
Oh Lord, Please Don’t Let Contracts Be Misunderstood
(Functional Pearl)

Christos Dimoulas, Max S. New, Robert Bruce Findler, Matthias Felleisen
PLT, USA

{chrdimo,maxsnew,robby,matthias}@racket-lang.org

Abstract
Contracts feel misunderstood, especially those with a higher-order
soul. While software engineers appreciate contracts as tools for ar-
ticulating the interface between components, functional program-
mers desperately search for their types and meaning, completely
forgetting about their pragmatics.

This gem presents a novel analysis of contract systems. Applied
to the higher-order kind, this analysis reveals their large and clearly
unappreciated software engineering potential. Three sample appli-
cations illustrate where this kind of exploration may lead.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Contracts, Specifications, Language design

1. Contracts, “always left out, never fit in”
Design by Contract [44] is a beautiful idea. Programmers articu-
late behavioral contracts and then the methods design themselves.
Implicitly, Meyer claims that this idea scales from small pieces of
code to large software systems.

Beugnard et al. [6] confirm this claim with their survey on
the lasting impact of contracts in their study of component-based
software, software adaptation, service oriented architectures, real-
time and high-performance computing. Contracts have also become
instrumental in the design of web-based systems to embedded
software. In these settings, contracts express and enforce a wide
range of component specifications; from basic null-pointer checks
to coordination protocols and quality of service statements. Sadly,
these achievements get only minimal support from mainstream
programming languages; most provide little more than constructs
for adding pre-conditions or post-conditions. To compensate for the
lack of support from these conventional contract systems, software
engineers employ a mixture of ad hoc solutions, invent contract
design patterns, and rely on half-baked IDE support.

The introduction of contracts into higher-order functional lan-
guages [22] offers a solution to these linguistic problems. In a
higher-order world, contracts naturally become first-class citi-
zens, too. As a result, functional programmers may use their pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright © ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

gramming language to not only express logical assertions about
their functions but also construct new forms of contracts with
user-defined combinators. Especially in the context of languages
that shout “domain specific languages” from every roof top—say
Racket—researchers and developers ought to be able to eliminate
the problems that plague sophisticated practical applications of
conventional contract systems. If they put their mind to it,1 they
could construct linguistic mechanisms that raised the level of ex-
pressiveness and allowed programmers to articulate an unprece-
dented detail of precision for a relatively low cost in terms of code.

This gem demonstrates how this alternative mind set about con-
tracts opens new possibilities. It starts with a novel conceptual
analysis of contracts, re-imagining them as an interlocking sys-
tem of interposition points, linguistic constructs for contract attach-
ment, and DSLs for assembling logical assertions from rather sim-
ple building blocks (section 2). This abstract analysis is illustrated
with three distinct examples of formulating contracts for libraries
and components (section 3). These examples seemingly expand the
convex hull of what behavioral software contracts can talk about,
though they really just demonstrate untapped potential. Equipped
with these examples, the gem finally (section 4) describes the re-
lationship between contracts and type systems, on one hand, and
run-time verification on the other. In short, the three of them form
a triangle of complementary techniques for helping programmers
with the difficult task of specifying interfaces.

Racket [27] is our language of choice to explain these ideas. It
advertises itself as a tool for making DSLs, and it has been used
extensively to study contracts. Specifically, Racket comes with a
triple of superlatives: our father’s parentheses, elegant weapons
for a more civilized way of delivering gems; the world’s most so-
phisticated higher-order contract system [27, §8], and the galaxy’s
best mechanism for formulating DSLs [27, §12]. None of the ideas
are Racket-specific, though, and with a sufficient amount of extra-
ordinary labor, Haskellians and Camelists can articulate the same
ideas in the context of their villages.

2. “You hold the answers deep within your mind”
Programming language research has struggled with the concept of
“meaning” for nearly five decades. Back in 1968, James Morris [47,
p. 9] re-phrased the philosopher C. W. Morris to define this key
concept via a trichotomy as follows:

1. Syntax delineates the legal forms, or utterances, of a
language.

1 After the introduction of higher-order contracts, many researchers—
including three of the authors—spent valuable time on exploring their se-
mantics and their shallow use in the context of gradual typing systems. The
title refers to vast number of these efforts.

2. Semantics treats with the relation between the forms, or
expressions, in the language and the objects they denote.

3. Pragmatics treats with the relation between a language
and its users (human or mechanical).

We argue that from a strictly operational point of view,
semantics are unnecessary. To specify a language, we need
only give its syntax and pragmatics.

Strangely enough, Morris then jumps to the conclusion that “[the]
pragmatics are most easily specified by how a machine ... will react
when presented with a legal form of the language,” completely
ignoring how a human relates to such legal forms.

Ever since, efforts to give meaning mostly fall into one of two
categories: denotational or operational. In the context of contracts,
the first draws inspiration from type theory and deals well with
type-like contracts [7, 23, 31]. The second category, due to Find-
ler and Felleisen [22], opts for an operational method that speci-
fies how checking contracts involves decomposing a contract into
its “atomic” constituents, which can be checked against flat val-
ues. Both approaches have significant limitations. The first fails
to describe the behavior of contract systems with sufficient pre-
cision [13] or to scale to dependent higher-order contracts [20, 23].
The second covers the entire range of contracts but obscures the
actual workings of the contract system to such an extent that pro-
grammers fail to perceive the full expressive power of contracts.

This section instead presents a conceptual analysis of contracts,
pulling together various strands of research on Racket’s contract
system. From this perspective, a contract system consists of three
parts: an interposition layer; a contract attachment mechanism; and
a suite of contract combinators. The first controls which aspects of
a program’s execution a contract system may monitor. The second
specifies the means for associating a contract with (the result of) an
expression and its context. The value of the expression is dubbed
the carrier of a contract, while the context defines the scope where
the contract is active. Finally, the third part constitutes the basis of
the DSL with which programmers describe interfaces as contracts.

2.1 The Interposition Layer
An interposition layer intercepts run-time events of interest and
relays them to a monitoring system. Information about the event
is typically reified as a program value. For instance, Racket’s in-
terposition layer may detect calls to first-class functions and send
a matching event to the contract system. The event identifies the
function, its arguments, and its results.

One way to implement interposition is to modify the compiler of
the underlying programming language. For example, Eiffel’s com-
piler [45] injects interposition-related snippets into the program as
it is translated. A compiler-based technique is highly inefficient in
a higher-order world, however. When contracts themselves, func-
tions, boxes or vectors are first-class values, interposition points
become evident only at run time. Hence, using a compiler-based
technique would require injecting interposition code for every pos-
sible function call, box access, vector mutation, and so on. In par-
ticular, it would not suffice to monitor just those pieces of code that
are relevant to the contracts actually in the program.

In a higher-order world, the run-time system of a programming
language can easily implement interposition via proxy values [57].
Such proxies wrap carriers of contracts and intercept events as
needed. For example, a proxy for a mutable box intercepts each
attempt to read or modify its content.

The most serious disadvantage of a dynamic interposition sys-
tem concerns performance. When layers of proxies wrap carriers,
the series of interceptions may impact performance in a signifi-
cant manner. Indeed, even a single wrapping may prevent compil-
ers from realizing certain optimizations. Furthermore, while proxy

values can implement interposition for an expressive set of con-
tracts, they are inadequate for others. Consider function contracts
that describe temporal protocols. Realizing such a contract relies on
detecting calls to captured functions during the extent of a call to a
closure. Such contracts require an interposition layer that intercepts
extensional events as well as intensional ones. Current approaches
to obtain these intensional events fall back on aspect-oriented pro-
gramming [51] or code re-writing techniques [35].

2.2 The Language of Contracts, the Single
Eiffel-inspired contract systems allow programmers to articulate
contracts with the constructs of the underlying programming lan-
guage. Indeed, in a simplistic contract system, contracts are merely
Boolean expressions over function (method) parameters, local vari-
ables (fields), and function results. Some contract systems inject @

and D quantifiers, though because their universes are finite, pro-
grammers consider them alternative names for definable functions.

At first glance, Racket’s contract system extends this vocabulary
with notations that mirror its nature as a higher-order functional
language. For example,

(-> natural-number/c prime?)

may specify a contract for a function that maps natural numbers
to prime numbers. Restricting the domain even further can be
accomplished with the and/c combinator:

(-> (and/c natural-number/c (between/c 0 10))
(listof prime?))

The range of this function contract says that a list of prime num-
bers is expected. A programmer can specify a dependency among
several parameters and the result with the ->i notation. Here is an
illustrative example:

(->i ([s string?]
[n (s)

(and/c natural-number/c
(between/c 0 (length s)))])

[result (s n) (string-ref s n)])

It describes a function of two arguments: a string, named s, and an
index into s, named n. The result is expected to be equal to the
nth character of s. The ->i notation demands that programmers ex-
plicitly state dependencies between parameter names and contracts,
which explains the (s) and (s n) annotations.

In addition, Racket’s contract system comes with notation for
its class system, though programs using object-oriented constructs
really just expand into the functional core language [26]. A contract
from the object-oriented Racket fragment may contain

(is-a?/c text%)

which represents the property that the expected value is an instance
of the built-in text-editor class, called text%. Thus,

(-> (list/c (is-a?/c text%) (is-a?/c frame%)) any)

specifies a function that expects one argument, namely, a two ele-
ment list. These elements are, respectively, instances of text% and
frame%; the latter is also a class from Racket’s GUI framework.

