
Super and Inner — Together at Last!

David S. Goldberg
School of Computing

University of Utah
Salt Lake City, UT 84112

goldberg@cs.utah.edu

Robert Bruce Findler
Department of Computer Science

University of Chicago
Chicago, IL 60637

robby@cs.uchicago.edu

Matthew Flatt
School of Computing

University of Utah
Salt Lake City, UT 84112

mflatt@cs.utah.edu

Abstract
In an object-oriented language, a derived class may declare a
method with the same signature as a method in the base class.
The meaning of the re-declaration depends on the language. Most
commonly, the new declarationoverrides the base declaration, per-
haps completely replacing it, or perhaps usingsuper to invoke the
old implementation. Another possibility is that the base class al-
ways controls the method implementation, and the new declaration
merelyaugments the method in the case that the base method calls
inner. Each possibility has advantages and disadvantages. In this
paper, we explain why programmers need both kinds of method re-
declaration, and we present a language that integrates them. We
also present a formal semantics for the new language, and we de-
scribe an implementation for MzScheme.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—inheritance

General Terms

Languages

Keywords

super, inner, inheritance, override, augment

1 Introduction

In a Java-like language, each method is overrideable by default, so
a subclass can replace the functionality of a method with arbitrar-
ily different functionality. Asuper form (or its equivalent) allows
a subclass implementor to reuse a superclass’s method, instead of
replacing the method entirely. The choice, in any case, belongs to
the subclassimplementor. Correspondingly, as illustrated in Fig-
ure 1, method dispatch for an object begins at the bottom of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00

o.m()

m() {
 ...
}

(3)

m() {
 ... super ...
}

(2)

m() {
 ... super ...
}

(1)

Figure 1. Java-style Method Overriding

o.m() m() {
 ... inner ...
}

(1)

m() {
 ... inner ...
}

(2)

m() {
 ...
}

(3)

Figure 2. Beta-style Method Extension

class hierarchy. Java-style overriding encourages the reuse of class
implementations, since subclass implementors are relatively uncon-
strained in re-shaping the subclass.

In a Beta-like language, a method may be augmented, but the
method cannot be replaced arbitrarily. A class enables method aug-
mentation by callinginner, but it may perform work before and
after theinner call, and it may skip theinner call altogether. The
choice, in any case, belongs to thesuperclassimplementor. Corre-
spondingly, as illustrated in Figure 2, method dispatch for an ob-
ject begins at the top of the class hierarchy. Controlled method
extension encourages (though does not guarantee) subclasses that
are behavioral subtypes [1, 21, 22] of the base class, since subclass
implementors are relatively constrained.

Although programmers can simulate each form of method exten-
sion using the other, simulation patterns are clumsy. The patterns
require that a programmer invent extra methods and give them dis-
tinct names, and the protocol for using and overriding or augment-
ing methods becomes a part of the documentation, rather than the
declared structure of the code. Furthermore, changing an existing
method from one form of extension to the other requires modifica-
tions to existing code.

Some researchers, including Cook [7] and Clark [6], have observed
the dual roles ofsuper andinner, and they have developed unified
object models with constructs that encompass both. We have taken
a more direct approach, adding Beta-style methods andinner to an
existing Java-style language.

Implementing our combination ofsuper and inner requires only
modest changes to a typical compiler and run-time system. In
particular, the compilation of method andsuper dispatching is
unchanged, and the implementation ofinner is an adaptation of
method dispatch (using an auxiliary dispatch table). Furthermore,
our system does not constrain a method permanently to either Java-
style or Beta-style refinement. That is, a derived class may use a
different style of method overriding from its super class.

Since Beta-style method overriding is designed to help enforce in-
variants in the code, it trumps Java-style method overriding in our
design. That is, a Java-style method extension only replaces the be-
havior of the method up to the nearest Beta method. In contrast,
a Beta-style method controls the behavior of all of its subclasses.
Consider the chain of method extensions in Figure 3. Three sub-
chains of Java-style method extensions appear as three distinct sets
of upward arrows in the figure. Eachbeta method, meanwhile,
introduces a point of control over all later subclasses. This control
appears in the figure as long-jumping arrows that delineate the three
sets. The number to the right of each method shows its position in
the overall order of execution.

We have implemented this combination ofsuper and inner in
MzScheme [12], and our design was motivated by problems
building the DrScheme programming environment [11] using
MzScheme’s object system. In general, we find that most uses
of the object system favor flexible reuse over behavioral control,
which supports our decision to start with a Java-style object sys-
tem. We have noted many exceptions, however, where our code
is made more complex or less reliable by the possibility of uncon-
strained method overriding. We believe that our code will become
cleaner and more reliable by using both kinds of methods, and the
early results are promising.

