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Abstract

A sound gradual type system ensures that untyped components of a program can never break the
guarantees of statically typed components. Currently, this assurance requires run-time checks, which
in turn impose performance overhead in proportion to the frequency and nature of interaction between
typed and untyped components.

The literature on gradual typing lacks rigorous descriptions of methods for measuring the per-
formance of gradual type systems. This gap has consequences for developers who use gradual type
systems and the implementors of such systems. Developers cannot predict whether adding types
to part of a program will significantly degrade its performance. Implementors cannot precisely
determine how improvements to a gradual type system affect the performance of such programs.

This paper presents the first method for evaluating the performance of gradual type systems.
The method quantifies both the absolute performance of a gradual type system and the relative
performance of two implementations of the same gradual type system. In order to validate the
method, the paper reports on its application to twenty benchmark programs and three versions of
Typed Racket.

1 The Gradual Typing Design Space

Programmers use dynamically typed languages to build all kinds of applications. Telecom
companies have been running Erlang programs for years (Armstrong 2007); Sweden’s
pension system is a Perl program (Lemonnier 2006), and the server-side applications
of some contemporary companies (Dropbox, Facebook, Twitter) are written in dynamic
languages (Python, PHP, and Ruby, respectively).

Regardless of why programmers choose dynamically typed languages, the maintainers
of these applications inevitably find the lack of explicit type annotations an obstacle to
their work. Researchers have tried to overcome the lack of type annotations with inference
algorithms (Aiken et al. 1994; Anderson et al. 2005; Cartwright and Fagan 1991; Furr
et al. 2009; Henglein and Rehof 1995; Rastogi et al. 2012), but most have come to real-
ize that there is no substitute for programmer-supplied annotations. Explicit annotations
communicate a programmer’s intent to other human readers. Furthermore, tools can check
the annotations for logical inconsistencies and leverage types to improve the efficiency of
compiled code.

One solution is to rewrite the entire application in a statically typed language. This
solution assumes that the application is small enough and the problem is recognized soon
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enough to make a wholesale migration feasible. For example, Twitter was able to port their
server-side code from Ruby to Scala because they understood the problem early on.1 In
other cases, the codebase becomes too large for this approach.

Another solution to the problem is gradual typing (Siek and Taha 2006; Tobin-Hochstadt
and Felleisen 2006),2 a linguistic approach. In a gradually typed language, programmers
can incrementally add type annotations to dynamically typed code. At the lexical bound-
aries between annotated code and dynamically typed code, the type system inserts runtime
checks to guarantee the soundness of the type annotations.

From a syntactic perspective the interaction is seamless, but dynamic checks introduce
runtime overhead. During execution, if an untyped function flows into a variable f with
type τ1 Ñ τ2, then a dynamic check must follow every subsequent call to f because
typed code cannot assume that values produced by the untyped function have the syntactic
type τ2. Conversely, typed functions invoked by untyped code must dynamically check
their argument values. If functions or large data structures frequently cross these type
boundaries, enforcing type soundness might impose a huge runtime cost.

Optimistically, researchers have continued to explore the theory and practice of sound
gradual typing (Allende et al. 2013; Garcia and Cimini 2015; Knowles et al. 2007; Rastogi
et al. 2015; Richards et al. 2015; Siek et al. 2009; Tobin-Hochstadt and Felleisen 2008;
Vitousek et al. 2014; Wolff et al. 2011).3 Some research groups have invested significant
resources implementing sound gradual type systems. But surprisingly few groups have
evaluated the performance of gradual typing. Most acknowledge an issue with performance
in passing. Worse, others report only the performance ratio of fully typed programs relative
to fully untyped programs, ironically ignoring the entire space of programs that mix typed
and untyped components.

This archival paper presents the first method for evaluating the performance of a grad-
ual type system (section 3), integrating new result with the results of a conference ver-
sion (Takikawa et al. 2016). Specifically, this paper contributes:

‚ validation that the method can express the relative performance between three im-
plementations of Typed Racket (section 5.3);

‚ evidence that simple random sampling can accurately approximate the results of a
comprehensive evaluation with asymptotically fewer measurements (section 6);

‚ eight additional benchmark programs (section 4); and
‚ a discussion of the pathological overheads in the benchmark programs (section 8).

The discussion is intended to guide implementors of gradual type systems toward promis-
ing future directions (section 9).

This paper begins with an extended introduction to our philosophy of gradual typing and
the pragmatics of Typed Racket. Section 2.2 in particular argues that type soundness is an
imperative, despite the performance cost of enforcing it.

1 http://www.artima.com/scalazine/articles/twitter_on_scala.html
2 The term migratory typing more accurately describes this particular mode of gradual typing.
3 See https://github.com/samth/gradual-typing-bib for a bibliography.
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#lang racket

(provide play)

(define (play)
  (define n (random 10))
  (λ (guess)
    (= guess n)))

������������ #lang racket

(provide stubborn-player)

(define (stubborn-player i)
  4)

��������

#lang typed/racket

(require/typed "guess-game.rkt"
  [play (-> (-> Natural Boolean))])
(require/typed "player.rkt"
  [stubborn-player (-> Natural Natural)])

(define check-guess (play))
(for/sum ([i : Natural (in-range 10)])
  (if (check-guess (stubborn-player i)) 1 0))

��������

Figure 1: A gradually typed application

2 Gradual Typing in Typed Racket

Typed Racket (Tobin-Hochstadt and Felleisen 2008) is the oldest and most developed
implementation of sound gradual typing. It supports clients in both academia and industry.
Typed Racket attracts these clients because it accomodates the idioms of (untyped) Racket;
its type system can express concepts such as variable-arity polymorphism (Strickland et al.
2009), first-class classes (Takikawa et al. 2012), and delimited continuations (Takikawa et
al. 2013). Finally, a typed module may incorporate definitions from a Racket module with
a type-annotated import statement; conversely, a Racket module may use definitions from
a Typed Racket module without knowledge that the providing module is typed.

Figure 1 demonstrates gradual typing in Typed Racket with a small application. The
untyped module on the top left implements a guessing game with the function play.
Each call to play generates a random number and returns a function that checks a given
number against this chosen number. The untyped module on the top right implements a
naïve player. The driver module at the bottom combines the game and player. It generates
a game, prompts stubborn-player for ten guesses, and counts the number of correct
guesses using the for/sum combinator. Unlike the other two, the driver module is imple-
mented in Typed Racket. Typed Racket ensures that the game and player follow the type
specifications in the driver’s require/typed clauses. More precisely, Typed Racket
statically checks that the driver module sends only natural numbers to the guessing game
and player, and inserts dynamic checks to enforce the return types of play, stubborn-
player, and check-guess.

Due to the close integration of Racket and Typed Racket, programmers frequently use
both languages within a single application. Furthermore, programmers often migrate Racket
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modules to Typed Racket as their application evolves. In general one cannot predict why
or how such incremental migrations happen, but here are some common motivations:

‚ The typechecker provides assurance against common bugs.
‚ Type signatures serve as machine-enforced documentation.
‚ Typed modules gain performance improvements from the Typed Racket compiler.
‚ Adding typed modules reduces friction with typed libraries and clients.

Regarding the final point, there are two sources of so-called friction (Barrett et al. 2016)
between typed and untyped code. The first is the above-mentioned requirement that typed
clients must supply type annotations to use imports from an untyped library. Maintainers
of such libraries can instead provide a bridge module with the necessary annotations. The
second is the performance overhead of typed/untyped interaction, such as the overhead of
dynamically enforcing the return type of play in figure 1.

2.1 The Costs of Incremental Typing

Adding types to untyped code is a tradeoff. Performing the type conversion may yield
long-term benefits, but incurs three immediate engineering costs.

The first cost is the burden of writing and maintaining type annotations. In particular,
Typed Racket is a macro-level 4 gradual type system. Every expression within a Typed
Racket module must pass the type checker. Consequently, every recursive type in a module
needs a declaration and every function parameter, class field, and induction variable needs
a type annotation.

The second cost is the risk of introducing bugs during the conversion. Typed Racket
mitigates this risk by accomodating Racket idioms, but occasionally programmers must
refactor code to satisfy the type checker. Refactoring can always spawn bugs.