Appearances are deceiving, however. In Racket, contracts are
ordinary values, and programmers formulate ordinary expressions
to create them. Due to Racket’s liberal grammar for names, contract
expressions may use a mix of intuitively library functions and no-
tation, say -> and ->i. Naturally, these functions and abbreviations
employ the interposition layer to implement the functionality.

Because the status of contracts is neither special nor restricted, it
is thus perfectly fine to deal with contracts as if they were ordinary
elements of Racket. For example, these two definitions

(define text/c (is-a?/c text%))
(define frame/c (is-a?/c frame%))

name two of the contracts mentioned above. Using these names and
relying on ordinary evaluation means that

(-> text/c frame/c any)

creates a contract, namely the function contract from above. In the
same spirit, a Racket programmer may define additional functions
over contracts:

(define (maybe/c c)
(or/c #false c))

This maybe/c contract combinator consumes any contract c and
produces the contract (or/c #false c), that is, a contract that
checks whether a value is #false or satisfies the contract c. Here
is a slightly more complicated contract combinator:

(define (table/c dom/c rng/c)
(listof (list/c dom/c rng/c)))

It defines (table/c d r) as a contract for a list of lists of
two elements, where the first element satisfies the contract d and
the second one r. In particular, (table/c symbol? string?)
specifies a table mapping Racket’s symbols to Racket’s strings.

2.3 Contract Attachment Mechanisms
To put contracts to work, programmers need a way to attach con-
tracts to program components. An attachment accomplishes two
purposes. First, it informs the contract monitoring system which
contract to check for which values. Second, the attachment deter-
mines the scope of the contract, that is, the region of the program
text where contracted values interact with the rest of the program.

Eiffel provides a single way for contract attachment; it turns
instances of a class with contract annotations into carriers of the
contracts. Mechanically, programmers merely annotate a method
with Boolean expressions to state pre- and post-conditions. They
may also attach such an expression to the field of a class and
thus express a so-called class invariant. These annotations turn into
dynamic contract checks whenever the instance interacts with some
part of the program, including the class itself. In our terminology,
the scope of an Eiffel contract is the entire program.

In contrast, Racket emphasizes that the attachment of a contract
to a program component creates a contract boundary between the
inside of the component and the rest of the program [22]. The word
“boundary” is too coarse, however, and this section explains not
only Racket’s idea of contract attachment with two examples but
also explains how to apply the notion of scope to attached contracts.

Racket’s first construct for contract attachment links contracts
with the exports of Racket modules. Here is an illustrative snippet
from the implementation of DrRacket [21]:

(provide

(contract-out
[get-sorted-keybindings
(-> text/c frame/c (table/c symbol? string?))]

other-name))

The provide form of Racket specifies the bindings that a module
exports. If such a (set of) bindings is wrapped in contract-out,
the module attaches a contract to the exported binding. Expressed
in our terminology, the contract’s scope are all the clients of the
module but not the module itself.

The particular example associates get-sorted-keybindings
with a contract in its first provide clause. From the contract, a
reader can tell that the named value represents a two-argument

function. In the scope of this contract, a call to get-sorted-
keybindings must thus come with two arguments: an instance of
text% and a frame% object. Finally, the contract promises that get-
sorted-keybindings returns a symbol-to-string table. Outside the
scope of the contract for get-sorted-keybindings, a call does
not have to live up to these constraints. In particular, the exporting
module itself may call get-sorted-keybindings with different
kinds of arguments, and it may not receive a table in return.

Contract attachment and contract scopes interact in subtle ways.
For example, if the exporting module contains the definition

(define other-name
get-sorted-keybindings)

then the provide specification implies that a client module can call
get-sorted-keybindings in two different ways. By using get-
sorted-keybindings it ensures the enforcement of a contract;
by using other-name, it can circumvent the contract checks. Put
differently, a client in the scope of some contract can refer to the
same value in a contracted and in a direct manner, depending on
what binding it uses. Thus contract attachment does not really
attach a contract to a value but rather to a binding.

The second Racket construct for attaching contracts allows pro-
grammers to draw a contract boundary between a definition within
a module and the rest of the module [56]. Here is such a localized
variant of the preceding, module-level example:

(define/contract (get-sorted-keybindings txt frm)
(-> text/c frame/c (table/c symbol? string?))
#:freevar all-frames (listof frame/c)
(... txt ... all-frames ... frm ...))

The snippet defines get-sorted-keybindings along with its con-
tract. At a first approximation, define/contract turns the binding
introduced by a definition into a carrier of a contract. The scope of
the contract is the scope of the function name, excluding the body
of the definition. Since local definitions may refer to non-local vari-
ables, define/contract allows programmers to attach contracts to
those. The snippet showcases this idea with the #:freevar clause,
which says that get-sorted-keybindings refers to one non-local
variable, all-frames, and that it carries a (listof frame%) con-
tract within the function definition.

Both contract-out and define/contract harness Racket’s
static scope to control the scope of a contract. This selectivity, to-
gether with the explicit interposition layer and the large pool of
basic contract combinators, ensures that Racket’s contract system
comes with far more expressive power [18] than Eiffel’s, in partic-
ular, because all Eiffel contracts have global scope. The challenge
is to exploit this power effectively, and the key to solving this chal-
lenge is to view contract combinators as the basis of a DSL.

2.4 The Language of Contracts, the Complete LP
As many people have observed, a DSL is typically a veneer for an
API or, in the terminology of functional programming, a collection
of combinators. From the perspective of the preceding analysis,
contract combinators come with four key properties, which we need
to keep in mind as we construct a DSL on top of them:

1. A contract combinator declares interposition points of inter-
est. For example, the simplest Racket contract combinator is
flat-contract; it constructs a contract from a Racket predi-
cate.2 This combinator declares a single event of interest and its
corresponding interposition point: the attachment of its result-
contract. In contrast, the function contract combinator -> de-

2 In fact, Racket automatically coerces every predicate pred that shows up
in the place of a contract to (flat-contract pred).

clares three events of interest: the contract attachment, the ap-
plication of the contracted function, and the return event.

2. A contract combinator specifies which information the interpo-
sition layer should relay for events of interest. For instance, for
flat-contract the relevant information is the carrier of the
contract itself. For -> the relevant information consists not only
of the carrier but also of the arguments and result of each appli-
cation of the carrier in the scope of the contract.

3. A contract combinator provides hooks for programmers to spec-
ify the desired properties of values, expressed as predicates
or contracts. Thus, flat-contract expects a single predicate
that holds for the contract carrier, while -> expects one con-
tract per function argument plus its result(s). In addition to the
programmer-provided predicates and contracts, contract com-
binators often check other properties of contract carriers. For
instance, -> implicitly specifies the carrier’s arity.

4. A contract combinator establishes the scope of its sub-contracts.
For instance, -> says that while the scope of the argument
contracts is the body of the contracted function, the scope of
the result contract is that part of the program where the result is
bound to an identifier (if any). For ->i, though, the scope of its
argument contracts extends not only the body of the contracted
function but also to the code in the entire contract itself.

Indeed, the ->i contract presents a first interesting example of
a programmer-defined contract notation that exploits all elements
of our contract analysis. It declares interdependent interposition
points; it specifies scopes that include parts of the contract itself;
and it thus exceeds the power of ->. The ->i combinator merely
scratches the surface, however. The work on contract combinators
for security [35, 46] and temporal contracts [16, 51] realizes more
of the potential of these combinators, and it points the way to a gen-
eral solution. Linguistic architects need to combine higher-order
contract systems with DSLs and DSL-building tools so that pro-
grammers can easily express interfaces with the existing contract
system. The next section demonstrates how to develop useful con-
tract abstractions in this context so that programmers can write per-
formant and expressive component contracts.

Note on Blame A knowledgeable reader may wonder why our
analysis does not mention blame. In fact, blame naturally falls out
of our analysis. Each contract combinator separates the specified
properties for a contract carrier into those that are the responsibil-
ity of the contract carrier and those that are the responsibility of
its scope. Both have owners [13], and those become parties to the
contract via attachment. For the sub-contracts of a contract com-
binator, these parties switch or retain their role, depending on the
scope of each sub-contract of the combinator.

Consider the contract for get-sorted-keybindings. Its owner
is the module that attaches it to this function, and its scope is the
set of client modules. Since the scope of the sub-contracts for the
arguments is the body of the carrier, the roles of the parties are
reversed for these contracts—just as Findler and Felleisen [22] say.
In contrast, the roles remain intact for the result contract as its scope
matches the scope of the ->-defined contract.

In general, the two contract parties point to the pieces of a pro-
gram that “agreed” to a contract for a value via an attachment mech-
anism and not the piece of the program that happened to “detect”
the failed property. Thus contract scope provides a pragmatic start-
ing point for the debugging process when a contract is violated, as
the role of each party matches a static scope (region) of the pro-
gram. It is exactly this intuition that is behind the formalization of
“correct blame” assignment [14]. End

Note on Expressiveness Our analysis also provides a method
to evaluate the expressive power of contract systems. For example

a contract system is a complete monitor if its contracts can use
all the information from the interposition layer. Consider Racket’s
->d predecessor of ->i, whose scope does not include code in
the contract itself. Thus it cannot intercept calls to the function’s
functional arguments if they take place within the extent of the
contract. If ->d were the only dependent contract combinator, the
full contract system would not be a complete monitor [15]. End

3. “Don’t be afraid to try again”
When a contract system comes with a DSL-building framework,
programmers can create case-specific contract language with the
obvious benefits. Such a language provides both a case-specific
notation and pragmatics. This section demonstrates this idea with
three examples, starting from a simple functional library to replace-
ments for missing features and ending in a protocol language.