Section 2 presents a programming task that can be implemented
with only Java-style methods or only Beta-style methods, but it is
best implemented with a combination. Section 3 describes in detail
our method-dispatch algorithm to support both kinds of methods in
a single class derivation. Section 4 defines a formal model of our
language. Section 5 describes our implementation in MzScheme
and initial experience.

2 The Case for Combining Super and Inner

Consider building a library of GUI widgets, including basic win-
dows, bordered panels, and clickable buttons. All widgets corre-
spond to areas on the screen, and they all react in various ways to
mouse and keyboard actions. Furthermore, as the widget set grows,
new widgets tend to resemble existing widgets, but with extra be-

o.m()

java m() {
 ...
}

(3)

java m() {
 ... super ...
}

(2)

beta m() {
 ... super ...
 ... inner ...
}

(1)

java m() {
 ...
}

(6)

java m() {
 ... super ...
}

(5)

beta m() {
 ... super ...
 ... inner ...
}

(4)

java m() {
 ...
}

(9)

java m() {
 ... super ...
}

(8)

beta m() {
 ... super ...
}

(7)

Figure 3. BETA JAVA Method Refinement

havior. For all of these reasons, a class-based, object-oriented lan-
guage is an excellent choice for implementing the widget library.

One possible class hierarchy for widgets is shown in Figure 4:

• The genericWindowclass includes apaintmethod to draw the
content of the window. Subclasses ofWindowrefine thepaint
method to draw specific kinds of widgets.

• Many widgets require a border, soBorderWindowrefinesWin-
dow’s paint to draw a border around the window. Subclasses
of BorderWindoware expected to refinepaint further to draw
inside the border, but they are not expected to replacepaint
entirely, which would omit the border.

Window

void paint()

BorderWindow

// This and all subclasses should draw a border
void paint()

Button

// Should draw simple buttons
void paint()
void onClick()

ImageButton

// Should draw images for buttons
void paint()

HighlightButton

// Should draw buttons similar
// to Button, but with dark blue
// background and light blue shading
void paint()

Figure 4. Class hierarchy for GUI classes

• The Button class ofBorderWindowimplements a clickable
widget. It adds theonClickmethod, which is called when the
user clicks inside the widget’s border. TheButtonclass also
refinespaint to provide a default button look, but subclasses
may define an entirely different look for the button, as long as
the border is intact.

• The ImageButtonclass refines thepaint method ofButtonto
draw a specific image for the button, supplanting the default
button look (except for the border).

• The HighlightButtonclass, in contrast, builds on the default
button look, but adds a dark blue background behind the label
and a translucent texture over the label.

Implementing this class hierarchy in either Java (withsuper) or
Beta (withinner) is straightforward, and yet the results are not en-
tirely satisfactory. We consider each possibility in the following two
sub-sections, and then show howsuperandinner together provide
a more satisfactory implementation of the hierarchy.

2.1 Widgets in Java

To implement Figure 4 in Java, we start with aWindowclass whose
paint method merely erases the background by painting it white,
and aBorderWindowclass that refines thepaint method ofWindow
to draw a border around the window:

classWindow{ . . .
void paint() {

. . . ; // paint the background
}

}

classBorderWindowextendsWindow{ . . .
void paint() {

super.paint(); // paint background
. . . ; // draw a border

}
}

The paint method inBorderWindowoverrides the method inWin-
dow, which means that whenpaint is called on an instance ofBor-
derWindow, control jumps to thepaint method inBorderWindow,
as opposed toWindow. Thesuper call in BorderWindowthen ex-
plicitly dispatches topaint in Windowto paint the background.

The next class isButton, which further refinespaint:

classButtonextendsBorderWindow{ . . .
void paint() {

super.paint(); // paint background, border
. . . ; // draw a button label

}
}

Here, again, the newpaint in Buttonusessuper to paint at first like
BorderWindow. In the BorderWindowcase, however, thissuper
call was optional; we could instead have chosen to paintBorder-
Windowbackgrounds differently. A subclass ofBorderWindowis

always supposed to callBorderWindow’s paint to ensure that the
window has a border. This constraint is merely part of the docu-
mentation forBorderWindow; it cannot be enforced by Java.

This problem becomes somewhat worse as we move to theImage-
Buttonclass:

classImageButtonextendsButton{ . . .
void paint() {

super.paint(); // paints background, border — and label!
. . . ; // draw image, somehow blotting out the label

}
}

SinceImageButtonis a subclass ofBorderWindow, it is supposed to
call super to ensure that a border is drawn. But callingsuper also
draws a button label, andImageButtonintends to replace the label
with an image.

