe
arguments to safe results (or diverge). In other words, safe values can never be the
source of an error.

Definition 2. The set Safe is the largest subset of the set of values v such that each
element of Safe is either:

1. an integer, #t, #f, or
2. (λ (x) e) where, for each value v1 in Safe, either ((λ (x) e) v1) −→∗

v2 and v2 is in Safe, or ((λ (x) e) v1) diverges.

5 In their work, contracts are formulated differently, but these differences are minor. Their safe
is (λ (x) #t), their int is (λ (x) (integer? x)), and our (λ (x) e) is 〈safe | λx.e〉.
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An expression e diverges if, for all e2 such that e −→∗ e2, there exists an e3 such that
e2 −→ e3. Blume and McAllester showed that definition 2 is well-formed [2].

Given Safe, we can formally define the meaning of contracts.

Definition 3. J·K : c → {v}

J(λ (x) e)K = {v ∈ Safe | ((λ (x) e) v) −→∗ #t)}

Jc1 → c2K =


(λ (x) e) ∀v1 ∈ Jc1K.

((λ (x) e) v1) −→∗ v2 and v2 ∈ Jc2K
or
((λ (x) e) v1) diverges


The subset ordering (⊆) on the sets of values produced by J·K induces an ordering

on contracts and we can ask how that ordering relates to ◦<< . To do so, we first map
Blume and McAllester’s contracts to error projections, via L·M.

Definition 4. L·M :c → e

L(λ (x) e)M = (flat3 (λ (x) e))

Lc1 → c2M = (ho3 Lc1M Lc2M)

We would like the two ordering relations to be the same but unfortunately ⊆ relates
slightly more contracts than ◦<< . First we note that if the error projection ordering
relates two contracts, so does the set model’s ordering.

Theorem 5. For any c, c′: LcM ◦<< Lc′M ⇒ JcK⊆ Jc′K

The proof is given in appendix C.
The reverse direction does not hold for every pair of contracts. Consider these two

contracts in the Blume-McAllester model:

(λ (x) false) → (λ (x) false) (λ (x) false) → (λ (x) true)

In both cases, the range contract is irrelevant, because the domain contract always re-
jects all values. Accordingly, they both map to the same set of values under J·K. The
corresponding pairs of error projections, however,

(define p1 (ho3 (flat3 (λ (x) false)) (flat3 (λ (x) false))))
(define p2 (ho3 (flat3 (λ (x) false)) (flat3 (λ (x) true))))

are not the same and, in particular, p2 ◦<< p1 does not hold.
Still, the two orders are related when we restrict higher-order function contracts in

a minor way. In particular, every flat contract that appears as the domain position of a
function contract must accept at least one value. In practice, this restriction is minor,
because functions that always fail when applied are not generally useful. To express
this restriction formally, we define a sub-language of c, called ĉ:

ĉ = ne-c | (λ (x) e)
ne-c = ne-c → ĉ | non-empty-predicate

12



where non-empty-predicate stands for flat predicates that accept at least one value.

Theorem 6.
1. There exists c and c′ such that JcK⊆ Jc′K ⇒ LcM 6 ◦<< Lc′M
2. For any ĉ, ĉ′: JĉK⊆ Jĉ′K ⇒ LĉM ◦<< Lĉ′M

Proof (sketch). The first part follows from the example above. The proof of the second
part is given in appendix C. ut

6 Revisiting the Blume-McAllester example

Now that we have developed an ordering on contracts and can treat contracts as error
projections, we can revisit Blume & McAllester’s motivating example [2]:

Client Contract Server
(let ([invert

(λ (y) (/ 1 y))])
((� invert) 0))

(non-zero-num? → num?)
→
any

(λ (x) x)

According to the contract between the context and the expression, invert must not
receive zero as input. But when we put the identity function into the hole of the context,
invert is applied to 0. So, someone must be blamed. The key question is whom?

There are two seemingly intuitive answers for this question. Here is the one that
Blume & McAllester put forth (paraphrased):

The (λ (y) (/ 1 y)) flows into the domain contract, non-zero-num? →
num? and then back out into any. Clearly, non-zero-num? → num? should
be a subcontract of any, because any accepts any value and thus is the highest
contract in the subtyping ordering. Accordingly, we cannot blame (λ (x) x).