3.1 From Contracts to Spot Checkers
PLT Redex [19] is Racket’s domain-specific language for speci-
fying reduction semantics. It comes with a suite of tools, includ-
ing an automated property tester. Like all such tools, the property
tester uses a random number generator and a library for construct-
ing enumerations of terms. Critically, these enumerations must be
bijections so that the tester chooses small terms over large ones and
checks the property against a term at most once.

Racket’s enumeration library, data/enumerate, is built to pro-
vide utilities that make it easy to build elaborate enumerations and
to help programmers build bijective enumerations. For the first part,
data/enumerate supplies higher-order enumeration combinators.
For the second part, the library leverages Racket’s contract system
so that programmers can create monitors for the bijection property.3

The basis of data/enumerate are enumerations for Racket’s
basic built-in data-types. For example, string/e constructs an in-
finite enumeration of strings while char/e constructs a finite enu-
meration of characters.4 A programmer can query an enumeration
with from-nat to obtain a Racket value from a natural number:

> (from-nat string/e 106355035256866)
"Hi!"

The to-nat function performs the inverse operation of from-nat
and produces a natural number from a Racket value that belongs in
the range of an enumeration:

> (to-nat string/e "Hi!")
106355035256866

Since contracts are first-class values, data/enumerate equips
each enumeration with a contract that describes the enumeration’s
range, dubbed its enumeration contract. The enum-contract func-
tion extracts the enumeration contract from an enumeration:

> (enum-contract string/e)
#<procedure:string?>

The contract system uses the enumeration contract to monitor
whether from-nat returns and to-nat consumes values that be-
long in the range of the enumeration:

> (to-nat string/e (list 1 2 3))
to-nat: contract violation

expected: string?
given: '(1 2 3)
blaming: top-level

(assuming the contract is correct)

3 Bijectivity is undecidable for programmer-defined functions.
4 In Racket, an identifier with suffix /e stands for an enumeration.

Programmers construct use-specific enumerations from these
basic ones and the library’s combinators. Consider the construction
of an enumeration of the integers. Using the map/e combinator,
we start by constructing an enumeration of negative integers, that
is, an enumeration that maps each natural number to its inverse.
The map/e combinator consumes four arguments: an enumeration
e, a function f, its inverse f-inv and a contract c. With f, map/e
can translate every element of the range of e to an element of the
range of f; with f-inv, map/e can construct the injection from its
result back to the natural numbers. The contract c serves as the
enumeration contract for the result of map/e.5

Clearly, -6 is a suitable way to go back and forth between the
elements of natural/e enumeration and the negative integers. A
reasonable contract argument is (and/c integer? negative?),
which accepts all negative integers. Surprisingly, a call to map/e
with these arguments signals a contract violation with a 1% chance:

> (map/e - - natural/e
#:contract (and/c integer? negative?))

map/e: contract violation
expected: negative?
given: 0
blaming: top-level

(assuming the contract is correct)

While the range of the enumeration includes 0, the enumeration
contract excludes it.

To help programmers find such problems, data/enumerate
uses Racket’s contract system to add spot-checkers to its exports.
Specifically, the library checks whether (map/e e f f-inv c) is
a bijection. To this end, the contracts of the library include a way to
pick some random naturals below 10000 and check for each such
number x whether

(= (to-nat e (f-inv (f (from-nat e x)))) x)

holds. The contract of map/e stipulates that

f has to conform to (-> (enum-contract e) c), and
f-inv to (-> c (enum-contract e)).

Thus the contract of map/e also spot-checks whether f and f-inv
are suitable for translating the range of e to the subset of values that
satisfy c. The latter is exactly the piece of the contract of map/e that
fails in the example. The contract discovers that applying f to 0, an
element of natural/e, returns 0, which is not a negative integer.
We thus relax the enumeration contract to map/e as follows:

(define non-positive-integer/e
(map/e - - natural/e

#:contract (and/c integer? (not/c positive?))))

The desired enumerations of the integers is just the union of
non-positive-integer/e and natural/e. The or/e combinator
constructs these unions, alas, its use here also uncovers another
contract violation:

> (or/e natural/e non-positive-integer/e)
or/e: contract violation;

new enumeration would not be two-way
arg 1: #ăinfinite-enum: 0 1 2 3 4 5 6 7 8 9 10...ą
arg 2: #ăinfinite-enum: 0 -1 -2 -3 -4 -5 -6 -7...ą

blaming: top-level
(assuming the contract is correct)

5 It is intractable to derive such a contract from f automatically.
6 In Racket, the subtraction function - is a variable arity number function.
When it consumes a single number, it returns the negation of the argument.

This time the or/e contract is violated, and the discovery is due to a
spot-checker in data/enumerate that determines whether the argu-
ments of or/e are suitable for jointly creating a bijection. Specifi-
cally it spot-checks whether the ranges of the arguments overlap by
picking some random naturals below 10000 and subjecting them
to the contracts of the two enumerations in an appropriate manner.
Here, non-positive-integer/e maps 0 to 0, which also satisfies
the enumeration contract of natural/e.

Fortunately, data/enumerate comes with yet another enumera-
tion combinator that deals with just this issue. The except/e com-
binator consumes an enumeration e together with a value v and
then removes v from the range of e:

> (or/e
natural/e
(except/e non-positive-integer/e 0))

#<infinite-enum: 0 -1 1 -2 2 -3 3 -4 4...>

The implementation of the spot-checkers is straightforward.
Roughly, a spot checker expands into an additional pre-condition
for the contracts of basic enumeration combinators. The contracts
of higher-order enumeration combinators derive their enumeration
contracts and spot checkers from those of their constituents.

In sum, the construction of data/enumerate demonstrates the
expressive powers of supplying contracts and contract combinators
as first-class values. Specifically the construction and the use of
the library greatly benefit from the ability to attach contracts to
values, extract them, combine them with others, and derive spot-
checkers from them as pre-conditions for other contracts. With this
combinator-based language of contracts, the enumeration combina-
tors can propagate properties from their arguments to their results,
including the contracts on these values. Using this propagated in-
formation, the library can derive spot checkers and thus assist its
users. Even though these guarantees are partial, they have been ex-
tremely useful for the developers and maintainers of Redex who
use data/enumerate extensively and in sophisticated ways.

3.2 From Contracts to Specialization Interfaces
DrRacket is Racket’s IDE [21]. Its implementation exposes many
extension points in a rich hierarchy of classes. Developers can
hook into these points to customize and extend the IDE’s func-
tionality. As for many extensible applications, this increased ex-
tensibility comes with a steep price. Due to Racket’s class system,
the DrRacket framework publicizes method names for two distinct
purposes: as part of the instance interface and as part of the sub-
classing interface. Many of the latter must not be called directly
from instances because this may break critical invariants concern-
ing the internal state of the IDE. Concisely put, Racket’s class sys-
tem lacks Lamping [38]’s specialization interfaces.

Note on Class Syntax While most of Racket’s notation for
object-oriented programming with classes is irrelevant here, the
reader needs to know that

• by convention, the names of classes end in %;
• (new a%) creates an instance of class a%; and
• (send t m a) invokes method m on object t and argument a.

All other notation is explained where needed. End
Here we demonstrate how Racket’s contract system can over-

come this weakness in Racket’s class system. To make the idea
concrete, we use the simplest extension of DrRacket—the addition
or modification of key bindings—as a concrete example. Like most
editors, the IDE supports a programmatic interface for associating
a sequence of keystrokes with a keybinding handler and registering
this combination. A keybinding handler is an arbitrary function that
consumes two objects: one that represents the keyboard event and
another that is DrRacket’s editor, an instance of text%.

The text% class comes with public methods for accessing and
modifying the contents of DrRacket’s definition window. Two of
these methods are paste and do-paste. Keybinding handlers can
invoke the first one to paste the contents of DrRacket’s clipboard
into the definitions window. Internally, paste delegates to do-
paste, which is only public so that subclasses of text% can over-
ride it. Put differently, keybinding handlers should not invoke it
directly. The documentation of do-paste explicitly states

[do] not call this method directly; instead, call paste.
As mentioned though, this restriction is not enforced.

One way to enforce the restriction is to introduce a contract that
explicitly allows paste to enable calls to do-paste in its dynamic
extent and to prohibit all other calls to the latter function. In other
words, contracts are used to articulate simplistic specialization in-
terfaces that hide one method behind another. The general macro-
defined form has this shape:

(hidden-method/c [method:id hidden:id] ...)

The form creates a new class contract where each pair of identifiers
specifies that the first one is freely accessible and that the second
one may be called only within the dynamic extent of the former.

For our running example, the implementor of DrRacket would
use this new form as follows:

(define text%/c
(hidden-method/c [paste do-paste]))

The newly defined contract, text%/c, can now be used to impose
the non-calling restriction on text% itself:

(define/contract text+c% text%/c text%)

With text%/c it becomes impossible to invoke do-paste di-
rectly, while it is still possible to override the method in a subclass
of text+c%. Consider this specific sample subclass:

(define mytext%
(class text+c%
(super-new)
(define/override (do-paste start time)

(displayln "pasting...")
(super do-paste start time))))

The overriden do-paste displays a message and then delegates to
the do-paste of the superclass text+c%. A client can create an
instance t of mytext% and may legally invoke the paste method,
which in turns invokes the new do-paste and thus the original
do-paste of text%:

> (define t (new mytext%))

> (send t paste)
pasting...