The third cost is performance overhead due to typed/untyped interaction. For example,
Typed Racket developers have experienced pathologies including a 50% overhead in a
commercial web server and 25x-50x slowdowns when using the (typed) math library.
Another programmer found that converting a script from Racket to Typed Racket improved
its performance from 12 seconds to 1 millisecond.5

Of these three costs, the performance overhead is the most troublesome. Part of the issue
is that the magnitude of the cost is difficult to predict. Unlike the tangible cost of writ-
ing type annotations or the perennial risk of introducing bugs, the performance overhead
of enforcing type soundness is not apparent until runtime. Additionally, experience with
statically typed languages—or optionally-typed languages such as TypeScript—teaches
programmers that type annotations do not impose runtime overhead. Typed Racket insists
on gradual type soundness, therefore types need runtime enforcement.

4 As opposed to micro-level gradual typing (Siek et al. 2015).
5 The appendix contains a list of user reports.
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2.2 A Case for Sound Gradual Typing

Recall that types are checkable statements about program expressions. Soundness means
that every checked statement holds as the program is executed. Statically typed languages
provide this guarantee by type checking every expression. In a gradually typed language,
the type system cannot check every expression because some are intentionally untyped.
Therefore a sound gradual type system monitors the interaction of typed and untyped
program components at runtime. Where typed code claims τ about the value of an un-
typed expression, the gradual type system inserts a runtime check LτM capable of deciding
whether an arbitrary value belongs to the denotation of the syntactic type τ . If, at runtime,
the expression does not produce a value satisfying LτM, the program halts with a so-called
type boundary error.

Remark Type boundary errors arise when type annotations impose new constraints that
untyped code does not satisfy. Such errors may indicate latent bugs in the untyped code, but
it is equally likely that the new type annotations are incorrect specifications. In other words,
the slogan “well-typed programs can’t be blamed” (Wadler and Findler 2009) misses the
point of gradual typing. ■

Typed Racket implements the runtime check LτM for a first-order type τ with a first-order
predicate. To enforce a higher-order type, Typed Racket dynamically allocates a proxy
to ensure that a value’s future interactions with untyped contexts conform with its static
type (Findler and Felleisen 2002; Strickland et al. 2012).

Consider the Typed Racket function in figure 2. It implements multiplication for polar-
form complex numbers.6 If an untyped module imports this function, Typed Racket al-
locates a new proxy. The proxy checks that every value which flows from the untyped
module to polar-* passes the predicate LCM. These checks are indispensible because
Typed Racket’s static types operate at a higher level of abstraction than Racket’s dynamic
typing. In particular, the tag checks performed by first and * do not enforce the C type.
Without the dynamic checks, the call (polar-* '(-1 0) '(-3 0)) would produce
a well-typed complex number from two ill-typed inputs. Racket’s runtime system would
not detect this erroneous behavior, therefore the program would silently go wrong. Such
are the dangers of committing “moral turpitude” (Reynolds 1983).

Furthermore, even if a dynamic tag check uncovers a logical type error, debugging
such errors in a higher-order functional language is often difficult. Well-trained functional
programmers follow John Hughes’ advice and compose many small, re-usable functions
to build a program (Hughes 1989). Unfortunately, this means the root cause of a runtime
exception is usually far removed from the point of logical failure.

In contrast, sound gradual typing guarantees that typed code never executes a single
instruction using ill-typed values. Programmers can trust that every type annotation is a
true statement because the gradual type system inserts runtime checks to remove any doubt.
These interposed checks furthermore detect type boundary errors as soon as possible.
If such an error occurs, the runtime system points the programmer to the relevant type
annotation and supplies the incompatible value as a witness to the logical mistake.

6 The example is adapted from Reynolds classic paper on types soundness (Reynolds 1983). In
practice, Racket and Typed Racket have native support for complex numbers.
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#lang typed/racket

(provide polar-*)

(define-type C (List Nonnegative-Real Real))
;; C represents complex numbers as
;;   ordered pairs (distance, radians)

(: polar-* (C C -> C))
(define (polar-* c1 c2)
  (list (* (first  c1) (first  c2))
        (+ (second c1) (second c2))))

Figure 2: Multiplication for polar form complex numbers

3 Evaluation Method, Part I

Performance evaluation for gradual type systems must reflect how programmers use such
systems. Experience with Typed Racket shows that programmers frequently combine typed
and untyped code within an application. These applications may undergo incremental
transitions that add or remove some type annotations; however, it is rare that a programmer
adds explicit annotations to every module in the program all at once. In a typical evolution,
programmers compare the performance of the incrementally modified program with the
previous version. If type-driven optimizations result in a performance improvement, all is
well. Otherwise, the programmer may need to address the performance overhead. As they
continue to develop the application, programmers repeat this process.

The following subsections build an evaluation method from these observations in three
steps. First, section 3.1 describes the space over which a performance evaluation must take
place. Second, section 3.2 defines metrics relevant to the performance of a gradually typed
program. Third, section 3.3 introduces a visualization that concisely presents the metrics
on exponentially large spaces.

3.1 Performance Lattice

The promise of Typed Racket’s macro-level gradual typing is that programmers may con-
vert any subset of the modules in an untyped program to Typed Racket. A comprehensive
performance evaluation must therefore consider the space of typed/untyped configurations
a programmer could possibly create given a full set of type annotations for each module.
These configurations form a lattice.

Figure 3 demonstrates one such lattice for a six-module program. The black rectangle at
the top of the lattice represents the configuration in which all six modules are typed. The
other 63 rectangles represent configurations in which some (or all) modules are untyped.

A given row in the lattice groups configurations with the same number of typed modules
(black squares). For instance, configurations in the second row from the bottom contain two
typed modules. These represent all possible ways of converting two modules in the untyped
configuration to Typed Racket. Similarly, configurations in the third row represent all
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Figure 3: Performance overhead in suffixtree, on Racket v6.2.

possible configurations a programmer might encounter after applying three type conversion
steps to the untyped configuration. In general, let the notation c1 Ñk c2 express the idea
that a programmer starting from configuration c1 (in row i) could reach configuration c2

(in row j) after taking at most k type conversion steps ( j ´ i ď k).
Configurations in figure 3 are furthermore labeled with their performance overhead

relative to the untyped configuration on Racket version 6.2. With these labels, a language
implementor can draw several conclusions about the performance overhead of gradual
typing in this program. For instance, six configurations run within a 2x overhead and 22
configurations are at most one type conversion step from a configuration that runs within
a 2x overhead. High overheads are common (40 configurations have over 20x overhead),
but the fully typed configuration runs 30% faster than the untyped configuration because
Typed Racket uses the type annotations to compile more efficient code.

Terminology A labeled lattice such as figure 3 is a performance lattice. The same lattice
without labels is a configuration lattice. The practical distinction is that users of a gradual
type system will explore configuration lattices and maintainers of such systems may use
performance lattices to evaluate overall performance. ■

3.2 Performance Metrics

The most basic question about a gradually typed language is how fast fully-typed programs
are in comparison to their fully untyped relative. In principle and in Typed Racket, static
types enable optimizations and can serve in place of runtime tag checks. The net effect of
such improvements may, however, be offset by runtime type checks in programs that rely
heavily on an untyped library. Relative performance is therefore best described as a ratio,
to capture the possibility of speedups and slowdowns.

Definition (typed/untyped ratio) The typed/untyped ratio of a performance
lattice is the time needed to run the top configuration divided by the time needed
to run the bottom configuration.

For users of a gradual type system, the important performance question is how much
overhead their current configuration suffers. If the performance overhead is low enough,
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Figure 4: Sample performance lattice

programmers can release the configuration to clients. Depending on the nature of the
application, some developers might not accept any performance overhead. Others may be
willing to tolerate an order-of-magnitude slowdown. The following parameterized defini-
tion of a deliverable configuration accounts for these varying requirements.

Definition (D-deliverable) A configuration is D-deliverable if its performance
is no worse than a factor of D slowdown compared to the untyped configuration.

If an application is currently in a non-D-deliverable configuration, the next question is how
much work a team must invest to reach a D-deliverable configuration. One coarse measure
of “work” is the number of additional modules that must be annotated with types before
performance improves.

Definition (k-step D-deliverable) A configuration c1 is k-step D-deliverable if
c1 Ñk c2 and c2 is D-deliverable.

The number of k-step D-deliverable configurations therefore captures the experience of a
prescient programmer that converts the k modules suited to improve performance.