Here’s the one that Findler & Felleisen saw, when they first looked at this expression:

The expression (λ (x) x) accepts a function with a requirement that it not be
abused. It then lets that function flow into a context that may do anything (and
thus promises nothing), because its contract is any. So, (λ (x) x) must be
blamed for failing to protect its argument.

These two intuitive explanations are clearly in conflict. Surprisingly, both have a correct
interpretation in our model of contracts as projections, depending on the meaning of the
word “any” and the corresponding choice of the any projection pair.

To see how, we can start by simplifying the program according to the definitions of
the contract combinators, as shown in figure 5. The first expression shows the client,
contract, and server combined into a single expression. The second expression shows
how the domain contract is distributed to invert and the range contract is distributed
to the result of the applying (λ (x) x) to invert. The inner guard expression cor-
responds to the domain part of the original contract, so the arguments to guard are
reversed from their original senses, meaning that the client is responsible for results of
invert and the server is responsible for the arguments to invert. The third expression

13



(((guard L(non-zero-num → num) → anyM (λ (x) x) ’server ’client)
invert)
0)

= ((guard LanyM
((λ (x) x) (guard Lnon-zero-num → numM

invert
’client ’server))

’server ’client)
0)

= ((guard LanyM
(λ (y) (guard LnumM

(/ 1 (guard Lnon-zero-numM y ’server ’client))
’client ’server))

’server ’client)
0)

Fig. 5. Distributing the Contracts in the Blume-McAllester Example

shows how the inner guard is distributed into the body of invert. Again, the arguments
to guard are reversed for the domain, leaving the server responsible for the value of
y. At this point, we are left with the contract any applied to a procedure.

To support Blume & McAllester’s answer, we must interpret any as the highest
contract in the ◦<< ordering,

(cons (λ (s) (λ (x) x))
(λ (s) (λ (x) (blame s))))

With this interpretation of any, the client is immediately blamed, as they predict.
To support Findler & Felleisen’s answer, we must interpret any as the contract that

never assigns blame,

(cons (λ (s) (λ (x) x))
(λ (s) (λ (x) x)))

With this any, the outer guard in the last expression of figure 5 simply disappears. Thus,
when the context supplies 0 to invert the latent guards assign blame to the server, as
they predict.

Now that we have both projection pairs, we can ask which interpretation of any is
more useful in practice. While such a judgment call is not supported by the model, it
seems clear that the top of the ordering is a less useful contract, because it will always
immediately abort the computation with a contract violation. The contract that never
assigns blame, however, is useful because it allows us to build contracts that specify
some properties, but leave others undetermined.
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7 Conclusion

The Blume-McAllester contract example focuses our attention on an important lesson
for contract programmers: the contract that never assigns blame is not the most permis-
sive; the contract that always blames someone else is. Of course, finding partners that
would agree to such a contract is a Phyrric victory, because it is impossible to achieve
a useful goal with a contract that is always violated. As in real life, so too in program-
ming: you’ve got to give a little to get a little.

Ever since their initial appearance in Scott’s work, projections have enjoyed a wide
use. Wadler and Hughes used them for strictness analysis [41], Launchbury used them
for partial evaluation [25], and in our own work, projections have enabled us to build
better models for contracts [12], to use contracts to connect nominal and structural type
systems in a single language [15], and to interoperate between Java and Scheme [18].
We believe that this work is just the tip of the iceberg and intend to explore them further.