Invoking do-paste directly on t, however, signals a violation:

> (send t do-paste 0 0)
pasting...
do-paste: contract violation;

`do-paste' should be called only
in the dynamic extent of `paste'

blaming: top-level
(assuming the contract is correct)

As the error message says, the invocation of do-paste of the
superclass text% occurred in an inappropriate context.

Let us finally turn to hidden-method/c and its implementation.
The key is to recognize whether an invocation of the hidden method
takes place in the dynamic extent of method proper. To this end,
hidden-method/c makes use of Racket’s so-called parameters.7

A parameter is created and initialized with make-parameter:

(define p (make-parameter 42))

In the scope of p, (p) retrieves the current value of the parameter
and parameterize temporarily sets it. Here is a toy example:

> (p)
42
> (define f

(parameterize ([p 24])
(displayln (p))
(lambda () (displayln (p)))))

24

> (f)
42

The first sample interaction shows how (p) retrieves 42, the pa-
rameter’s current value. The second defines a thunk but uses
parameterize to temporarily set the value of p to 24 during the
thunk’s creation. In the process, the displayln expression prints
the modified value of p. Finally, the call to f is no longer in the
dynamic extent of the temporary modification of p, meaning its
displayln expression prints the original value.

Given this context, implementing hidden-method/c is rela-
tively straightforward. First, hidden-method/c creates a translu-
cent class contract [55].8 For each pair of identifiers, it introduces
a pair of method contracts into the class contract. In addition, it
creates a shared but hidden parameter with initial value #f. The
parameter is set to #t for the dynamic extent of an invocation of
the method proper. The contract for the hidden method checks the
value of the parameter and expects it to be #t.

For the running example, hidden-method/c creates one such
contract for paste and another one for do-paste. Let us call the
hidden parameter paste-para. The contract for paste temporarily
sets the value of paste-para to #t for the dynamic extent of the
body of paste. The contract for do-paste checks the value of the
parameter and signals a contract violation unless its value is #t.

In conclusion, this second example shows how first-class con-
tracts allow the addition of a missing linguistic feature. While
hidden-contract/c is a single construct and rather simple to
boot, its implementation subtly combines contract combinators
with stateful programming. Since the state is hidden and even
thread-safe, the new contract successfully replaces a feature that
was missing from Racket’s class system. Best of all, its addition to
the full-fledged language formally guarantees heretofore informal
statements in the documentation.

3.3 From Contract to Protocols
Many card games specify a protocol to coordinate the (inter)actions
of players. Consider the “Take 5” game and its protocol:

1. The game is played in rounds, each round consists of turns.

2. At the beginning of each round, the dealer hands each player
ten cards and creates four stacks with one card each, face up.

3. At the beginning of each turn, every player picks a card.

7 Parameters correspond to fluid thread-preserved cells [28, 32, 33].
8 Translucency means that the class contract checks calls to exactly those
methods mentioned in the contract and leaves all other method calls alone.

dealer player1 playerNplayer2 ...

start-round(d)

start-round(d)

start-round(d)

start-turn

start-turn

start-turn

choose

choose

start-turn

start-turn

start-turn

choose

choose

Repeat box |d| times

Figure 1. An interaction diagram for the “Take 5” protocol.

(define protocol-α
(protocol

(init-state start-round)
(transitions

([---> (start-round cards) start-turn])
([---> (start-turn deck)
(_ start-round start-turn choose)])

([---> (choose deck)
(_ start-round start-turn)]))))

Figure 2. The protocol-α implementation.

4. Then the dealer places the chosen cards on the stacks according
to some rules. This process may involve one of two kinds of
interactions with a player:

• The dealer may hand a player a complete stack.
• The dealer may ask a player to pick up a stack.

The dealer starts a new stack with that player’s chosen card.

The number of turns per round per player is the same as the num-
ber of cards the dealer hands to each player at the beginning of the
round. After a round completes, the dealer calculates a score for
each player and, if a player’s score exceeds a predetermined thresh-
old, the game is over. Otherwise the players play another complete
round of the game. Figure 1 summarizes the verbal description as
an interaction diagram.

Now consider an implementation where different teams supply
dealers and players. Clearly, such an arrangement calls for a strict
enforcement of the protocol. Before a protocol can be enforced,
however, someone must articulate it in such a way that everyone
can see how it corresponds to the game instructions.

Here we show how programmers can use Racket’s contract sys-
tem to create a DSL for articulating and enforcing protocols. A
natural implementation of the game represents dealers and players
as objects, which implies that protocols are best implemented via

some of form of stateful object contract [55]. It is equally unnatu-
ral, however, to formulate coordination protocols such as those in
figure 1 as plain contracts, which is why we create a DSL.

Figure 1 also suggests that, unlike the hidden-method/c con-
tract, a protocol requires a complex vocabulary. Even a simple
game such as “Take 5” calls for a vocabulary of current state, state
transitions, local and global knowledge, repetitions, and so on. To
explain this protocol here, we introduce the protocol DSL in three
steps, somewhat mirroring the development process.

The first step focuses on the relative ordering of method
calls. All we need to know for this step is that the player%
class exposes the three methods mentioned in the interaction di-
agram: start-round, start-turn, and choose. With this in
mind, the first formulation of the protocol says that a sequence
of method invocations on a player% object starts with first a
call to start-round followed by a call to start-turn. After the
start-turn call, a player% can optionally accept a call to choose,
another call to start-turn, or a call to start-round, which kicks
off a new round.

One natural choice is to express thus protocol as a non-
deterministic finite state machine (FSM). The specification of such
an FSM needs at least three elements: the states, the transitions
among states, and the initial state(s). Since programmers prefer to
avoid trivial redundancy, a simple FSM notation typically specifies
states implicit, as part of the transition relation.

Modulo some details, this reasoning suggests the following kind
of shape:

(protocol
(init-state s0)
(transitions [--> sf {st ‘ (_ st0 st1 ...)}]

...))

This protocol specification consists of two parts: a description of
the possible transitions among the various states of the game and a
declaration of what the starting state is. A transition clause has one
of two shapes:

• [--> sf st] meaning when the machine is in state sf , it may
transition to st and no other state; or

• [--> sf (_ st0 st1 ...)] meaning when the machine is in
state sf , it may transition to st0 or to st1 and so on.

The second kind of transition clause introduces the desired non-
determinism.

When Racket expands this specification into an object contract,
it maps each state to the name of a method. If such a method
mentioned is invoked, it checks whether it is a legitimate successor
to the current state and, if so, records its name as the current state.
For reasons explained below, the form actually translates into a 0-
ary function that returns a new instance of an object contract.

Figure 2 illustrates the use of protocol with the specification
of the expected method call sequence for the “Take 5” game. For
instance, the protocol allows this transition:

[---> (start-round cards) start-turn]

which states that if the current state of the machine is start-round,
the player object may accept a call to start-turn. Similarly,

[---> (start-turn deck)
(_ start-round start-turn choose)]

says that if the current state is start-turn, the player object may
accept a call to start-turn or choose.

The syntax of figure 2 is the actual implemented syntax, which
slightly differs from the proposed simple notation above.9 Since
each state corresponds to a method, the transitions also describe
the signatures of these method. Here (start-round cards) states
that method start-round consumes a single argument cards. Fur-
thermore, each transition is wrapped in another pair of parentheses
because transitions may also depend on conditions.

With protocol-α in place, a programmer could now instantiate
player% and attach fresh object contracts to the objects:

(define/contract p1 (protocol-α) (new player%))

(define/contract p2 (protocol-α) (new player%))

Using these two objects, it is possible to simulate parts of the inter-
action between players and dealers. In particular, a programmer can
determine whether a player recognizes out-of-order method calls.
For example, if a dealer calls choose twice in a row after launching
a round and a turn, the contract detects the protocol violation and
signals it like this:

> (send p1 choose choice-deck)
choose: contract violation;

expected the machine to be at state choose,
however the current state is start-round or start-turn

blaming: top-level
(assuming the contract is correct)

The error message includes details about the current and the ex-
pected states, which point the programmer to an appropriate start-
ing point for the debugging phase.

As the name indicates, the protocol specification of figure 2
is only an alpha version of the protocol from figure 1. The lat-
ter prescribes transitions that do not only depend on the possible
current states of the protocol’s machine but also on other parts of
the game’s state. For example, a player%’s start-turn method
should be called only as many times as the number of cards handed
over with the preceding call to start-round.

Hence the goal of the second step is to enable protocol to
articulate and enforce such conditions. To this end, protocol
allows the declaration of machine-local registers. Specifically, a
define-local-registers clause defines and initializes variables
whose scope is the transition table of the protocol specification.
Furthermore, each transition may then check conditions involving
these registers or conditionally update them. In particular, #:if e
evaluates the expression e and allows a transition to proceed only
if the result is #t; #:update [c r e] evaluates c and, if this
produces #t, stores the value of expression e in register r.

Figure 3 shows how to formulate the beta version of the “Take
5” protocol. It declares one local register: turns-left. Two of the
three transition clauses rely on this register:

• A start-round invocation is valid if the value of turns-left
is 0. A transition starting in start-round also sets the register
to the length of cards.

• A start-turn invocation checks whether turns-left is posi-
tive. If so, it decreases turns-left by 1, which expresses that
a start-turn method call is valid only if a player% object has
received fewer start-turn calls than the length of cards for the
most recent start-round call.

Let’s put protocol-β to work:

(define/contract p1 (protocol-β) (new player%))

9 The source for our paper uses the Scribble documentation language [25],
which executes the code snippets when it builds the PDF.