Let us illustrate these terms with an example. Suppose there is a project with two
modules where the untyped configuration runs in 20 seconds and the typed configuration
runs in 10 seconds. Furthermore, suppose the mixed configurations run in 15 and 35
seconds. Figure 4 is a performance lattice for this hypothetical program. The label below
each configuration is its overhead relative to the untyped configuration.

The typed/untyped ratio is 1/2, indicating a performance improvement due to adding
types. The typed configuration is also 1-deliverable because it runs within a 1x slowdown
relative to the untyped configuration. Both mixed configurations are 2-deliverable because
they run within 40 seconds, but only one is, e.g., 1.5-deliverable. Lastly, these configura-
tions are 1-step 1-deliverable because they can reach the typed configuration in one type
conversion step.

The ratio of D-deliverable configurations in such a lattice is a measure of the overall
feasibility of gradual typing. When this ratio is high, then no matter how the application
evolves, performance is likely to remain acceptable. Conversely, a low ratio implies that
a team may struggle to recover performance after incrementally typing a few modules.
Practitioners with a fixed performance requirement D can therefore use the number of D-
deliverable configurations to extrapolate the performance of a gradual type system.
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Figure 5: Overhead graphs for suffixtree, on Racket v6.2.

3.3 Overhead Graphs

Although a performance lattice contains a comprehensive description of performance over-
head, it does not effectively communicate this information. It is difficult to tell, at a glance,
whether a program has good or bad performance relative to its users’ requirements. Com-
paring the relative performance of two or more lattices is also difficult, and is in practice
limited to programs with an extremely small number of modules.

The main lesson to extract from a performance lattice is the number of D-deliverable
configurations for various D. The overhead plot on the left half of figure 5 presents this in-
formation for the performance lattice in figure 3. On the x-axis, possible values for D range
continuously from one to twenty. Dashed lines to the left of the 2x tick pinpoint overheads
of 1.2x, 1.4x, 1.6x, and 1.8x. To the right of the 2x tick, similar dashed lines pinpoint 4x,
6x, 8x, etc. The y-axis gives the proportion of configurations in the lattice that suffer at
most Dx performance overhead. Using this plot, one can confirm the observation made in
section 3.1 that six of the 64 configurations (9%) run within a 2x overhead. Additionally,
the typed/untyped ratio above the plot reports the 30% performance improvement for the
fully typed configuration.

Viewed as a cumulative distribution function, the left plot demonstrates how increasing
D increases the number of D-deliverable configurations. In this case, the shallow slope
implies that few configurations become deliverable as the programmer accepts a larger
performance overhead. The ideal slope would have a steep incline and a large y-intercept,
meaning that few configurations have large overhead and many configurations run more
efficiently due to the type annotations.

The overhead plot on the right half of figure 5 gives the number of 1-step D-deliverable
configurations. A point (X,Y) on this plot represents the percentage Y of configurations c1

such that there exists a configuration c2 where c1 Ñ1 c2 and c2 runs at most X times slower
than the untyped configuration.7 Intuitively, this plot resembles the (0-step) D-deliverable
plot because accounting for one type conversion step does not change the overall charac-
teristics of the benchmark, but only makes more configurations D-deliverable.

These overhead plots concisely summarize the data in figure 3. The same presentation
scales to arbitrarily large programs because the y-axis plots the proportion of D-deliverable

7 Note that c1 and c2 may be the same, for instance when c1 is the fully-typed configuration.
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configurations; in contrast, a performance lattice contains exponentially many nodes. Fur-
thermore, plotting the overhead for multiple versions of a gradual type system on the same
set of axes provides a high-level summary of the versions’ relative performance.

3.3.1 Assumptions and Limitations

Plots in the style of figure 5 rest on two assumptions and have two significant limitations,
which readers must keep in mind as they interpret the results.

The first assumption is that configurations with less than 2x overhead are significantly
more practical than configurations with over 10x overhead. Hence the plots use a log-scaled
x-axis to simultaneously encourage fine-grained comparison in the 20-60% overhead range
and blur the distinction between, e.g., 14x and 18x slowdowns.

The second assumption is that configurations with more than 20x overhead are com-
pletely unusable in practice. Pathologies like the 100x slowdowns in figure 3 represent a
challenge for implementors, but if these overheads suddenly dropped to 30x, the configu-
rations would still be useless to developers.

The first limitation of the overhead plots is that they do not report the number of types
in a configuration. The one exception is the fully-typed configuration; its overhead is given
explicitly through the typed/untyped ratio above the left plot.

The second limitation is that the 1-step D-deliverable plot optimistically chooses the
best type conversion step. In a program with N modules, a programmer has up to N
type conversion steps to choose from, some of which may not lead to a D-deliverable
configuration. For example, there are six configurations with exactly one typed module in
figure 3 but only one of these is 2-deliverable.

4 The GTP Benchmark Programs

The twenty benchmark programs are representative of actual user code yet small enough
to make exhaustive performance evaluation tractable. The following descriptions, arranged
from smallest performance lattice to largest, briefly summarize each benchmark. This
section concludes with a table summarizing the static characteristics of each benchmark.

sieve
Origin : Synthetic
Purpose : Generate prime numbers

Author : Ben Greenman
Depends : N/A

Demonstrates a scenario where client code is tightly coupled to higher-order library code.
The library implements a stream data structure; the client builds a stream of prime numbers.
Introducing a type boundary between these modules leads to significant overhead.

forth
Origin : Library
Purpose : Forth interpreter

Author : Ben Greenman
Depends : N/A

Interprets Forth programs. The interpreter represents calculator commands as a list of first-
class objects. These objects accumulate proxies as they cross type boundaries.
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fsm, fsmoo
Origin : Economics Research
Purpose : Economy Simulator

Author : Linh Chi Nguyen
Depends : N/A

Simulates the interactions of economic agents via finite-state automata (Nguyen 2014).
This benchmark comes in two flavors: fsm stores the agents in a mutable vector and
whereas fsmoo uses a first-class object.

mbta
Origin : Educational
Purpose : Interactive map

Author : Matthias Felleisen
Depends : graph

Builds a map of Boston’s subway system and answers reachability queries. The map
encapsulates a boundary to Racket’s untyped graph library; when the map is typed, the
(type) boundary to graph is a performance bottleneck.

morsecode
Origin : Library
Purpose : Morse code trainer

Author : John Clements and Neil Van Dyke
Depends : N/A

Computes Levenshtein distances and morse code translations for a fixed sequence of pairs
of words. Every function that crosses a type boundary in morsecode operates on strings
and integers, thus dynamically type-checking these functions’ arguments is relatively cheap.

zombie
Origin : Research
Purpose : Game

Author : David Van Horn
Depends : N/A

Implements a game where players dodge computer-controlled “zombie” tokens. Curried
functions over symbols implement game entities and repeatedly cross type boundaries.

dungeon
Origin : Application
Purpose : Maze generator

Author : Vincent St. Amour
Depends : N/A

Builds a grid of wall and floor objects by choosing first-class classes from a list of “tem-
plate” pieces. This list accumulates proxies when it crosses a type boundary.

zordoz
Origin : Tool
Purpose : Explore Racket bytecode

Author : Ben Greenman
Depends : compiler-lib

Traverses Racket bytecode (.zo files). The compiler-lib library defines the bytecode
data structures. Typed code interacting with the library suffers overhead.