Acknowledgments. Thanks to Bob Harper for alerting us to the connection between
contracts and retracts and to Matthias Felleisen and the FLOPS 2006 reviewers for their
comments on this paper.
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A Proof of Theorem 2

Proof. The proof is an algebraic manipulation, using these equations:

(v (if e1 e2 e3)) = (if e1 (v e2) (v e3))
;; McCarthy [28]

(if e1 e2 (if e1 e3 e4)) = (if e1 e2 e4)
;; McCarthy [28]

(if #t e2 e3) = e3
;; McCarthy [28]

((λ (x) E[(v x)]) e) = E[(v e)] ;; x not free in E
;; Sabry and Felleisen [38] βω

((λ (x) e) v) = e[x/v]
;; Plotkin [34] βv

(let ((pr (ho3 (cons a b)
(cons c d))))

(λ (pos neg)
(((car pr) pos) ◦ ((cdr pr) neg))))

= ((λ (pr)
(λ (pos neg)
((λ (x1 x2)

(λ (f)
(x1 (x2 f))))

((car pr) pos)
((cdr pr) neg))))

(ho3 (cons a b)
(cons c d)))

;; definition
;; of let
;; and ◦
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= ((λ (pr)
(λ (pos neg)
((λ (x1 x2)

(λ (f)
(x1 (x2 f))))

((car pr) pos)
((cdr pr) neg))))

(cons (λ (s)
(let ((ac (b s))

(bs (c s)))
(λ (f)
(if (procedure? f)

(λ (x) (bs (f (ac x))))
(blame s)))))

(λ (s)
(let ((bc (d s))

(as (a s)))
(λ (f)
(if (procedure? f)

(λ (x) (bc (f (as x))))
f))))))

;; definition
;; of ho3
;; and βv

= (λ (pos neg)
((λ (x1 x2)

(λ (f)
(x1 (x2 f))))

((λ (s)
(let ((ac (b s))

(bs (c s)))
(λ (f)
(if (procedure? f)

(λ (x) (bs (f (ac x))))
(blame s)))))

pos)
((λ (s)

(let ((bc (d s))
(as (a s)))

(λ (f)
(if (procedure? f)

(λ (x) (bc (f (as x))))
f))))

neg)))

;; βv and
;; car and cdr
;; rules
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= (λ (pos neg)
(λ (f)
((let ((ac (b pos))

(bs (c pos)))
(λ (f)
(if (procedure? f)

(λ (x) (bs (f (ac x))))
(blame pos))))

((let ((bc (d neg))
(as (a neg)))

(λ (f)
(if (procedure? f)

(λ (x) (bc (f (as x))))
f)))

f))))

;; βv and βΩ

= (λ (pos neg)
(λ (f)
((λ (f)

(if (procedure? f)
(λ (x) ((c pos) (f ((b pos) x))))
(blame pos)))

((λ (f)
(if (procedure? f)

(λ (x) ((d neg) (f ((a neg) x))))
f))

f))))

;; βv

= (λ (pos neg)
(λ (f)
((λ (f)

(if (procedure? f)
(λ (x) ((c pos) (f ((b pos) x))))
(blame pos)))

(if (procedure? f)
(λ (x) ((d neg) (f ((a neg) x))))
f))))

;; βΩ
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= (λ (pos neg)
(λ (f)
(if (procedure? f)

((λ (f)
(if (procedure? f)

(λ (x) ((c pos) (f ((b pos) x))))
(blame pos)))

(λ (x) ((d neg) (f ((a neg) x)))))
((λ (f)

(if (procedure? f)
(λ (x) ((c pos) (f ((b pos) x))))
(blame pos)))

f))))

;; δ rule

= (λ (pos neg)
(λ (f)
(if (procedure? f)

(if (procedure?
(λ (x) ((d neg) (f ((a neg) x)))))
(λ (x)
((c pos)
((λ (x) ((d neg) (f ((a neg) x))))
((b pos) x))))

(blame pos))
(if (procedure? f)

(λ (x)
((c pos) (f ((b pos) x))))

(blame pos)))))

;; βv

= (λ (pos neg)
(λ (f)
(if (procedure? f)

(λ (x)
((c pos)
((λ (x) ((d neg) (f ((a neg) x))))
((b pos) x))))

(if (procedure? f)
(λ (x) ((c pos) (f ((b pos) x))))
(blame pos)))))

;; δ rule

= (λ (pos neg)
(λ (f)
(if (procedure? f)

(λ (x)
((c pos)
((d neg)
(f ((a neg) ((b pos) x))))))

(blame pos))))