(define protocol-β
(protocol

(define-local-registers [turns-left 0])
(init-state start-round)
(transitions
([---> (start-round cards) start-turn]
#:if (= turns-left 0)
#:update [#t turns-left (length cards)])
([---> (start-turn deck)
(_ start-round start-turn choose)]
#:if (> turns-left 0)
#:update [#t turns-left (- turns-left 1)])
([---> (choose deck)
(_ start-round start-turn)]))))

Figure 3. The protocol-β implementation.

(define/contract p2 (protocol-β) (new player%))

Assuming that the dealer passes two cards to each player at the
start of the round, a simulation of the dealer’s interaction with the
players fails when the dealer invokes start-turn a third time on
p1. The contract signals the failure of the protocol in this way:

> (send p1 start-turn turn-deck)
start-turn: contract violation;

condition (ą turns-left 0) is not true
blaming: top-level

(assuming the contract is correct)

Note how the message explains that the pre-condition of a transition
starting in start-turn does not hold.

Turning the beta version of the protocol into the final one, re-
quires another extension of the protocol DSL. Many game (and
other kinds of) protocols demand coordination among all of the
participants. For instance, the “Take 5” protocol in figure 1 speci-
fies that the player act according to some fixed ordering. To support
this kind of coordination, this third step in the development of the
protocol DSL introduces registers that are global to a collection
of state machines. Technically, protocol allows the declaration of
global registers. As the name implies, these registers are visible to
all instances of the protocol contract. Once these instances are at-
tached to player% objects, their transitions can inspect the global
registers to validate method calls. They can also update these reg-
isters to reflect valid transitions.

Using global protocols, a programmer can now articulate the
remaining four constraints of the “Take 5” protocol:

1. the dealer asks all players to play their turns;

2. each player can play exactly once per turn;

3. the dealer may invoke choose after all players have taken a turn;

4. the dealer may ask as many players to chose as prescribed by
the rules of the game.

Figure 4 depicts the complete protocol for “Take 5,” called
game-protocol. It is relatively straightforward to transform the
above constraints into Racket code, with the exception of constraint
no. 2. The latter uses both a global and a local register:

• player-id, which holds a unique token per player per round;
• played-this-turn, which holds an initially empty list of to-

kens of those players that have played so far in a turn.

(define game-protocol
(protocol
(define-global-registers

[players 2]
[plays-so-far 0]
[max-choices 1]
[choices-so-far 0]
[played-this-turn '()])

(define-local-registers [turns-left 0]
[player-id 'unknown])

(init-state start-round)
(transitions

([---> (start-round cards) start-turn]
#:if (= turns-left 0)
#:update
[#t turns-left (length cards)]
[#t player-id (gensym 'player)])

([---> (start-turn deck) (_ start-round start-turn choose)]
#:if (and (or (= plays-so-far players) (not (member player-id played-this-turn)))

(> turns-left 0))
#:update

[(= plays-so-far players) played-this-turn '()]
[(= plays-so-far players) plays-so-far 0]
[(> choices-so-far 0) choices-so-far 0]
[#t turns-left (- turns-left 1)]
[#t plays-so-far (+ plays-so-far 1)]
[#t played-this-turn (cons player-id played-this-turn)])

([---> (choose deck) (_ start-round start-turn)]
#:if (and (< choices-so-far max-choices) (= plays-so-far players))
#:update [#t choices-so-far (+ choices-so-far 1)]))))

Figure 4. The final protocol contract for “Take 5”.

A call to start-turn checks whether the player is the first to be
called for a new turn or whether the token of this player is (not)
included in the list of players that have already taken their turn this
time around.

In addition to checking these conditions, a call to start-turn
also updates several global registers. If the call concerns a new
turn, it sets played-this-turn to the empty list. Finally, a valid
start-turn call always causes the addition of the token of this
player to played-this-turn, noting that the player has chosen a
card for this turn.

To demonstrate the enforcement of game-protocol, we again
create two player%s and attach a fresh instance of the protocol to
each new player:

(define/contract p1 (game-protocol)
(new player%))

(define/contract p2 (game-protocol)
(new player%))

Here is the interaction that causes a protocol violation:

> (send p1 start-turn turn-deck)
start-turn: contract violation;
condition (and (or (= plays-so-far players... is not true

blaming: top-level
(assuming the contract is correct)

As the (abbreviated) error message says, the method call is a re-
quest by the dealer to pick a second card for the current turn. Tech-
nically, the violation explains that the player’s id is already a mem-
ber of played-this-turn.

In perspective, the development of protocol shows how con-
tracts can express rather complex coordination constraints for APIs
and even families of APIs. The key is to develop linguistic abstrac-
tions that hide the complex uses of contracts that use local as well
as global state variables. Since Racket’s interposition layer is im-
plemented via a run-time construct, the implementation of protocol
does not need to rewrite third-party code to monitor all possible se-
quences of method calls. The contract attachment guarantees that
even callbacks from such code are monitored. We conjecture that
implementing protocol in Eiffel is impossible because contracts
in that language are not first-class objects in their own right and
cannot be attached to objects retro-actively.

Coordination restrictions have also been studied extensively
in the context of type-state systems [54] and session type sys-
tems [36]. In comparison, contracts significantly boost the ex-
pressiveness of enforceable coordination protocols. Contracts can
express and enforce protocols that depend on values such as the
dependence of the “Take 5” protocol on the argument of the
start-round method.

3.3.1 Implementing Protocol
The implementation of protocol leverages the standard function
contract (->i) and object contract combinators via Racket’s syntax
system to synthesize the desired contract-generating function. In

#lang racket

(provide protocol _) ; definition of _ omitted

(define-syntax (protocol stx)
(syntax-parse stx

#:literals (define-global-registers define-local-registers init-state transitions -->)
[(_ (define-global-registers global:binding ...) ; ... denotes Kleene-star repetition of pattern

(define-local-registers local:binding ...)
(init-state init:id)
(transitions ([---> (calling:id param:id ...) next:id] side ...) ...))

; ---> (expands to)
#'(let ()

(define global.name global.val) ...
(λ ()

(define current '(init))
(define local.name local.val) ...
(object/c [calling (transition current calling next (param ...) side ...)] ...)))]))

(define-syntax (transition stx)
(syntax-parse stx
[(_ current calling next (param ...) #:if test:expr #:update u:test+binding ...)
; ---> (expands to)
#'(->i ([this any/c] [param any/c] ...)

#:pre/name "now-called" (param ...) (member? 'calling current)
#:pre/name "condition" (param ...) test
#:pre/name "next state" (param ...) (set! current (maybe-id->list next))
#:pre/name "updates" (param ...) (and (when u.test (set! u.name u.val)) ...)
any/c)]))

Figure 5. The implementation of protocol.

a nutshell, the goal is to translate a protocol specification of the
shape

(protocol
(define-global-registers

[global-register-1 global-value-1]
...
[global-register-1 global-value-1])

(define-local-registers
[local-register-1 local-value-1]
...
[local-register-1 local-value-1])

(init-state s0)
(transitions t ...))

into an expression that creates a 0-ary function that manages the
local and global registers:

(let ()
(define global-register-1 global-value-1)
...
(define global-register-n global-value-n)
(λ ()

(define current (list 's0))
(define local-register-1 local-value-1)
...
(define local-register-k local-value-k)
(object/c ... (compiled t) ...)))

When it is evaluated, this expression creates a closure whose envi-
ronment contains the global registers and their values. Every time

this closure is invoked, it sets up a hidden variable for the current
state and the local registers; the closure’s result is an object contract
that enforces the legality of method calls as specified in t.

Using Culpepper’s syntax-parse system [11, 12], it is surpris-
ingly simple to specify this embedded language. The first syntax
definition in figure 5 specifies the most complex case of the syn-
tax transformation. Technically, the define-syntax form defines
a syntax transformer in the current scope, that is, it extends the
Racket compiler so that it can handle instances of the protocol
form. If the current scope is a module, the creator of the module
can make this new syntax available to client modules via a provide
provision—almost like ordinary bindings, except that the Racket
compiler knows to use syntax transformers at compile time.

Here the syntax definition employs syntax-parse to specify
how the Racket compiler should parse and analyze the form and, if
successful, what kind of Racket code it should generate. Not count-
ing the #:literals declaration, the syntax-parse form consists
of a series of clauses, which, in turn, consist of two parts: a pars-
ing pattern, which describes what the new syntax looks like, and a
template, which describes what the generated code looks like. For
readability, figure 5 separates the two with a comment.

Essentially syntax-parse pattern-matches the given syntax ar-
gument (stx) of protocol against the patterns in its clauses. If a
match is found, the Racket compiler creates a substitution envi-
ronment from the pattern variables, which are all those identifiers
in a template that are not declared literals. Unless an analysis is
required, the Racket compiler finally uses the substitution environ-
ment to fill the template, that is, to replace the pattern variables in
the code-quoted template (#'template) with their current values.

A context-free syntax analysis is implemented via syntax class
annotations on pattern variables. For example, the pattern vari-
ables following the literal define-global-registers have the
suffix :binding. Roughly speaking, a syntax annotation triggers
a context-free analysis of the matched expression. Here is the dec-
laration for binding:

(define-syntax-class binding
#:description "binding"
(pattern [name:id val:expr]))

It says a binding must consist of a parenthesized pair: name and
val. Both are annotated with built-in syntax classes; hence name
must be an identifier and val must be an expression. Syntax classes
may perform arbitrarily complex analysis computations. More im-
portantly, though, they also deconstruct a pattern variable into its
constituents. For binding, these are the name and the val parts.