C++ [25] offers a solution to the immediate problem inImageBut-
ton. Instead of usingsuper.paint(), ImageButtoncould refer di-
rectly toBorderWindow::paint(). The other problem remains, i.e.,
nothing forcespaint in ImageButtonto callBorderWindow::paint().

A more general solution is to simulate Beta-style methods in Java.
A programmer can designatepaint as final inBorderWindowand
have it call a new method,paintInside. Subclass authors cannot
overridepaint, ensuring that the border is always drawn, but they
can overridepaintInsideto redefine the interior painting. Unfor-
tunately, this solution forces programmers to deal with different
names for the same functionality in different parts of the class hi-
erarchy: subclasses ofWindoware expected to override thepaint
method to add functionality, but subclasses ofBorderWindoware
expected to override thepaintInsidemethod. Besides increasing
the burden on the programmer, these different names limit the ways
in which mixins [3, 5, 14] can be applied, since mixin composi-
tion typically relies on matching method names. Furthermore, if
paint is split into afinal paint and apaintInsidemethod after many
classes have been derived, then names must be changed throughout
the hierarchy belowBorderWindowto accommodate the split.

Assuming that we splitpaintInsidefrom paint, we can finish our
widget set in Java as follows:

classImageButtonextendsButton{ . . .
void paintInside() {

. . . ; // draw image (don’t callsuper for label)
}

}
classHighlightButtonextendsButton{ . . .

void paintInside() {
. . . ; // replace the background with dark blue
super.paintInside(); // draws the label
. . . ; // draw light blue shading on top of the label

}
}

The HighlightButtonclass callssuper to paint the default button
label, but this class exploits its control over the timing of thesuper
call. In particular, it draws the new background, then callssuper
to draw text on the new background. Reversing the order clearly
would not work.

This last example, in particular, illustrates the overall philosophy
of class extension in Java-like languages:subclass implementors
know better. Methods are overrideable by default, so they can be re-

placed completely in a subclass, which tends to maximize the reuse
of a class hierarchy. The only way that a superclass can insist on
specific behavior, preventing subclasses from refining it, is to de-
clare a methodfinal. The idiom of afinal method that calls a regu-
lar method (like ourpaint/paintInsideexample) appears commonly
used in C++ and Java programs, inspiring design patterns such as
the Template Method [15]. As we demonstrate in the next section,
Beta-style method extension can more directly express a program-
mer’s intent in such cases.

2.2 Widgets in Beta

In Beta, thepattern is the sole abstraction mechanism, and patterns
are used to express types, classes, and methods. We are mainly
interested in patterns as a class mechanism, so for our examples,
we use a Java-like syntax with a Beta-like semantics.

The essential difference of Beta is the absence ofsuper and the
presence ofinner. In our first two classes,Windowexplicitly allows
subclasses to add functionality topaint by usinginner:

classWindow{ . . .
void paint() {

. . . ; // paint the background
inner.paint();

}
}
classBorderWindowextendsWindow{ . . .

void paint() {
. . . ; // draw a border

}
}

When thepaint method is called on an instance ofBorderWindow,
control jumps to the implementation ofpaint in Window. At the
point whereWindow’s paint usesinner, control jumps topaint in
BorderWindow. If an instance ofWindowis created, theinner in
paint has no effect.

This implementation ofWindow is not quite the same as our im-
plementation in Java, because the BetaWindowalways paints the
background, but the painting was optional in the JavaWindowclass.
To fix this, we can simulate Java-style methods in Beta, just as we
could simulate Beta-style methods in Java. In this particular case,
we create apaintBackgroundmethod and only call it directly in
Window’s paint when inner would do nothing. To accommodate
such code, we introduce a new variant ofinner that has anelse
statement, which is executed only if theinner has no target.

classWindow{ . . .
void paintBackground() {

. . . ; // paint the background
}
void paint() {

inner.paint() elsepaintBackground();
}

}
classBorderWindowextendsWindow{ . . .

void paint() {
paintBackground();

. . . ; // draw a border
inner.paint();
}

}

When paint is called for an instance ofWindow, the inner call
has no target (i.e., no subclass), sopaintBackground() is executed.
When paint is called for an instance ofBorderWindow, inner in
Windowjumps topaint in BorderWindow, which elects to paint the
background by callingpaintBackground().

The newBorderWindowalso contains its owninner call in paint, so
that the content of the window can be painted by subclasses. Thus,
Buttonis implemented as follows:

classButtonextendsBorderWindow{ . . .
void paintLabel() {

. . . ; // draw a button label
}
void paint() {

inner.paint() elsepaintLabel();
}

}

Since theBorderWindowclass does not giveButton the option to
skip border painting, the implementor ofButtoncannot accidentally
omit the border by forgetting to callsuper.paint().