;; delta rule and βω
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= (λ (pos neg)
(λ (f)
(if (procedure? f)

(λ (x)
(((c pos) ◦ (d neg))
(f (((a neg) ◦ (b pos))

x))))
(blame pos))))

;; definition
;; of ◦

= (λ (pos neg)
(λ (val)
(if (procedure? val)

(λ (x)
(((c pos) ◦ (d neg))
(val (((a neg) ◦ (b pos))

x))))
(blame pos))))

;; α

= (λ (pos neg)
(let ((dom-p ((a neg) ◦ (b pos)))

(rng-p ((c pos) ◦ (d neg))))
(λ (val)
(if (procedure? val)

(λ (x) (rng-p (val (dom-p x))))
(blame pos)))))

;; definition
;; of let

= ((λ (dom rng)
(λ (pos neg)
(let ((dom-p (dom neg pos))

(rng-p (rng pos neg)))
(λ (val)
(if (procedure? val)

(λ (x) (rng-p (val (dom-p x))))
(blame pos))))))

(λ (pos neg) ((a pos) ◦ (b neg)))
(λ (pos neg) ((c pos) ◦ (d neg))))

;; βv

= (ho2 (λ (pos neg) ((a pos) ◦ (b neg)))
(λ (pos neg) ((c pos) ◦ (d neg))))

;; definition
;; of ho2 2

B Proof of theorem 4

Proof. Assume that d1 ◦<< d2 where

(define d1 (cons dc1 de1))
(define d2 (cons dc2 de2))

Thus, we know that for any symbol s,

(de1 s) ◦< (de2 s)
(dc2 s) ◦< (dc1 s)
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We want to show that, for an arbitrary contract r, where

(define r (cons rc re))

that

(ho3 d2 r) ◦<< (ho3 d1 r)

or, equivalently (from the definition of ◦<< ),

((car (ho3 d2 r)) s) ◦< ((car (ho3 d1 r)) s)
((cdr (ho3 d1 r)) s) ◦< ((cdr (ho3 d2 r)) s)

for an arbitrary symbol s. Expanding the definition of ho3, we get:

(ho3 d2 r) = (cons
(λ (s)
(λ (f)
(if (procedure? f)

(λ (x) ((re s) (f ((dc2 s) x))))
(blame s))))

(λ (s)
(λ (f)
(if (procedure? f)

(λ (x) ((rc s) (f ((de2 s) x))))
f)))

(ho3 d1 r) = (cons
(λ (s)
(λ (f)
(if (procedure? f)

(λ (x) ((re s) (f ((dc1 s) x))))
(blame s))))

(λ (s)
(λ (f)
(if (procedure? f)

(λ (x) ((rc s) (f ((de1 s) x))))
f))))

The lemmas 1 and 2 work out the two inequations, using these equations:

(v (if e1 e2 e3)) = (if e1 (v e2) (v e3))
;; McCarthy [28]

(if e1 e2 (if e1 e3 e4)) = (if e1 e2 e4)
;; McCarthy [28]

(v (blame)) = (blame)
;; Felleisen and Hieb [9] Clift

((λ (x) E[(v x)]) e) = E[(v e)] ;; x not free in E
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;; Sabry and Felleisen [38] βω

((λ (x) e) v) = e[x/v]
;; Plotkin [34] βv

and the retract rule, i.e., for any retract value p,

(p (p e)) = (p e)

2

Lemma 1.

((cdr (ho3 d1 r)) s) ◦< ((cdr (ho3 d2 r)) s)

Proof.