If an annotated pattern in a template comes with a . suffix, it
extracts a piece selected by the syntax class. Hence, global.name
extracts the name part of the syntax bound to the global pattern
variable while global.val extracts the val part.

At this point, only one aspect of the protocol implementation
requires an explanation. The last line of the pattern specifies the
syntax of the transition function, which consists of a sequence of
transition rules. Each rule must have the form

([---> (calling:id param:id ...) next] side ...)

where calling is the name of a state/method, (calling param
...) is a method header for this method, and next specifies which
methods are legally called next. Finally, side ... represents the
sequence of side-condition and actions, whose shape is not inter-
esting yet.

The last line in protocol’s template synthesizes (the code for)
an object contract. For each transition rule, the contract comes
with a clause that specifies a method. The name of the method
is calling. To generate the contracts for these methods, the
protocol syntax transformer delegates to another syntax trans-
former, transition.

Now consider the second syntax definition in figure 5. It speci-
fies that a transition rule of this shape

(transition
current-states
calling-state
next-state
(para-1 ... para-n)
side-condition-1 ... side-condition-k)

is translated into the following contract:

(->i ([this any/c]
[param-1 any/c]
...
[param-n any/c])
#:pre/name "description 1" (param ...)
(compiled side-condition-1 ... states ...)

...
#:pre/name "description k" (param ...)

(compiled side-condition-k ... states ...)
any/c)

This method contract allows any value for the n parameters and also
attaches an any/c contract to this. Following the method header,
the contract adds k preconditions. We use #:pre/name to make the
contract readable for our readers; the actual code uses variants that
synthesize informative error message.

Note how the pattern of transition deconstructs the side
pattern variables from protocol.

Finally, let us sketch how sides from transition rules turn into
the expected preconditions in the method contract. Consider the
"now-called" clause. It says that the condition may depend on all
of the methods parameters (but actually does not); the actual code
merely checks whether the name of the method that is to be called,
'calling, is a member of the list of methods that can legally be
called. Similarly, an #:update clause translates into a conditional
assignment statement in the "updates" precondition. The u pattern
variable consists of three parts: u.test, which is the condition for
the update; u.name, which is the register to be updated; and u.val,
which is the expression that computes the new value.

The expressions in side may use locally defined names, e.g.,
maybe-id->list in the "next state" clause, and they may use
names defined in the client modules, e.g., player-id in next.
Racket’s syntax system keeps track of these relationships and guar-
antees proper name resolutions.

In short, protocols look like a generalization of regular object
and method contracts. And Racket’s syntax system enables pro-
grammers to directly implement protocol as extensions of the con-
tract system. At the same time, the DSL provides a linguistic ab-
straction for clients and a single point of control for implementers.

4. “I am special, so special”
Contracts occupy a unique position when it comes to formulating
and enforcing program properties. As such, they naturally relate
to types and run-time verification tools. Both of those attract a lot
of attention from researchers and practitioners and, in contrast to
contract systems, they have seen many different incarnations in
practical tools and languages. Using the ontology of section 2, this
section argues that the three approaches are not competitors but
complements of each other. In other words, contracts truly differ
from both type systems and run-time verification tools, and like
those they come with their own strengths and weaknesses.

4.1 Contracts and Types
For any particular (combination of) contract(s), a hard-working
researcher can design a structural type system for verifying the
same logical properties statically. We doubt, however, that there
exists a single, easy-to-use type system that can emulate all such
uses of contracts. The attempts [24, 31] to create such a type system
offers some evidence for our doubts.

One reason for our conjecture is that contract DSLs compose
more easily than type systems. Both enforcing and verifying pro-
gram properties requires the propagation of information across a
(running) program, even when the property concerns the behavior
of a single interaction. With type systems this means that type in-
formation must be passed around in the form of typing and effect
tags throughout a typing derivation. In contrast, contracts use the
normal flow of values in a program to disseminate such informa-
tion. The result is that different type system features require at least
a Cartesian product of complexity when combined, whereas differ-
ent combinations of contracts (DSLs) are (mostly) orthogonal.

Furthermore, there is an inherent, wide gap between the reason-
ing needed to use a particular static type system and the reasoning
needed to understand a program’s execution. Ideally a programmer
thinks logically about code, and a good type system should serve to
render the operational behavior accessible. But, while programmers
must understand the operational behavior code in order to write any
programs at all, they do not need to understand any particular type
system to do so. Thus, because contracts can be understood in a
solely operational manner, they present a lower barrier to entry for
a programmer than a type system.

Another way to understand the difference is to start from the
type-theoretic view of types as propositions. Concretely, type the-
ory views a type as a proposition about the code. The type checker

constructs a proof that the proposition holds. As long as the types of
the contextual connections are satisfied, the expression satisfies the
property that the type describes—regardless of the concrete nature
of the context.

In comparison, the contract specifies a logical assertion that
governs an expression and the use context of its value. The ques-
tion of whether a expression satisfies its contract alone, does not
denote; contract satisfaction is a ternary relation of the contract,
the expression, and its concrete context [13]. Especially the latter
element suggests that contracts can express and enforce more so-
phisticated program properties than types. Contracts are viable in
scenarios where simple types cannot help and where sophisticated
type system deteriorate into contract checking anyway. For exam-
ples, consider properties that depend on file I/O and network traffic.

To make this idea even more concrete, consider the contract of
map/e from section 3.1:10

(->i ([in (e c) (-> (enum-contract e) c)]
[out (e c) (-> c (enum-contract e))]
[e enum?]
#:contract [c contract?])
; appears to be a bijection:
#:pre/desc (in out e) (bijection?? in out e)
[result enum?])

This higher-order contract intercepts two events for each use of
map/e: (1) the call to map/e and (2) the return of the call. For the
call event, the contract system collects the arguments in, out, e, c
as the event information. For the return event, it collects the result
of map/e. With ->i, the programmer uses several hooks to insert
predicates that check properties of the collected information. There
are the hooks for each of the three arguments and the hook for the
result. In addition, the pre-condition relates all three arguments.
Similarly, the property for in depends on e and c along with in.
Furthermore, because in and out are functions, the programmer
can hook in sub-contracts, directing the contract system to collect
further events and information. In particular, the hook for in spec-
ifies that the contract system must monitor in as a function with
appropriate domain and range, and so on. In sum, the above con-
tract describes a sophisticated desirable property of map/e in terms
of the familiar operational semantics of our programming language.

Compare this operational understanding to a type-oriented for-
mulation. The effort required would be significant. Types would
be propositions in some formal logic that the type-checker tries
to prove by analyzing a piece of code, e.g., map/e. The success
of type-checking is sensitive to the structure of the code. It is thus
common that for the benefit of the type-checker, programmers have
to organize their code in a particular manner. Also, usually pro-
grammers have to embed in their code a significant amount of an-
notations as hints to help the type-checker. Hence, during type-
checking, the programmer must switch from thinking in terms of
the operational semantics of the language to thinking in terms of
the logical foundations of the type system. The same is true even in
non-structural type systems such as those based on liquid types [50]
or manifest contracts [31]; what properties of the program the pro-
grammer can express, and how, is a function of the logical foun-
dations of the type system. For types that state non-trivial proper-
ties, such as the dependent properties and the bijectivity property
of the above example, no amount of hints, auxiliary definitions or
restructuring of the code is sufficient. Programmers have to use a
dependent type system that is parametric to proof objects, such as
some version of CoC [10], and escape to a proof assistant, such as

10 The actual contract is more involved as map/e can consume more than
one enumeration.

Coq [59], to convince the type-checker to admit the type. Beyond
that, additional proofs are required for every use of map/e.

The comparison also points out the deficits of contract systems.
First, contracts enforce much weaker properties of higher-order
programs than types. A contract system can prove safety proper-
ties only with respect to concrete execution traces. In fact, a con-
tract system, unlike a type-checker, cannot prove any higher-order
property of a piece of code. For instance, the fact that integer/e
in section 3.1 does not raise a contract violation, does not im-
ply that integer/e is a bijection or even that integer/e is a
function whose domain is the naturals. The lack of a contract
violation means simply that our example has not resulted in a
counter-example concerning the bijection property of integer/e.
This operational nature of contract systems also explains why tools
such as quotient and denotational semantics explain so little about
contract systems [7, 23], while they have been so successful in
the type-theoretic world. Instead, syntactic techniques have helped
build frameworks for reasoning about the correctness of contract
systems, including their correct behavior when contract checks
fail [14, 15]. Second, while writing and using contracts is cheap
for the programmer, dynamic contract checking is often expen-
sive. Unlike type-checking, it inflicts both time and memory cost
which may become counter-productive as contracts capture compu-
tationally complex properties or as the number of contract checks,
even for simple contracts, increases. Recent work on symboli-
cally verifying first-class contracts might combine the best of both
worlds [48, 49].

Finally, contract attachment implies one additional distinction
between types and contracts. Any module can attach a contract to
any binding including re-exports of imported bindings. Such an at-
tachment means “blame” works differently for types and contracts.
When a type-checker detects a type error, the type-error points to
an inconsistency between the type system and the piece of code that
does not type-check; the same connection does not hold for contract
violations. Concretely, if a programmer imports map/e in a module,
attaches to it a contract other than the one the enumerations library
picked, and that contract latter fails, the responsibility of the failure
can not be with the enumerations library. Put differently, the pro-
grammer should not look at the enumerations library to figure out
what went wrong. Nor is the place at fault that triggered the contract
violation. Instead, as the discussion about blame in section 2 says,
a contract is an agreement between the server module that attaches
a contract to a binding and the contract’s scope. When a contract
fails, the bug is either in the server or in the contract’s scope in-
dependently of which module contains the code that triggered the
contract violation.