Note: the Racket bytecode format changed between versions 6.2 and 6.3 with the release
of the set-of-scopes macro expander (Flatt 2016). This change significantly reduced the
overhead of zordoz.

lnm
Origin : Synthetic
Purpose : Graphing

Author : Ben Greenman
Depends : plot, math/statistics

Renders overhead graphs (Takikawa et al. 2016). Two modules are tightly-coupled to
Typed Racket libraries; typing both modules improves performance.
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suffixtree
Origin : Library
Purpose : Ukkonen’s suffix tree algorithm

Author : Danny Yoo
Depends : N/A

Computes longest common subsequences between strings. The largest performance over-
heads are due to a boundary between struct definitions and functions on the structures.

kcfa
Origin : Educational
Purpose : Explanation of k-CFA

Author : Matt Might
Depends : N/A

Performs 1-CFA on a lambda calculus term that computes 2*(1+3) = 2*1 + 2*3
via Church numerals. The (mutable) binding environment flows throughout functions in
the benchmark. When this environment crosses a type boundary, it acquires a new proxy.

snake
Origin : Research
Purpose : Game

Author : David Van Horn
Depends : N/A

Implements the Snake game; the benchmark replays a fixed sequence of moves. Modules
in this benchmark frequently exchange first-order values, such as lists and integers.

take5
Origin : Educational
Purpose : Game

Author : Matthias Felleisen
Depends : N/A

Runs a card game between AI players. These players communicate infrequently, so gradual
typing adds relatively little overhead.

acquire
Origin : Educational
Purpose : Game

Author : Matthias Felleisen
Depends : N/A

Simulates a board game via message-passing objects. These objects encapsulate the core
data structures; few higher-order values cross type boundaries.

tetris
Origin : Research
Purpose : Game

Author : David Van Horn
Depends : N/A

Replays a pre-recorded game of Tetris. Frequent interactions, rather than proxies or expen-
sive runtime checks, are the source of performance overhead.

synth
Origin : Application
Purpose : Music synthesis DSL

Author : Vincent St. Amour & Neil Toronto
Depends : N/A

Converts a description of notes and drum beats to WAV format. Modules in the benchmark
come from two sources, a music library and an array library. The worst overhead occurs
when arrays frequently cross type boundaries.
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gregor
Origin : Library
Purpose : Date and time library

Author : Jon Zeppieri
Depends : cldr, tzinfo

Provides tools for manipulating calendar dates. The benchmark builds tens of date values
and runs unit tests on these values.

quadBG, quadMB
Origin : Library
Purpose : Typesetting

Author : Matthew Butterick
Depends : csp

Converts S-expression source code to PDF format. The two versions of this benchmark
differ in their type annotations, but have nearly identical source code.

The original version, quadMB, uses type annotations by the original author. This version
has a high typed/untyped ratio because it explicitly compiles types to runtime predicates
and uses these predicates to eagerly check data invariants. In other words, the typed con-
figuration is slower than the untyped configuration because it does more work.

The second version, quadBG, uses identical code but weakens types to match the un-
typed configuration. This version is therefore suitable for judging the implementation of
Typed Racket rather than the user experience of Typed Racket. The conference version of
this paper included data only for quadMB.

Figure 6 tabulates the size and complexity of the benchmark programs.8 The lines
of code (Untyped LOC) and number of modules (# Mod.) approximate program size.
The type annotations (Annotation LOC) count additional lines in the typed configuration.
These lines are primarily type annotations, but also include type casts and assertions.9

Adaptor modules (# Adp.) roughly correspond to the number of user-defined datatypes in
each benchmark; the next section provides a precise explanation. Lastly, the boundaries
(# Bnd.) and exports (# Exp.) distill each benchmark’s graph structure. Boundaries are
import statements from one module to another, excluding imports for runtime or third-
party libraries. An identifier named in such an import statement counts as an export. For
example, the one import statement in sieve names nine identifiers.

4.1 From Programs to Benchmarks

Seventeen of the benchmark programs are adaptations of untyped programs The other
three benchmarks (fsm, synth, and quad) use most of the type annotations and code
from originally-typed programs. Any differences between the original programs and the
benchmarks are due to the following five complications.

First, the addition of types to untyped code occasionally requires type casts or small
refactorings. For example, the expression (string->number "42") has the Typed
Racket type (U Complex #f). This expression cannot appear in a context expecting
an Integer without an explicit type cast. As another example, the quad programs
call a library function to partition a (Listof (U A B)) into a (Listof A) and a

8 The appendix presents the information in figure 6 graphically.
9 The benchmarks use more annotations than Typed Racket requires because they give full type

signatures for each import. Only imports from untyped modules require annotation.
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Benchmark Untyped
LOC

Annotation
LOC

# Mod. # Adp. # Bnd. # Exp.

sieve 35 17 (49%) 2 0 1 9
forth 255 30 (12%) 4 0 4 10
fsm 182 56 (31%) 4 1 5 17
fsmoo 194 83 (43%) 4 1 4 9
mbta 266 71 (27%) 4 0 3 8
morsecode 159 38 (24%) 4 0 3 15
zombie 302 27 (9%) 4 1 3 15
dungeon 526 66 (13%) 5 0 5 36
zordoz 1380 215 (16%) 5 0 6 11
lnm 488 114 (23%) 6 0 8 28
suffixtree 537 129 (24%) 6 1 11 69
kcfa 229 53 (23%) 7 4 17 62
snake 160 51 (32%) 8 1 16 31
take5 327 27 (8%) 8 1 14 25
acquire 1654 304 (18%) 9 3 26 106
tetris 246 107 (43%) 9 1 23 58
synth 835 141 (17%) 10 1 26 51
gregor 945 174 (18%) 13 2 42 142
quadBG 6780 220 (3%) 14 2 27 160
quadMB 6706 292 (4%) 16 2 29 174

Figure 6: Static characteristics of the GTP benchmarks

(Listof B) using a predicate for values of type A. Typed Racket cannot currently prove
that values which fail the predicate have type B, so the quad benchmarks replace the call
with two filtering passes.

Second, Typed Racket cannot enforce certain types across a type boundary. For example,
the core datatypes in the synth benchmark are monomorphic because Typed Racket can-
not dynamically enforce parametric polymorphism on instances of an untyped structure.

Third, any contracts present in the untyped programs are represented as type annotations
and in-line assertions in the derived benchmarks. The acquire program in particular uses
contracts to ensure that certain lists are sorted and have unique elements. The benchmark
enforces these conditions with explicit pre and post-conditions on the relevant functions.

Fourth, each static import of an untyped struct type into typed code generates a unique
datatype. Typed modules that share instances of an untyped struct must therefore reference
a common static import site. The benchmarks include adaptor modules to provide this
canonical import site; for each module M in the original program that exports a struct, the
benchmark includes an adaptor module that provides type annotations for every identifier
exported by M. Adaptor modules add a layer of indirection,10 but do not change the size of
a configuration lattice.

10 This indirection did not add measurable performance overhead.
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Fifth, some benchmarks use a different modularization than the original program. The
kcfa benchmark is modularized according to comments in the original, single-module
program. The suffixtree, synth, and gregor benchmarks each have a single file
containing all their data structure definitions; the original programs defined these structures
in the same module as the functions on the structures. Lastly, the quadBG benchmark has
two fewer modules than quadMB because it inlines the definitions of two (large) data
structures that quadMB keeps in separate files. Inlining does not affect overhead due to
gradual typing, but greatly reduces the number of configurations.

5 Evaluating Typed Racket

5.1 Experimental Protocol

Section 5.2 and section 5.3 present the results of a comprehensive performance evaluation
of the twenty benchmark programs on three versions of Racket. The data is the result of
applying the following protocol for each benchmark and each version of Typed Racket:

‚ Select a random permutation of the configurations in the benchmark.
‚ For each configuration: recompile, run twice, and collect the results of the second

run. Use the standard Racket compiler and runtime settings.
‚ Repeat the above steps N times to produce a sequence of N running times for each

configuration.
‚ Summarize each configuration with the mean of the corresponding running times.

Specifically, a Racket script implementing the above protocol collected the data in this
paper. The script ran on a dedicated Linux machine; this machine has two physical AMD
Opteron 6376 processors (with 16 cores each) and 128GB RAM.11 For the quadBG and
quadMB benchmarks, the script utilized 30 of the machine’s physical cores to collect
data in parallel.12 For all other benchmarks, the script utilized only two physical cores.
Each core ran at minimum frequency as determined by the powersave CPU governor
(approximately 1.40 GHz).

The online supplement to this paper contains both the experimental scripts and the full
datasets. Section 7 reports threats to validity regarding the experimental protocol and the
appendix discusses the stability of individual measurements.

5.2 Evaluating Absolute Performance

Figures 7, 8, 9, and 10 present the results of measuring the benchmark programs in a series
of overhead graphs. As in figure 5, the left column of figures are cumulative distribution
functions for D-deliverable configurations and the right column are cumulative distribution
functions for 1-step D-deliverable configurations. These plots additionally include data for
three versions of Racket released between June 2015 and February 2016. Data for version

11 The Opteron is a NUMA architecture.
12 The script invoked 30 green threads; these green threads invoked and monitored system processes

to compile and run each configuration. The green threads pinned subprocesses to a fixed CPU core
using the Linux taskset command.
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6.2 are thin red curves with short dashes. Data for version 6.3 are mid-sized green curves
with long dashes. Data for version 6.4 are thick, solid, blue curves. The typed/untyped ratio
for each version appears above each plot in the left column.