((cdr (ho3 d1 r)) s) ◦ ((cdr (ho3 d2 r)) s)
= (λ (x1 x2)

(λ (f)
(x1 (x2 f))))

((cdr (ho3 d1 r)) s)
((cdr (ho3 d2 r)) s)

;; definition
;; of let and ◦

= (λ (x1 x2)
(λ (f)
(x1 (x2 f))))

(λ (f)
(if (procedure? f)

(λ (x) ((rc s) (f ((de1 s) x))))
f))

(λ (f)
(if (procedure? f)

(λ (x) ((rc s) (f ((de2 s) x))))
f))

;; definition of
;; ho3 and βv

= (λ (f)
((λ (f)

(if (procedure? f)
(λ (x) ((rc s) (f ((de2 s) x))))
f))

(if (procedure? f)
(λ (x) ((rc s) (f ((de1 s) x))))
f)))

;; βv twice
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= (λ (f)
(if (procedure? f)

((λ (f)
(if (procedure? f)

(λ (x) ((rc s) (f ((de2 s) x))))
f))

(λ (x) ((rc s) (f ((de1 s) x)))))
((λ (f)

(if (procedure? f)
(λ (x) ((rc s) (f ((de2 s) x))))
f))

f)))

;; delta rule

= (λ (f)
(if (procedure? f)

(if (procedure?
(λ (x) ((rc s) (f ((de1 s) x)))))
(λ (x)
((rc s)
((λ (x) ((rc s) (f ((de1 s) x))))
((de2 s) x))))

f)
(if (procedure? f)

(λ (x) ((rc s) (f ((de2 s) x))))
f)))

;; βv twice

= (λ (f)
(if (procedure? f)

(λ (x)
((rc s)
((λ (x) ((rc s) (f ((de1 s) x))))
((de2 s) x))))

f))

;; two delta
;; rules

= (λ (f)
(if (procedure? f)

(λ (x)
((rc s)
((rc s)
(((de2 s) x)
((de1 s) x)))))

f))

;; βω

= (λ (f)
(if (procedure? f)

(λ (x)
((rc s)
(((de2 s) x)
((de1 s) x))))

f))

;; retract law
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= (λ (f)
(if (procedure? f)

(λ (x)
((rc s)
((de1 s) x)))

f))

;; retract law
;; and lemma 3

= ((λ (s)
(λ (f)
(if (procedure? f)

(λ (x)
((rc s)
((de1 s) x)))

f)))
s)

;; βv

= (cdr (ho2 d1 r)) s ;; definition of ho2

2

Lemma 2.

((car (ho3 d2 r)) s) ◦< ((car (ho3 d1 r)) s)

Proof.

((car (ho3 d2 r)) s) ◦ ((car (ho3 d1 r)) s)
= (λ (x1 x2)

(λ (f)
(x1 (x2 f))))

((car (ho3 d2 r)) s)
((car (ho3 d1 r)) s)

;; definition
;; of let and ◦

= (λ (x1 x2)
(λ (f)
(x1 (x2 f))))

(λ (f)
(if (procedure? f)

(λ (x) ((re s) (f ((dc2 s) x))))
(blame s)))

(λ (f)
(if (procedure? f)

(λ (x) ((re s) (f ((dc1 s) x))))
(blame s)))

;; definition of
;; ho3 and βv

= (λ (f)
((λ (f)

(if (procedure? f)
(λ (x) ((re s) (f ((dc2 s) x))))
(blame s)))

(if (procedure? f)
(λ (x) ((re s) (f ((dc1 s) x))))
(blame s))))

;; βv twice
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= (λ (f)
(if (procedure? f)

((λ (f)
(if (procedure? f)

(λ (x) ((re s) (f ((dc2 s) x))))
(blame s)))

(λ (x) ((re s) (f ((dc1 s) x)))))
((λ (f)

(if (procedure? f)
(λ (x) ((re s) (f ((dc2 s) x))))
(blame s)))

(blame s))))

;; delta rule

= (λ (f)
(if (procedure? f)

((λ (f)
(if (procedure? f)

(λ (x) ((re s) (f ((dc2 s) x))))
(blame s)))

(λ (x) ((re s) (f ((dc1 s) x)))))
(blame s)))

;; Clift

= (λ (f)
(if (procedure? f)

(if (procedure?
(λ (x) ((re s) (f ((dc1 s) x)))))
(λ (x)
((re s)
((λ (x) ((re s) (f ((dc1 s) x))))
((dc2 s) x))))

(blame s))
(blame s)))

;; βv

= (λ (f)
(if (procedure? f)

(λ (x)
((re s)
((λ (x) ((re s) (f ((dc1 s) x))))
((dc2 s) x))))