The subtle meaning of blame is often misunderstood when ap-
proached from a type-theoretic viewpoint. For example, Wadler and
Findler [60]’s paper contains the catchy but simplistic slogan “well-
typed programs can’t be blamed”. This slogan simplifies the situ-
ation so much that it is effectively false. Consider the case where
a typed module imports a function from an untyped module and
asserts that the function has some type. Furthermore, assume that
the underlying gradual type system generates the correct contract
from the asserted type and attaches it to the imported binding. If the
typed module now uses the function and the contract fails, sound-
ness of the gradual type system (correctly) implies that the typed
code cannot have used the untyped function in a way that violates
the generated contract. But, in line with our discussion about blame
assignment, the responsibility for the contract failure lies with ei-
ther the server module that picked which contract to attach to the
untyped function or the scope of the contract. In this case, server
and the scope are one and the same: the typed module. After all, it
assumed unwisely that the untyped function lives up to a contract
about which the function’s author knows nothing.

4.2 Contracts and Run-Time Verification
Run-time verification (RV) is another specification tool that shares
several characteristics with contracts. In particular, the analysis of
contract systems in section 2 has many similarities with the high-
level architecture of run-time verification tools. Like contract sys-
tems, run-time verification tools install probes that react to events
such as method calls and returns and reify relevant information
such as method arguments and results. These probes collect the in-
formation about the events and check whether it is consistent with
the specification of the code. RV specifications are invariably ex-
pressed in some DSL based on a formal logic, usually but not al-
ways a variant of temporal logic.

Like type systems research, RV research is in a much more ma-
ture state than contract system research. During the last 20 years,
a co-ordinated research effort has resulted in a variety of results:
theoretical foundations, distinct application domains, specification
DSLs with clear expressiveness, synthesis algorithms for monitors
with thoroughly evaluated performance characteristics, and vari-
ous architectures for run-time verification tools. The large number
and variety of pragmatically validated tools (e.g. Allan et al. [2],
Avgustinov et al. [3], Barringer et al. [4], Bodden [8], Chen and
Roşu [9], Drusinsky [17], Gates et al. [29], Goldsmith et al. [30],
Havelund and Roşu [34], Kim et al. [37], Marcelo D'Amorim and
Havelund [40], Martin et al. [41]) are witness of these outcomes.

At first glance, a run-time verification tool seemingly consists of
layers analogous to those of a contract system, and research on RV
appears to subsume similar efforts in the world of contracts. Indeed,
this statement probably holds for first-order contract systems such
as those of Eiffel, Jass [5], J-Contractor [1] and JML [39]. Once
contracts move into the higher-order world, however, significant
differences emerge between RV tools and contract systems.

One important distinction between RV and contracts is both
historical and teleological. While contracts focus on interfaces
that describe functional correctness properties of software com-
ponents, run-time verification turns to temporal properties of exe-
cution traces of complete software systems. Linguistic research on
contracts that enforce temporal properties of components is pretty
recent and limited [16, 51]. In contrast, research on how specifi-
cation DSLs can capture a wide range of trace properties and how
monitors can enforce them performantly, is the heart and soul of RV
research. At the same time, though, RV systems cannot cope with
properties of advanced language constructs such as anonymous
functions, first-class classes, modules, mutable references, (delim-
ited) continuations and/or continuation marks [42, 53] if those are
used to specify API interactions. In other words, RV offers no help
with specifying rich interfaces for components that facilitate the
correct composition and reuse of components in different contexts.

Coping with such powerful language constructs has been the
main goal behind the introduction of contracts into modern pro-
gramming languages [22] and has driven the evolution of contract
systems (e.g., Strickland et al. [55], Strickland et al. [57], Takikawa
et al. [58]). An interesting outcome of this deviation in goals is that
contract systems live inside of programming languages while run-
time verification tools live outside. In other words, higher-order
contract systems are extensions of programming languages, and
run-time verification systems are elements of a language’s exter-
nal tool chain.

A second distinction is technical but closely related to this
last point. The exo-linguistic nature of run-time verification tools
makes it hard to express properties of programs for a delimited
scope. With respect to scope, existing RV specification languages
offer two kinds of properties: global properties, e.g., the contents of
a particular variable, or properties that are universal for all instances
of a particular class, e.g,. the methods of a particular class are called
in a specific order during the execution of a program. Recently,

significant ingenuity and effort has been invested in refining global
class properties so that objects of a class (or groups of objects of
different classes) get associated with their own instance of a global
class property, e.g., each object receives calls to its methods in a
particular order [43]. Still, properties that are “active” for a single
object or function and only in a particular program context are
beyond the reach of existing RV techniques.

In contrast, programmers can easily specify such properties with
contracts as section 2 and section 3 amply demonstrate. Program-
mers can attach a contract to a class that captures a property that
spans all the instances of the class, or a property that all objects of
a class should adhere too individually. Programmers can also attach
a contract to an object that captures a property of that particular ob-
ject independently of the contracts of the object’s class. And finally
programmers can attach a contract for a class or an object only for
a particular program context such as the body of a definition or a
closure. This power of contract systems is due to their seamless in-
tegration with their host languages. Thus programmers have at their
disposal means to connect contracts with the scoping mechanisms
of the language and the structure of programs.

5. “Do you understand me now?”
A full appreciation of contracts demands a proper analysis of the
underlying contract system and all of its pieces. While these pieces
are implicitly in numerous publications on higher-order contracts,
nobody else has put them into perspective in quite the way this song
does, namely, as an interlocking system of an interposition layer,
a base of functional combinators, and an attachment mechanism
that establishes the scope of contracts and its obligations. With
this understanding in place, it becomes clear that programmers can
use the rest of the host language’s expressive power to build truly
sophisticated contracts. The examples of section 3 illustrate this
point, but given the power of higher-order functional languages,
more is likely to come.

To put this idea in context, all of us must appreciate program-
ming as an optimization problem with many parameters: the desir-
able reliability of the code, the size and quality of the development
team, the available resources, etc. Ideally, programmers ought to
have contracts and types and run-time verification at their disposal.
Depending on the situation, they could then decide how to best sat-
isfice [52] the optimization problem. Indeed, as each of these tools
has its own strengths and weaknesses, programming language re-
searchers ought to figure out how all these tools could coexist so
that programmers can smoothly transition from one to the other as
the requirements change.

Acknowledgment
The authors gratefully acknowledge the support of several NSF
grants: CCF-1421770 and CNS-1524052 (Harvard), CNS-1405756
(Northwestern), and CCF-1518844 (Northeastern).

References
[1] Parker Abercrombie and Murat Karaorman. jContractor:

Bytecode Instrumentation Techniques for Implementing De-
sign by Contract in Java. Electronic Notes in Theoretical
Computer Science(70(4)), pp. 55–79, 2002. Presented in RV
2001, Run-time Verification (Satellite Workshop of FLoC '02)

[2] Chris Allan, Pavel Avgustinov, Aske Simon Christensen,
Laurie Hendren, Sacha Kuzins, Ondřej Lhoták, Oege de
Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tib-
ble. Adding Trace Matching with Free Variables to AspectJ.
In Proc. ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications, pp. 345–364, 2005.

[3] Pavel Avgustinov, Julian Tibble, and Oege de Moor. Mak-
ing Trace Monitors Feasible. In Proc. ACM Conference on
Object-Oriented Programming, Systems, Languages and Ap-
plications, pp. 589–608, 2007.

[4] Howard Barringer, David Rydeheard, and Klaus Havelund.
Rule Systems for Run-time Monitoring: From Eagle to Ruler.
In Proc. International Conference on Runtime Verification,
pp. 111–125, 2007.

[5] Detlef Bartetzko, Clemens Fischer, Michael Möller, and
Heike Wehrheim. Jass — Java with Assertions. Electronic
Notes in Theoretical Computer Science(55(2)), pp. 103–117,
2001. Presented in RV 2001, Run-time Verification (Satellite
Workshop of CAV '01)

[6] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and
Damien Watkins. Contract Aware Components, 10 years af-
ter. Electronic Proceedings in Theoretical Computer Sci-
ence(7), pp. 1–11, 2010.

[7] Matthias Blume and David McAllester. Sound and Complete
Models of Contracts. Journal of Functional Programming
16(4-5), pp. 367–414, 2006.

[8] Eric Bodden. J-LO, a Tool for Runtime-Checking Temporal
Assertions. RWTH Aachen University, 2005. Master's Thesis.

[9] Feng Chen and Grigore Roşu. Towards Monitoring-Oriented
Programming: A Paradigm Combining Specification and Im-
plementation. Electronic Notes in Theoretical Computer Sci-
ence(89(2)), pp. 108–127, 2003. Presented in RV 2003, Run-
time Verification (Satellite Workshop of CAV '03)

[10] Thierry Coquand and Gerard Huet. The Calculus of Con-
structions. Information and Compuation(76:2-3), pp. 95–120,
1988.

[11] Ryan Culpeppeer. Fortifying Macros. Journal of Functional
Programming(22(4/5)), pp. 439–476, 2012.

[12] Ryan Culpeppeer and Matthias Felleisen. Fortifying Macros.
In Proc. ACM International Conference on Functional Pro-
gramming, pp. 235–246, 2010.