Many curves are quite flat; they demonstrate that gradual typing introduces large and
widespread performance overhead in the corresponding benchmarks. Among benchmarks
with fewer than six modules, the most common shape is a flat line near the 50% mark. Such
lines imply that the performance of a family of configurations is dominated by a single type
boundary. Benchmarks with six or more modules generally have smoother slopes, but five
such benchmarks have essentially flat curves. The underlying message is that for many
values of D between 1 and 20, few configurations are D-deliverable.

For example, in fourteen of the twenty benchmark programs, at most half the configu-
rations are 2-deliverable on any version. The situation is worse for lower (more realistic)
overheads, and does not improve much for higher overheads. Similarly, there are ten bench-
marks in which at most half the configurations are 10-deliverable.

The curves’ endpoints describe the extremes of gradual typing. The left endpoint gives
the percentage of configurations that run at least as quickly as the untyped configuration.
Except for lnm, such configurations are a low proportion of the total.13 The right endpoint
shows how many configurations suffer over 20x performance overhead.14 Nine bench-
marks have at least one such configuration.

Moving from k=0 to k=1 in a fixed version of Racket does little to improve the number
of D-deliverable configurations. Given the slopes of the k=0 graphs, this result is not
surprising. One type conversion step can eliminate a pathological boundary, such as those
in fsm and zombie, but the overhead in larger benchmarks comes from a variety of
type boundaries. Except in configurations with many typed modules, adding types to one
additional module is not likely to improve performance.

In summary, the application of the evaluation method projects a negative image of Typed
Racket’s sound gradual typing. Only a small number of configurations in the benchmark
suite run with low overhead; a mere 2% of all configurations are 1.4-deliverable on Racket
v6.4. Many demonstrate extreme overhead; 66% of all configurations are not even 20-
deliverable on version 6.4.

5.3 Evaluating Relative Performance

Although the absolute performance of Racket version 6.4 is underwhelming, it is a signifi-
cant improvement over versions 6.2 and 6.3. This improvement is manifest in the difference
between curves on the overhead plots. For example in gregor (third plot in figure 10),
version 6.4 has at least as many deliverable configurations as version 6.2 for any overhead
on the x-axis. The difference is greatest near x=2; in terms of configurations, over 80% of
gregor configurations are not 2-deliverable on v6.2 but are 2-deliverable on v6.4. The

13 sieve is a degenerate case. Only its untyped and fully-typed configurations are 1-deliverable.
14 Half the configurations for dungeon do not run on versions 6.2 and 6.3 due to a defect in the way

these versions proxy first-class classes. The overhead graphs report an “over 20x” performance
overhead for these configurations.
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Figure 7: GTP overhead graphs (1/4)
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Figure 8: GTP overhead graphs (2/4)
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Figure 9: GTP overhead graphs (3/4)
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Figure 10: GTP overhead graphs (4/4)
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Figure 11: Relative performance of v6.4 versus v6.2

overhead plots for many other benchmarks demonstrate a positive difference between the
number of D-deliverable configurations on version 6.4 relative to version 6.2.

The plot of figure 11 makes explicit how much version 6.4 is improved over version 6.2.
It consists of twenty purple lines, one for each benchmark. These lines plot the difference
between the curve for v6.4 and the curve for v6.2 on the corresponding overhead plot. For
example, the line for gregor (labeled r) demonstrates a large improvement in the number
of 2-deliverable configurations. The plot also shows that fifteen of the twenty benchmarks
significantly benefit from running on version 6.4. Only the line for the forth benchmark
demonstrates a significant regression.

The improved performance in Racket version 6.4 is due to revisions of the contract
system and Typed Racket’s use of contracts to enforce static types. In particular, the
contract system allocates fewer closures to track the labels that Typed Racket uses to
report type boundary errors. The regression in the forth benchmark is due to a bug in the
implementation of class contracts in version 6.2. This bug would suppress the allocation
of certain necessary class contracts. With the bug fixed, forth generates the contracts but
suffers additional performance overhead.

6 Evaluation Method, Part II

The evaluation method of section 3 does not scale to benchmarks with a large number of
typeable components. Benchmarking a full performance lattice for a program with N such
components requires 2N measurements. In practice, this limits an exhaustive evaluation
of Typed Racket to programs with approximately 20 modules. An evaluation of micro-
level gradual typing would be severly limited; depending on the definition of a typeable
component, such an evaluation might be limited to programs with 20 functions.
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Simple random sampling can approximate the ground truth presented in section 5. In-
stead of measuring every configuration in a benchmark, it suffices to randomly sample a
linear number of configurations and plot the overhead apparent in the sample.

Figure 12 plots the true performance of the snake benchmark against confidence in-
tervals (Neyman 1937) generated from random samples. The plot on the left shows the
absolute performance of snake on version 6.2 (dashed red line) and version 6.4 (solid blue
line). The plot on the right shows the improvement of version 6.4 relative to version 6.2
(solid purple line). Each line is surrounded by a thin interval generated from five samples
of 80 configurations each.

The implicit suggestion of figure 12 is that the intervals provide a reasonable approx-
imation of the performance of the snake benchmark. These intervals capture both the
absolute performance (left plot) and relative performance (right plot) of snake.

Figure 13 provides evidence for the linear sampling suggestion of figure 12. It describes
the eleven largest benchmarks in the GTP suite. The solid purple lines from figure 11
alongside confidence intervals generated from a small number of samples. Specifically,
the interval for a benchmark with N modules is generated from five samples of 10N
configurations. Hence the samples for lnm use 60 configurations and the samples for
quadMB use 160 configurations. For every benchmark, the true relative performance (solid
purple line) lies within the corresponding interval. Again, the lesson is that a language
designer can quickly approximate performance by computing a similar interval.

6.1 Statistical Protocol

For readers interested in reproducing the above results, this section describes the protocol
that generated figure 12. The details for figure 13 are analogous:

‚ To generate one random sample, select 80 configurations without replacement and
associate each configuration with its overhead from the exhaustive performance
evaluation reported in section 5.

‚ To generate a confidence interval for the number of D-deliverable configurations
based on five such samples, calculate the proportion of D-deliverable configurations
in each sample and generate a 95% confidence interval from the proportions. This is
the so-called index method (Franz 2007) for computing a confidence interval from
a sequence of ratios. This method is intuitive, but admittedly less precise than a
method such as Fieller’s (Fieller 1957). The two intervals in the left half of figure 12
are a sequence of such confidence intervals.

‚ To generate an interval for the difference between the number of D-deliverable
configurations on version 6.4 and the number of D-deliverable configurations on
version 6.2, compute two confidence intervals as described in the previous step and
plot the largest and smallest difference between these intervals.
In terms of figure 13 the upper bound for the number of D-deliverable configurations
on the right half of figure 12 is the difference between the upper confidence limit on
the number of D-deliverable configurations in version 6.4 and the lower confidence
limit on the number of D-deliverable configurations in version 6.2. The correspond-
ing lower bound is the difference between the lower confidence limit on version 6.4
and the upper confidence limit on version 6.2.
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Figure 12: Approximating absolute performance
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Figure 13: Approximating relative performance

7 Threats to Validity

Although the evaluation method addresses the goals of gradual typing, its application in
section 5 manifests some threats to validity. In particular, both the experimental protocol
and the conclusions have limitations.

There are four significant threats to the protocol. First, the benchmark programs are rel-
atively small. Larger programs might avoid the pathological overheads in the benchmarks,
though the results for quadMB and synth are evidence to the contrary.

Second, a few benchmarks have little data (less than 6 samples per configuration, details
in the appendix) due to time limitations.15 It is therefore possible that some samples are
not truly representative.

Third, the configurations running in parallel reference the same Racket executable and
external libraries. This cross-reference is a potential source of bias.

15 Parallelizing the experiment would yield more samples, but would also add confounding
variables to the measurements. See http://prl.ccs.neu.edu/blog/2016/08/03/
a-few-cores-too-many/ for one relevant anecdote.
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Fourth, the Racket just-in-time compiler includes heuristic optimizations. The protocol
of compiling once before collecting one sample does not control for these heuristics.
Nevertheless, the overheads evident in the results are much larger than those attributed to
systematic biases in the literature (Curtsinger and Berger 2013; Gu et al. 2005; Mytkowicz
et al. 2009).