(blame s)))

;; delta rule

= (λ (f)
(if (procedure? f)

(λ (x)
((re s)
((re s)
(f ((dc1 s) ((dc2 s) x))))))

(blame s)))

;; βω

26



= (λ (f)
(if (procedure? f)

(λ (x)
((re s)
(f
((dc1 s) ((dc2 s) x)))))

(blame s)))

;; retract law

= (λ (f)
(if (procedure? f)

(λ (x)
((re s) (f ((dc2 s) x))))

(blame s)))

;; assumption
;; and lemma 3

= ((λ (s)
(λ (f)
(if (procedure? f)

(λ (x)
((re s) (f ((dc2 s) x))))

(blame s))))
s)

;; βv

= ((car (ho2 d2 r)) s) ;; definition of ho2

2

Lemma 3. For all retracts, a and b, if a = a ◦ b then a = b ◦ a.

Proof.
a = a ◦ b

a ◦ a = a ◦ b ◦ a compose a on right of both sides
a = a ◦ b ◦ a retract law on left
a = b ◦ a retract law on right 2

C Proof of theorem 5

We want to show that for any c, c′: (LcM ◦<< Lc′M)⇒ (JcK⊆ Jc′K).

Notation: Since our projections are parameterized over the symbol identifying the party
to be blamed, we prove this (as well as the next theorem, Theorem 6) by choosing
an arbitrary symbol s and considering the instantiation of the two projections in each
projection pair to s. For notational convenience, we will write c+ for ((car LcM) s)
and c− for ((cdr LcM) s).

Proof: The proof proceeds by simultaneous induction on the structure of c and c′. There
are four cases to consider:

c = (λ (x) e),c′ = (λ (x) e’) Here c ◦<< c′ implies that (λ (x) e) must accept
a value v if and only if (λ (x) (and e e’)) accepts v.6 Therefore, whenever (λ

6 We write (and e1 e2) for (if e1 e2 #f).
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(x) e) accepts a given value, so does (λ (x) e’). The conclusion JcK ⊆ Jc′K
follows directly from that.

c = c1 → c2,c′ = c′1 → c′2 This is the most interesting case. Using the above notation,
the condition LcM◦<< Lc′M can be reduced to two equations which have to hold for
arbitrary function values f :

c2
+ ◦ f ◦ c1

− = c2
+ ◦ c′2

+ ◦ f ◦ c′1
− ◦ c1

−

c′2
− ◦ f ◦ c′1

+ = c′2
− ◦ c2

− ◦ f ◦ c1
+ ◦ c′1

+

Since f would be able to observe any difference between c1
− and c′1

− ◦c1
− (which

is the same as c1
− ◦ c′1

−), it must be the case that c1
−◦< c′1

−, and likewise that
c′1

+◦< c1
+. Thus, we have Lc′1M◦<< Lc1M, and by induction hypothesis Jc′1K⊆ Jc1K.

For the second part we need to consider two cases: 1. If c′1 is the empty contract,
then the conclusion holds trivially since c′1 → c′2 is then satisfied by every function
value. 2. If c′1 is non-empty, then there must be at least one value that is not mapped
to error by c′1

+. Moreover, the same is always true for c1
−. (This fact does not

depend on whether or not c1 is empty but follows from the construction of (cdr
Lc1M).)
Thus, we can consider the family of functions f ∈ {(λ (x) v) | v is a value}.
These functions are constant functions that ignore their arguments and produce
a fixed value; there is one such function for each value. Since the equations are true
for all functions including this family, we also find that Lc2M◦<< Lc′2M and therefore
Jc2K ⊆ Jc′2K. The conclusion Jc1 → c2K ⊆ Jc′1 → c′2K now follows directly from the
definition of J·K.

c = c1 → c2,c′ = (λ (x) e’) By definition of c◦<< c′ we have

(λ (x) e’)− = (λ (x) e’)− ◦ (c1 → c2)
−

Since (λ (x) e’)− is the identity function, this equation implies that for all func-
tions f we have

c2
− ◦ f ◦ c1

+ = f

and, therefore, that c1
+ and c2

− are identities. This implies that safe◦<< c1 and
c2◦<< safe.7 Using the induction hypothesis we get JsafeK⊆ Jc1K and Jc2K⊆ JsafeK,
and therefore that JcK contains only safe functions:

JcK = Jc1 → c2K⊆ Jsafe → safeK.