[13] Christos Dimoulas and Matthias Felleisen. On Contract Sat-
isfaction in a Higher-Order World. Transactions on Program-
ming Languages and Systems 33(5), pp. 16:1–16:29, 2011.

[14] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan,
and Matthias Felleisen. Correct Blame for Contracts: No
More Scapegoating. In Proc. ACM Symposium on Principles
of Programming Languages, pp. 215–226, 2011.

[15] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias
Felleisen. Complete Monitors for Behavioral Contracts. In
Proc. European Symposium on on Programming, pp. 214–
233, 2012.

[16] Tim Disney, Cormac Flanagan, and Jay McCarthy. Temporal
Higher-order Contracts. In Proc. ACM International Confer-
ence on Functional Programming, pp. 176–188, 2011.

[17] Doron Drusinsky. Temporal Rover. 2010. http://www.
time-rover.com

[18] Matthias Felleisen. On the Expressive Power of Programming
Languages. Science of Programming 17, pp. 35–75, 1991.

[19] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt.
Semantics Engineering with PLT Redex. MIT Press, 2009.

[20] Robert Bruce Findler and Matthias Blume. Contracts as Pairs
of Projections. In Proc. International Conference on Func-
tional and Logic Programming, pp. 226–241, 2006.

[21] Robert Bruce Findler, John Clements, Cormac Flanagan,
Matthew Flatt, Shriram Krishnamurthi, Paul Steckler, and
Matthias Felleisen. DrScheme: a Programming Environment
for Scheme. Journal of Functional Programming 12(2), pp.
159–182, 2002.

[22] Robert Bruce Findler and Matthias Felleisen. Contracts for
Higher-Order Functions. In Proc. ACM International Confer-
ence on Functional Programming, pp. 48–59, 2002.

[23] Robert Bruce Findler, Matthias Felleisen, and Matthias
Blume. An Investigation of Contracts as Projections. Univer-
sity of Chicago, Computer Science Department, TR-2004-02,
2004.

[24] Cormac Flanagan. Hybrid Type Checking. In Proc. ACM
Symposium on Principles of Programming Languages, pp.
245–256, 2006.

[25] Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scrib-
ble: Closing the Book on Ad Hoc Documentation Tools.
In Proc. ACM International Conference on Functional Pro-
gramming, pp. 109–120, 2009.

[26] Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen.
Scheme with Classes, Mixins, and Traits. In Proc. Asian
Symposium on Programming Languages and Systems, pp.
270–289, 2006.

[27] Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-
TR-2010-1, 2010. http://racket-lang.org/tr1/

[28] Martin Gasbichler and Michael Sperber. Integrating User-
Level Threads with Processes in Scsh. Higher Order and
Symbolic Computation(18(3-4)), pp. 327–354, 2005.

[29] Ann Q. Gates, Steve Roach, Oscar Mondragon, and Nelly
Delgado. DynaMICs: Comprehensive Support for Run-Time
Monitoring. In Proc. International Conference on Runtime
Verification, pp. 164–180, 2001.

[30] Simon F. Goldsmith, Robert O'Callahan, and Alex Aiken. Re-
lational Queries over Program Traces. In Proc. ACM Confer-
ence on Object-Oriented Programming, Systems, Languages
and Applications, pp. 385–402, 2005.

[31] Michael Greenberg, Benjamin C. Pierce, and Stephanie
Weirich. Contracts Made Manifest. In Proc. ACM Sympo-
sium on Principles of Programming Languages, pp. 353–364,
2010.

[32] Guy Lewis Steele, Jr. Macaroni is Better Than Spaghetti. In
Proc. Symposium on Artificial Intelligence and Programming
Languages, pp. 60–66, 1977.

[33] Guy Lewis Steele, Jr. The Revised Report on SCHEME:
A Dialect of LISP. Massachusetts Institute of Technology
Artificial Intelligence Laboratory, AIM-452, 1978.

[34] Klaus Havelund and Grigore Roşu. Monitoring Java Pro-
grams with Java PathExplorer. Electronic Notes in Theoret-
ical Computer Science(55(2)), pp. 200–217, 2001. Presented
in RV 2001, Run-time Verification (Satellite Workshop of
CAV '01)

[35] Phillip Heidegger, Annette Bieniusa, and Peter Thiemann.
Access Permission Contracts for Scripting Languages. In
Proc. ACM Symposium on Principles of Programming Lan-
guages, pp. 112–122, 2012.

[36] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto
Kubo. Language Primitives and Type Discipline for Struc-
tured Communication-Based Programming. In Proc. Euro-
pean Symposium on on Programming, pp. 122–138, 1998.

http://www.time-rover.com
http://www.time-rover.com
http://racket-lang.org/tr1/

[37] Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, In-
sup Lee, and Oleg Sokolsky. Java-MaC: A Run-Time Assur-
ance Approach for Java Programs. Formal Methods in System
Design(24(2)), pp. 129–155, 2004.

[38] John Lamping. Typing the Specialization Interface. In Proc.
ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, pp. 201–214, 1993.

[39] Gary T. Leavens. JML’s Rich, Inherited Specifications for
Behavioral Subtypes. In Proc. Formal Methods and Software
Engineering: 8th International Conference on Formal Engi-
neering Methods, pp. 2–34, 2006.

[40] Marcelo D'Amorim and Klaus Havelund. Event-based Run-
time Verification of Java Programs. In Proc. Workshop on Dy-
namic Analysis, pp. 1–7, 2005.

[41] Michael Martin, Benjamin Livshits, and Monica S. Lam.
Finding Application Errors and Security Flaws Using PQL:
a Program Query Language. In Proc. ACM Conference on
Object-Oriented Programming, Systems, Languages and Ap-
plications, pp. 365–383, 2005.

[42] Jay McCarthy. The Two-state Solution: Native and Serial-
izable Continuations Accord. In Proc. ACM Conference on
Object-Oriented Programming, Systems, Languages and Ap-
plications, pp. 567–582, 2010.

[43] Patrick Meredith and Grigore Roşu. Efficient Parametric Run-
time Verification with Deterministic String Rewriting. In
Proc. ACM/IEEE International Conference on Automated
Software Engineering, pp. 70–80, 2013.

[44] Bernard Meyer. Applying Design by Contract. IEEE Com-
puter 25(10), pp. 45–51, 1992.

[45] Bernard Meyer. Eiffel: The Language. Prentice Hall, 1992.
[46] Scott Moore, Christos Dimoulas, Dan King, and Stephen

Chong. Shill: A Secure Shell Scripting Language. In Proc.
USENIX Symposium on Operating Systems Design and Im-
plementation, pp. 183–199, 2014.

[47] James Hiram Morris. Lambda-Calculus Models of Program-
ming Languages. Ph.D. dissertation, Massachusetts Institute
of Technology, 1968.

[48] Phúc Nguyễn and David Van Horn. Relatively Complete
Counterexamples for Higher-order Programs. In Proc. ACM
Conference on Programming Language Design and Imple-
mentation, pp. 445–456, 2015.

[49] Phúc Nguyễn, Sam Tobin-Hochstadt, and David Van Horn.
Soft Contract Verification. In Proc. ACM International Con-
ference on Functional Programming, pp. 139–152, 2014.

[50] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid
Types. In Proc. ACM Conference on Programming Language
Design and Implementation, pp. 159–169, 2008.

[51] Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter.
Computational Contracts. Science of Computer Program-
ming(98:3), pp. 360–375, 2015.

[52] Herbert A. Simon. Administrative Behavior. MacMillan,
1947.

[53] Vincent St-Amour, Leif Andersen, and Matthias Felleisen.
Feature-specific Profiling. In Proc. Compiler Construction,
pp. 49–68, 2015.

[54] Robert E. Storm and Shaula A. Yemini. Typestate: A Pro-
gramming Language Concept for Enhancing Software Reli-
ability. IEEE Transactions on Software Engineering(12(1)),
pp. 157–171, 1986.

[55] T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa,
and Matthias Felleisen. Contracts for First-Class Classes.
Transactions on Programming Languages and Systems 35(3),
pp. 11:1–1:58, 2013.

[56] T. Stephen Strickland and Matthias Felleisen. Nested and Dy-
namic Contract Boundaries. In Proc. International Confer-
ence on Functional and Logic Programming, pp. 141–158,
2009.

[57] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce
Findler, and Matthew Flatt. Chaperones and Impersonators:
Run-time Support for Reasonable Interposition. In Proc.
ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, pp. 943–962, 2012.

[58] Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-
Hochstadt. Constraining Delimited Control with Contracts.
In Proc. European Symposium on on Programming, pp. 229–
248, 2013.

[59] The Coq Cevelopment Team. The Coq Proof Assistant Refer-
ence Manual. LogiCal Project, Version 8.0, 2004.

[60] Philip Wadler and Robert Bruce Findler. Well-typed Pro-
grams Can’t be Blamed. In Proc. European Symposium on
on Programming, pp. 1–15, 2009.

	1 Contracts, ``always left out, never fit in''
	2 ``You hold the answers deep within your mind''
	2.1 The Interposition Layer
	2.2 The Language of Contracts, the Single
	2.3 Contract Attachment Mechanisms
	2.4 The Language of Contracts, the Complete LP

	3 ``Don't be afraid to try again''
	3.1 From Contracts to Spot Checkers
	3.2 From Contracts to Specialization Interfaces
	3.3 From Contract to Protocols
	3.3.1 Implementing Protocol

	4 ``I am special, so special''
	4.1 Contracts and Types
	4.2 Contracts and Run-Time Verification

	5 ``Do you understand me now?''
	Acknowledgment
	Bibliography