The conclusions have three limitations. First, the evaluation does not systematically
measure the effects of annotating the same code with different types. This is an issue
because type annotations determine the runtime constraints on untyped code. Therefore
if two programmers give the same code different type annotations, they may experience
different performance. For example, quadBG and quadMB describe the same code with
different types and have very different performance characteristics. Whereas all configura-
tions of the former are 6-deliverable, only a small fraction of quadMB configurations are
20-deliverable.

Second, the conclusions rely on Typed Racket’s implementation technology and do not
necessarily generalize to other implementations of gradual typing. Typed Racket re-uses
Racket’s runtime, a conventional JIT technology. In particular, the JIT makes no attempt
to reduce the overhead of contracts. Contract-aware implementation techniques such soft
contracts (Nguyễn et al. 2014) or the Pycket tracing JIT compiler (Bauman et al. 2015)
may significantly reduce the overhead of gradual typing.

Finally, when the Racket contract system discovers a type boundary error, its type sound-
ness theorem guarantees that programmers receive the exact type boundary, type annota-
tion, and incompatible value in the error message. This blame assignment has practical
value for developers (Dimoulas et al. 2012), but the runtime system must dynamically
track contextual information to implement it. On one hand, there may be inefficiencies
in Racket’s implementation of this runtime monitoring. On the other hand, a different
gradual type system could offer a different soundness guarantee and circumvent the need
for this runtime accounting altogether. For example, Reticulated Python’s transient se-
mantics checks the type of a mutable data structure when typed code reads from the
structure, but not when untyped code writes to it, avoiding the need to proxy such data
structures (Vitousek et al. 2014). StrongScript provides only nominal subtyping for objects,
largely because structural subtyping incurs a higher runtime cost (Richards et al. 2015).
The question is whether these alternatives are sufficiently practical.

8 Dissecting Performance Overhead

Our evaluation demonstrates that adding types to an arbitrarily chosen subset of Racket
modules in a program can impose large performance overhead. This section explains with a
few examples how such overheads may arise, both as inspiration for maintainers of gradual
type systems and as anti-patterns for developers.

8.1 High-Frequency Typechecking

No matter the cost of a single runtime type check, if the check occurs frequently then the
program suffers. The program in figure 14, for example, calls the typed function stack-
empty? one million times from untyped code. Each call is type-correct; nevertheless,
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#lang typed/racket
(provide:
  [stack-empty?
   (-> Stack Boolean)])

(define-type Stack
  (Listof Integer))

(define (stack-empty? stk)
  (null? stk))

#lang racket
(require 'stack)

;; Create a stack of 20 elements
(define stk (range 20))

(for ([i (in-range 10e6)])
  (stack-empty? stk))

Figure 14: A high-frequency type boundary

Typed Racket validates the argument stk against the specification LListof AM one
million times. These checks dominate the performance of this example program, simply
because many values flow across the module boundary.

High-frequency module boundaries are common in the GTP benchmarks. To give an
extreme example, over six million values flow across four separate boundaries in snake.
In suffixtree, over one hundred million values flow across two boundaries. When
these module boundaries are type boundaries, the benchmarks suffer considerable over-
head; their respective worst cases are 32x and 28x on Racket v6.4.

8.2 High-Cost Types

Certain types require computationally expensive runtime checks in Typed Racket. Im-
mutable lists require a linear number of checks. Functions require proxies, whose total
cost then depends on the number of subsequent calls. Mutable data structures (hash tables,
objects) are the worst of both worlds, as they require a linear number of such proxies.

In general Typed Racket programmers are aware of these costs, but predicting the cost
of enforcing a specific type in a specific program is difficult. One example comes from
quadMB, in which the core datatype is a tagged n-ary tree type. Heavy use of the predicate
for this type causes the 19.4x typed/untyped ratio in Racket v6.4. Another example is the
kcfa benchmark, in which hashtable types account for up to a 3x slowdown.

Similarly, the Racket script in figure 15 executes in approximately twelve seconds.
Changing its language to #lang typed/racket improves its performance to under
1 millisecond by removing a type boundary to the trie library. The drastic improvement
is due to the elimination of the rather expensive dynamic check for the trie type.16

8.3 Complex Type Boundaries

Higher-order values and metaprogramming features introduce fine-grained, dynamic type
boundaries. For example, every proxy that enforces a type specification is a dynamically-

16 There is no way for a programmer to predict that the dynamic check for the trie type is
expensive, short of reading the implementation of Typed Racket and the pfds/trie library.
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#lang racket
(require pfds/trie) ;; a Typed Racket library

(define t (trie (list (range 128))))
(time (bind (range 128) 0 t))

Figure 15: Performance pitfall, discovered by John Clements.

#lang typed/racket
(require (prefix-in P. "population.rkt"))

(: evolve (P.Population Natural -> Real))
(define (evolve p iters)
  (cond
    [(zero? iters) (get-payoff p)]
    [else (define p2 (P.match-up* p r))
          (define p3 (P.death-birth p2 s))
          (evolve p3 (- iters 1))]))

Figure 16: Accumulating proxies in fsm.

generated type boundary. These boundaries make it difficult to predict the overhead of
gradual typing statically.

The synth benchmark illustrates one problematic use of metaprogramming. One mod-
ule in synth exports a macro that expands to a low-level iteration construct. The expanded
code introduces a reference to a server module, whether or not the macro client statically
imports the server. Thus, when the server and client are separated by a type boundary, the
macro inserts a type boundary in the expanded looping code. In order to predict such costs,
a programmer must recognize macros and understand each macro’s namespace.

8.4 Layered Proxies

Higher-order values that repeatedly flow across type boundaries may accumulate layers
of type-checking proxies. These proxies add indirection and space overhead. Collapsing
layers of proxies and pruning redundant proxies is an area of active research (Greenberg
2015; Herman et al. 2010; Siek and Wadler 2010).

Racket’s proxies implement a predicate that tells whether the current proxy subsumes
another proxy. These predicates often remove unnecessary indirections, but a few of the
benchmarks still suffer from redundant layers of proxies.

For example, the fsm, fsmoo, and forth benchmarks update mutable data structures
in a loop. Figures 16 and 17 demonstrate the problematic functions in each benchmark.
In fsm, the value p accumulates one proxy every time it crosses a type boundary; that is,
four proxies for each iteration of evolve. The worst case overhead for this benchmark
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#lang typed/racket

(require (prefix-in C. "command.rkt"))

(: eval (Input-Port -> Env))
(define (eval input)
  (for/fold ([env  : C.Env  (base-env)])
            ([line : String (in-lines input)])
    ;; Cycle through commands in `env` until
    ;;  `eval-line` gives a non-#f result
    (for/first ([c : (Instance C.Cmd%) (in-list env)])
      (send c eval-line env line))))

Figure 17: Accumulating proxies in forth.

#lang typed/racket

(define-type Posn ((U 'x 'y 'move) ->
                   (U (List 'x (-> Natural))
                      (List 'y (-> Natural))
                      (List 'move (-> Natural Natural Posn)))))

(: posn-move (Posn Natural Natural -> Posn))
(define (posn-move p x y)
  (define key 'move)
  (define r (p key))
  (if (eq? (first r) key)
    ((second r) x y)
    (error 'key-error)))

Figure 18: Adapted from the zombie benchmark.

is 235x on Racket v6.4. In forth, the loop functionally updates an environment env of
calculator command objects; its worst-case overhead is 27x on Racket v6.4.17

The zombie benchmark exhibits similar overhead due to higher-order functions. For
example, the Posn datatype in figure 18 is a higher-order function that responds to sym-
bols 'x, 'y, and 'move with a tagged method. Helper functions such as posn-move
manage tags on behalf of clients, but calling such functions across a type boundary leads
to layered proxies. This benchmark replays a sequence of a mere 100 commands yet reports
a worst-case overhead of 300x on Racket v6.4.

17 Modifying both functions to use an imperative message-passing style removes the performance
overhead, though it is a failure of gradual typing if programmers must resort to such refactorings.
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#lang typed/racket
(provide add-votes)

(define total-votes : Natural 0)

(: add-votes (Natural -> Void))
(define (add-votes n)
  (set! total-votes (+ total-votes n)))

Figure 19: Erasing types would compromise the invariant of total-votes.