From the definition of c◦<< c′ we also get

(c1 → c2)
+ = (c1 → c2)

+ ◦(λ (x) e’)+.

Abusing notation this can be rewritten to

7 From here on we will write safe as a shorthand for the contract (λ (x) #t), i.e., the contract
that is satisfied by precisely the values in Safe.
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(λ (f) (if (procedure? f) c2
+ ◦f◦ c1

− (blame s))) =
(λ (f) (if (and (procedure? f) ((λ (x) e’) f)) c2

+ ◦f◦ c1
− (blame s)))

For this to hold it must be the case that (λ (x) e’) accepts every function value.
As a result, Jc′K contains all safe function values, and since JcK contains only safe
function values we conclude that JcK⊆ Jc′K.

c = (λ (x) e),c′ = c′1 → c′2 By definition of c◦<< c′ we have

(λ (x) e)+ = (λ (x) e)+ ◦ (c′1 → c′2)
+
.

Writing out the left-hand side yields

(λ (f) (if ((λ (x) e) f) f (blame s))),

while the right-hand side is equivalent to

(λ (f) (if (procedure? f)
(let ((g c′2

+◦f◦c′1
− ))

(if ((λ (x) e) g) g (blame s)))
(blame s)))

Now recall that the predicate in a flat contract, when presented with an argument
that is a function, must not invoke its argument. This follows from the restriction
that predicates must be total. Since there is no way of distinguishing between dif-
ferent functions by any means other than invoking them, predicates must treat all
functions uniformly: if they return true for any function argument, then they must
return true for all function arguments [12]. As a consequence, ((λ (x) e) g) and
((λ (x) e) f) must be the same, so we can further rewrite the right-hand side to

(λ (f) (if (and (procedure? f) ((λ (x) e) f))
c′2

+ ◦f◦ c′1
−

(blame s)))

Since this has to be equal to (λ (f) (if ((λ (x) e) f) f (blame s))) it
must be the case that (λ (x) e) does not accept any non-function value. If (λ

(x) e) never returns true, then the conclusion holds trivially.
If it is true for any function value (which means it is true for all function values),
then J(λ (x) e)K is precisely the set of safe function values. In this case we also
have for any function f that f = c′2

+ ◦ f ◦ c′1
−, i.e., both c′2

+ and c′1
− are identi-

ties. Again, it is easy to see that this implies c′1◦<< safe and safe◦<< c′2. Using the
induction hypothesis we get Jc′1K⊆ JsafeK and JsafeK⊆ Jc′2K, and therefore

Jsafe → safeK⊆ Jc′1 → c′2K.

Thus, in this case Jc′1 → c′2K is a superset of the safe function values, i.e., a superset
of JcK.

ut
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D Proof of theorem 6

We want to show that for arbitrary ĉ, ĉ′: JĉK⊆ Jĉ′K ⇒ LĉM◦<< Lĉ′M
As in the case of theorem 5, we prove this by simultaneous induction on the struc-

ture of ĉ and ĉ′. Since the grammar for contracts (ĉ) is merely a refinement of the orig-
inal grammar, it is sufficient to consider the same four cases as in the previous proof.
(The second case will take advantage of the only difference between the two gram-
mars, namely that in ĉ no empty contract can ever appear as the domain of a function
contract.)

ĉ = (λ (x) e), ĉ′ = (λ (x) e’) By definition, this means that for all v ∈ Safe,
whenever (λ (x) e) accepts v, then so does (λ (x) e’). Let f 6∈ Safe. Such an
f must be a function value. Pick some other function g ∈ Safe and recall that nei-
ther of the two predicates is able to distinguish between f and g. Therefore, for all
values v (safe or unsafe) we have that whenever (λ (x) e) accepts v then (λ (x)
e’) accepts v as well. From this the statement of the theorem follows immediately.