8.5 Library Boundaries

Racket libraries are either typed or untyped; there is no middle ground, therefore one
class of library clients must communicate across a type boundary. For instance, the mbta
and zordoz benchmarks rely on untyped libraries and consequently have relatively high
typed/untyped ratios on Racket v6.2 (2.28x and 4.01x, respectively). In contrast, the lnm
benchmark relies on two typed libraries and thus runs significantly faster when fully typed.

9 The Future of Gradual Typing

Gradual typing emerged as a new research area ten years ago. Researchers began by asking
whether one could design a programming language with a sound type system that inte-
grated untyped components (Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006).
The initial series of papers on gradual typing provided theoretical models that served as
proofs of concept. Eight years ago, Tobin-Hochstadt and Felleisen (2008) introduced Typed
Racket, the first implementation of a gradual type system designed to accomodate existing,
dynamically-typed programs. At this point, the important research question changed to
whether the models of gradual typing could scale to express the grown idioms found in
dynamic languages. Others have since explored this and similar questions in languages
ranging from Smalltalk to JavaScript (Allende et al. 2013; Rastogi et al. 2015; Richards et
al. 2015; Vitousek et al. 2014).

From the beginning, researchers speculated that the cost of enforcing type soundness at
runtime would be high. Tobin-Hochstadt and Felleisen (2006) anticipated this cost and at-
tempted to reduce it by permitting only module-level type boundaries. Herman et al. (2010)
and Siek and Wadler (2010) developed calculi to remove the space-inefficiency apparent in
models of gradual typing. Industry labs instead built optionally typed languages18 19 20 21

that provide static checks but sacrifice type soundness. Programs written in such languages
run with zero overhead, but are suceptible to the hard-to-trace bugs and silent failures
explained in section 2.2.

18 http://www.typescriptlang.org/
19 http://hacklang.org/
20 http://flowtype.org/
21 http://mypy-lang.org/
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As implementations of gradual typing matured, programmers using them had mixed
experiences about the performance overhead of gradual typing. Some programmers did not
notice any significant overhead. Others experienced orders-of-magnitude slowdowns. The
burning question thus became how to systematically measure the performance overhead of
a gradual type system. This paper provides an answer:

1. To measure the performance of a gradual type system, fully annotate a suite of rep-
resentative benchmark programs and measure the running time of all typed/untyped
configurations according to a fixed granularity. In Typed Racket, the granularity
is by-module. In a micro-level gradual type system such as Reticulated Python,
experimenters may choose by-module, by-variable, or any granularity in between.

2. To express the absolute performance of the gradual type system, report the pro-
portion of configurations in each benchmark that are k-step D-deliverable using
overhead graphs. Ideally, many configurations should be 0-step 1.1-deliverable.

3. To express the relative performance of two implementations of a gradual type sys-
tem, plot two overhead graphs on the same axis and test whether the distance is sta-
tistically significant. Ideally, the curve for the improved system should demonstrate
a complete and significant “left shift.”

Applying the evaluation method to Typed Racket has confirmed that the method works
well to uncover performance issues in a gradual type system and to quantify improvements
between distinct implementations of the same gradual type system.

The results of the evaluation in section 5 suggest three vectors of future research for
gradual typing. The first vector is to evaluate other gradual type systems. The second is
to apply the sampling technique to large applications and to micro-level gradual typing.
The third is to build tools that help developers navigate a performance lattice, such as the
feature-specific profiler of St-Amour et al. (2015).

Typed Racket in particular must address the pathologies identified in section 8. Here
are a few suggestions. To reduce the cost of high-frequency checks, the runtime system
could cache the results of successful checks (Ren and Foster 2016) or implement a tracing
JIT compiler tailored to identify dynamic type assertions (Bauman et al. 2015). High-cost
types may be a symptom of inefficiencies in the translation from types to dynamic checks.
Recent calculi for space-efficient contracts (Greenberg 2015; Siek et al. 2015) may provide
insight for eliminating proxies. Lastly, there is a long history of related work on improving
the performance of dynamically typed languages (Consel 1988; Gallesio and Serrano 1995;
Henglein 1992; Jagannathan and Wright 1995).

Finally, researchers must ask whether the specific problems reported in this paper indi-
cate a fundamental limitation of gradual typing. The only way to know is through further
systematic evaluation of gradual type systems.
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10 Appendix

10.1 Anecdotal Evidence of Performance Costs

The following enumeration contains links to some of the anecdotes that triggered this
investigation into the performance of gradual typing. The online supplement to this paper
includes copies of the email threads and documents cited below.

re: Unsafe version of require/typed?. Neil Toronto. 2015-05-01
https://groups.google.com/d/msg/racket-users/oo_FQqGVdcI/p4-bqol5hV4J

re: Unsafe version of require/typed?. Michael Ballantyne. 2015-05-01
https://groups.google.com/d/msg/racket-users/oo_FQqGVdcI/leUnIAn7yqwJ

Rocking with Racket. Marc Burns. 2015-09-27
http://con.racket-lang.org/2015/burns.pdf

Typed/Untyped cost reduction and experience. John Griffin. 2015-12-26
https://groups.google.com/d/msg/racket-users/rfM6koVbOS8/klVzjKJ9BgAJ

warning on use trie functions in #lang racket?. John B. Clements. 2016-01-05
https://groups.google.com/d/msg/racket-users/WBPCsdae5fs/J7CIOeV-CQAJ

Generative Art in Racket. Rodrigo Setti. 2016-09-18
http://con.racket-lang.org/2016/setti.pdf
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10.2 The GTP Benchmarks, by Module

The following summaries describe the module-level structure of benchmarks in the GTP

suite. In particular, the summaries include:

‚ the name and size of each module;
‚ whether each module has an adaptor;
‚ the number of identifiers imported and exported by the module;
‚ and a graph of inter-module dependencies, with edges from each module to the

modules it imports from.

Modules are ordered alphabetically. Figure 3 uses this ordering on modules to represent
configurations as black and white rectangles. For example, the node in figure 3 in which
only the left-most segment is white represents the configuration where module data.rkt
is untyped and all other modules are typed. Similarly, figure 20 derives a natural number
for each configuration using the alphabetical order of module names. Configuration 4 in
figure 20 (binary: 0100) is the configuration where only main.rkt is typed.

sieve

0. main 1. streams

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 16 13 9 0
1 19 4 0 9

10

forth

0. command
1. eval

2. main
3. stack

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 132 14 7 2
1 79 4 9 1
2 9 3 1 0
3 35 9 0 14

3012
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fsm
0. automata
1. main

2. population
3. utilities

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 84 28 ✓ 0 20
1 24 10 17 0
2 46 12 13 4
3 28 6 0 6

0

3

21

fsmoo

0. automata
1. main

2. population
3. utilities

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 111 35 ✓ 0 5
1 18 11 4 0
2 42 28 8 1
3 23 9 0 6

0

3

21

mbta

0. main
1. run-t

2. t-graph
3. t-view

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 41 10 6 0
1 40 4 1 6
2 98 44 0 1
3 87 13 1 1

2310
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morsecode

0. levenshtein
1. main

2. morse-code-strings
3. morse-code-table

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 88 23 0 13
1 25 6 14 0
2 13 5 1 1
3 33 4 0 1

0

32

1

zombie

0. image
1. main

2. math
3. zombie

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 16 4 ✓ 0 7
1 38 9 3 0
2 12 6 0 5
3 236 8 12 3

0

2

31
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dungeon

0. cell
1. grid
2. main

3. message-queue

4. utils

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 114 14 2 38
1 61 12 19 10
2 318 31 34 0
3 9 4 0 2
4 24 5 0 5

3

4

012

zordoz

0. main
1. zo-find
2. zo-shell

3. zo-string

4. zo-transition

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 15 1 1 0
1 57 16 4 6
2 295 38 10 1
3 613 107 0 6
4 400 53 0 2

3

4

120
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lnm

0. bitstring
1. lnm-plot
2. main

3. modulegraph
4. spreadsheet
5. summary

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 36 7 0 12
1 153 41 17 1
2 22 13 15 0
3 142 32 ✓ 0 9
4 38 8 4 1
5 97 13 ✓ 13 26

0

3

4

5

12

suffixtree

0. data
1. label
2. lcs

3. main
4. structs
5. ukkonen

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 8 0 ✓ 0 108
1 119 40 27 66
2 110 11 66 3
3 13 2 3 0
4 101 40 49 20
5 186 36 59 7

014523
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kcfa

0. ai
1. benv
2. denotable
3. main

4. structs

5. time

6. ui

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 49 7 53 3
1 24 7 ✓ 21 56
2 38 10 ✓ 39 28
3 29 9 27 0
4 18 0 ✓ 0 126
5 20 6 ✓ 35 12
6 51 14 56 6

4152063
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snake

0. collide
1. const
2. cut-tail
3. data

4. handlers
5. main
6. motion
7. motion-help

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 20 9 21 2
1 17 0 16 15
2 8 1 16 1
3 12 8 ✓ 0 112
4 16 6 21 2
5 33 10 26 0
6 31 12 23 6
7 23 5 17 2

31

2

0

6

745
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take5

0. basics
1. card
2. card-pool
3. dealer

4. deck
5. main
6. player
7. stack

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 25 2 0 24
1 15 2 ✓ 0 35
2 32 3 15 1
3 101 11 19 1
4 71 4 20 1
5 33 0 3 0
6 27 7 7 4
7 23 -2 7 5

0

2

1

6

7

435
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acquire

0. admin
1. auxiliaries
2. basics
3. board
4. main

5. player

6. state

7. strategy

8. tree

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 262 26 96 4
1 35 4 0 15
2 214 46 3 162
3 433 68 ✓ 30 150
4 33 7 72 0
5 71 11 65 3
6 359 81 ✓ 60 170
7 86 16 94 2
8 161 45 ✓ 91 5

12367

8

054



ZU064-05-FPR paper 12 December 2016 17:20

How to Evaluate the Performance of Gradual Type Systems 43

tetris

0. aux
1. block
2. bset
3. consts
4. data

5. elim

6. main

7. tetras

8. world

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 22 3 28 6
1 20 7 22 8
2 59 29 29 64
3 7 3 0 12
4 14 6 ✓ 0 154
5 14 8 41 1
6 21 13 44 0
7 36 10 45 12
8 53 28 51 3

3

4

125

7

086
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synth

0. array-broadcast
1. array-struct
2. array-transform
3. array-utils
4. data

5. drum
6. main
7. mixer
8. sequencer
9. synth

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 102 7 39 6
1 214 9 25 84
2 65 17 42 2
3 132 11 0 45
4 12 0 ✓ 0 64
5 53 22 44 1
6 94 11 8 0
7 61 17 17 2
8 32 28 20 2
9 70 19 23 12

3

4

10

9

2

7

5

8

6
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gregor

0. clock
1. core-structs
2. date
3. datetime
4. difference
5. gregor-structs
6. hmsn

7. main

8. moment

9. moment-base

10. offset-resolvers

11. time

12. ymd

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 58 7 56 16
1 13 -1 ✓ 0 104
2 71 18 46 30
3 107 24 62 84
4 57 9 79 3
5 18 -1 ✓ 13 198
6 37 12 13 45
7 125 7 93 0
8 111 32 61 40
9 33 4 36 6
10 90 21 61 13
11 49 14 44 16
12 176 28 13 22

15

6

12

2

11

34

8

10907
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quadBG

0. hyphenate
1. main
2. measure
3. ocm
4. ocm-struct
5. penalty-struct
6. quad-main

7. quads
8. quick-sample
9. render

10. sugar-list
11. utils
12. world
13. wrap

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 5128 42 0 2
1 22 8 71 0
2 56 14 0 15
3 146 10 17 4
4 17 7 ✓ 0 34
5 6 0 ✓ 0 5
6 219 25 129 1
7 179 29 0 165
8 30 1 33 1
9 112 2 116 1
10 72 11 0 8
11 212 29 108 45
12 143 0 0 340
13 438 42 151 4

0

2

3

5

7

10

12

4

8

11

9

13

61
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quadMB

0. exceptions
1. hyphenate
2. main
3. measure
4. ocm
5. ocm-struct
6. patterns-hashed
7. penalty-struct

8. quad-main
9. quads

10. quick-sample
11. render
12. sugar-list
13. utils
14. world
15. wrap

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 3 1 0 1
1 187 45 2 2
2 20 10 71 0
3 55 13 0 15
4 130 14 17 4
5 17 7 ✓ 0 34
6 4941 1 0 1
7 5 2 ✓ 0 5
8 207 39 141 1
9 186 11 0 200
10 31 2 40 1
11 106 10 126 1
12 70 11 0 8
13 179 51 115 54
14 143 30 0 340
15 426 45 161 6

0

3

4

6

7

9

12

14

1

5

10

1311

15

82
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Figure 20: Exact running times in morsecode.

10.3 The Stability of Measurements

While the experimental setup runs each benchmark multiple times (section 5.1), the over-
head plots in section 5.2 use the mean of these running times. The implicit assumption
is that the mean of a configuration’s running times is an accurate representation of its
performance. Figures 20 and 21 qualify this assumption.

Figure 20 plots exact running times for all sixteen morsecode configurations. The data
for one configuration consists of three sequences of color-coded points; the data for version
6.2 are red triangles, the data for version 6.3 are green circles, and the data for version 6.4
are blue squares. Each sequence of running times is arranged left-to-right in the order the
experiment recorded them.

For all configurations, the data in each sequence is similar and there is no apparent
pattern between the left-to-right order of points and the running time they represent. This
suggests that the absolute running times for a given configuration in morsecode are
independent samples from a population with a stable mean.

Other benchmarks are too large to plot in this manner, but figure 21 plots their exact
typed/untyped ratios on a logarithmic scale. Similar to figure 20, the x-axis is segmented;
these segments represent the twenty benchmark programs. Within a segment, the color-
coded points give the exact typed/untyped ratio from one iteration of the experiment.
Finally, each series of points is surrounded by its 95% confidence interval.

Most sequences of points in figure 21 have similar y-values, and none of the sequences
evince a strong correlation between their left-to-right (chronological) order and y-value.
The notable exception is quad. Both quadBG and quadMB show larger variation between
measurements because these measurements were collected on 30 cores running in parallel
on the benchmarking machine. The bias is most likely due to contention over shared mem-
ory. Nevertheless, figure 21 provides some evidence that the average of a given sequence
of typed/untyped ratios is an accurate representation of the true typed/untyped ratio.
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Figure 21: typed/untyped ratios, on a logarithmic scale.

Benchmark v6.2 v6.3 v6.4 Benchmark v6.2 v6.3 v6.4

sieve 10 6 10 suffixtree 10 8 9
forth 7 8 9 kcfa 6 8 9
fsm 6 8 9 snake 6 8 8
fsmoo 6 6 11 take5 6 8 9
mbta 10 8 9 acquire 6 8 9
morsecode 10 9 9 tetris 6 8 9
zombie 10 8 9 synth 6 8 9
dungeon 10 10 10 gregor 3 3 7
zordoz 10 8 9 quadBG 10 30 10
lnm 10 8 9 quadMB 10 30 10

Figure 22: Samples per benchmark
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Benchmark # Mod. D = 1 D = 3 D = 5 D = 10 D = 20

sieve 2 0 0 0 0 0.5
forth 4 0 0 0 0 0
fsm 4 0 0 0 0 0
fsmoo 4 0 0 0 0 0
mbta 4 0 1 1 1 1
morsecode 4 0 1 1 1 1
zombie 4 0 0 0 0 0
dungeon 5 0 0 0 0.5 1
zordoz 5 0 1 1 1 1
lnm 6 0.17 1 1 1 1
suffixtree 6 0 0 0 0 0.17
kcfa 7 0 0.2 0.97 1 1
snake 8 0 0 0 0.08 0.5
take5 8 0 1 1 1 1
acquire 9 0 0.02 0.83 1 1
tetris 9 0 0 0 0.17 0.17
synth 10 0 0 0 0 0

Figure 23: Proportion of D-deliverable conversion paths.

10.4 Miscellaneous Figures

The table in figure 22 lists the number of samples per configuration aggregated in sec-
tion 5.2. For a fixed benchmark and fixed version of Racket, all configurations have an
equal number of samples.

The table in figure 23 answers the hypothetical question of whether there exists any per-
formant conversion paths through a performance lattice. More precisely, a D-deliverable
conversion path in a program of N modules is a sequence of N configurations c1 Ñ1 . . .Ñ1

cN such that for all i between 1 and N, configuration ci is D-deliverable. The table lists the
number of modules (N) rather than the number of paths (N!) to save space.

Figure 24 plots the average-case and worst-case overheads in the benchmark programs.
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Figure 24: Average and worst-case overhead