ĉ = ĉ1 → ĉ2, ĉ
′ = ĉ′1 → ĉ′2 First we show that Jĉ2K ⊆ Jĉ′2K by considering values (λ

(x) v) for v∈ Jĉ2K. Since ĉ1 is non-empty, all these values are in JĉK and therefore
also in Jĉ′K. Since ĉ′1 is also non-empty, this can only be the case if Jĉ′2K contains
every such v, so Jĉ2K⊆ Jĉ′2K, and by induction hypothesis Lĉ2M◦<< Lĉ′2M.
The next step is to show that Jĉ′1K ⊆ Jĉ1K. Indirect: Suppose v ∈ Jĉ′1K\ Jĉ1K. Since
contract checking is complete and contract guards are expressible in the language [2],
there exists some f = (λ (x) b) which, when applied to this v, calls blame or
gets stuck, but which succeeds (e.g., by looping indefinitely) when applied to any
w∈ Jĉ1K. This means that f ∈ JĉK but also f 6∈ Jĉ′K, which is a contradiction. There-
fore, Jĉ′1K⊆ Jĉ1K and by induction hypothesis Lĉ′1M◦<< Lĉ1M.
Since → is co-variant in the range and contra-variant in the domain we get the
desired result LĉM = Lĉ1 → ĉ2M◦<< Lĉ′1 → ĉ′2M = Lĉ′M.

ĉ = ĉ1 → ĉ2, ĉ
′ = (λ (x) e’) The set Jĉ1 → ĉ2K contains at least one value (namely

the function that ignores its argument and then loops forever). Therefore, (λ (x)
e’), which as before cannot distinguish between different functions, must accept
not only this one function value but every function value. Therefore, by definition,
the function values in Jĉ′K are precisely the safe function values. Since JĉK con-
tains only function values, all these function values must therefore be safe function
values:

Jĉ1 → ĉ2K⊆ Jsafe → safeK
This is an instance of the previous case, giving us:

Lĉ1 → ĉ2M◦<< Lsafe → safeM.

If we can show that Lsafe → safeM◦<< L(λ (x) e’)M, then the desired result fol-
lows from transitivity of ◦<< .
To show that Lsafe → safeM◦<< L(λ (x) e’)M we simply check the definition. Two
equations must hold for this to be true:

(safe → safe)+ = (safe → safe)+ ◦(λ (x) e’)+

(λ (x) e’)− = (λ (x) e’)− ◦ (safe → safe)−
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The first equation holds because, as we have argued above, (λ (x) e’) accepts all
function values. For the second equation it suffices to check that (safe → safe)− is
the identity projection.

ĉ = (λ (x) e), ĉ′ = ĉ′1 → ĉ′2 All values in J(λ (x) e)K must be functions, so (λ

(x) e) does not accept any non-function value. Since it is unable to distinguish
between different function values, there are only two possible cases for (λ (x)
e): either it is equivalent to (λ (x) #f) or it behaves like (λ (x) (procedure?
x)).
If ĉ is (λ (x) #f) we show that L(λ (x) #f)M◦<< Lĉ′1 → ĉ′2M simply by plugging
it into the definition, observing that the following two equations hold:

(λ (x) #f)+ = (λ (x) #f)+ ◦ (ĉ′1 → ĉ′2)
+

(ĉ′1 → ĉ′2)
− = (ĉ′1 → ĉ′2)

− ◦(λ (x) #f)−

If ĉ is (λ (x) (procedure? x)), then JĉK is precisely the set of safe functions,
i.e., Jsafe → safeK ⊆ Jĉ′1 → ĉ′2K. Again, this is an instance of the second case, so
Lsafe → safeM◦<< Lĉ′1 → ĉ′2M. Using the definition of ◦<< it is straightforward to
see that L(λ (x) (procedure? x))M◦<< Lsafe → safeM. By transitivity of ◦<< we
obtain the desired result:

LĉM = L(λ (x) (procedure? x))M◦<< Lsafe → safeM◦<< Lĉ′1 → ĉ′2M = Lĉ′M
ut
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