Meanwhile,Button uses the sameinner programming pattern as
Windowto make label painting optional in subclasses. Much like
introducingpaintInsidein Java to give the superclass control, intro-
ducingpaintLabelin Beta gives subclasses control. Also, as in Java,
this programming pattern proliferates method names, so it is sim-
ilarly unfriendly to programmers and mixins. More significantly,
this programming pattern must be used whenever a subclass should
be able to completely replace the functionality of a method, and our
experience suggests that such methods are the rule rather than the
exception.

With paintLabelsplit from paint, we can finish our widget set in
Beta as follows:

classImageButtonextendsButton{ . . .
void paint() {

. . . ; // draw image (don’t callpaintLabel)
}

}

classHighlightButtonextendsButton{ . . .
void paint() {

. . . ; // replace the background with dark blue
paintLabel(); // draws the label
. . . ; // draw light blue shading on top of the label

}
}

TheHighlightButtonclass callspaintLabelto paint the default but-
ton label, again exploiting its control over the timing of thepaint-
Label call. As written, these methods do not allow refinement in
further subclasses, which would require the introduction of more
paintLabel-like methods.

The necessity of methods likepaintLabelhighlights the overall phi-
losophy of class extension in Beta-like languages:superclass im-
plementors know better. Methods are not overrideable by default,
so they cannot be replaced completely by subclasses, which tends
to maximize the reliability of a class hierarchy. The only way that a
superclass can release its control over behavior is to useinner with
the default work in a new method. As we demonstrated in the pre-
vious section, Java-style method extension more directly express a
programmer’s intent in such cases.

Window

java void paint()

BorderWindow

beta void paint()

Button

java void paint()
java void onClick()

ImageButton

beta void paint()

HighlightButton

java void paint()

Figure 5. Hierarchy with both Java- and Beta-style methods

2.3 Widgets in a Beta/Java Combination

In a sufficiently large program, the Java philosophy is right at times,
and the Beta philosophy is right at other times; sometimes the sub-
class implementor knows better, and sometimes it is the super-
class implementor. By including both Java-style and Beta-style
method refinement in a programming language, we can support dif-
ferent philosophies for different parts of the program. Indeed, these
philosophies can be mixed at a fine granularity by allowing a pro-
grammer to annote individual method implementations asjava or
beta.1 The resulting system is consistent and, we believe, concep-
tually simple.

Since the initialWindowclass was more cleanly implemented in
Java, we begin our widget implementation with ajava implemen-
tation ofpaint:

classWindow{ . . .
java void paint() {

. . . ; // paint the background
}

}

The java annotation indicates that a subclass can override this
method. If the overriding method wants to use the original method,
it can usesuper.

TheBorderWindowclass overridespaint, but its own implementa-
tion should never be overridden completely in later subclasses. That
is, Beta more neatly implements thepaint method forBorderWin-
dow, so we annotate the implementation withbetaand useinner in
the body:

1We expect that any realistic language will have better keywords
thanjava andbeta, of course.

classBorderWindowextendsWindow{ . . .
beta voidpaint() {

super.paint(); // paint background
. . . ; // draw a border
inner.paint();

}
}

Thebetaannotation indicates that this implementation ofpaintcan-
not be overridden. Operationally, when thepaint method is called
on an instance ofBorderWindowor any subclass ofBorderWindow,
control jumps toBorderWindow’s implementation. This implemen-
tation, in turn, invokes the implementation inWindow, then paints
the border, and then allows control to jump to a subclass implemen-
tation.

TheButtonclass, for one, accepts that control:

classButtonextendsBorderWindow{ . . .
java void paint() {

. . . ; // draw a button label
}

}

Thus, whenpaint is called on an instance ofButton, control initially
jumps topaint in BorderWindow, but ultimately it arrives atpaint
in Button. The method inButtonis declaredjava, however, so that
a subclass can completely replace the button part of the method.

TheImageButtonclass completely replacespaint in Button, forcing
any subclasses to draw an image.HighlightButtonusessuper to
extend button painting, rather than replacing it entirely:

classImageButtonextendsButton{ . . .
java void paint() {

. . . ; // draw image (don’t callsuper for label)
inner.paint();

}
}

classHighlightButtonextendsButton{ . . .
beta voidpaint() {

. . . ; // replace the background with dark blue
super.paint(); // draws the label
. . . ; // draw light blue shading on top of the label

}
}

When paint is called on anImageButtoninstance, control jumps
to BorderWindow, then toWindow, then back throughBorderWin-
dow to ImageButton. Whenpaint is called on aHighlightButton
instance, control jumps toBorderWindow, then toWindow, then
back throughBorderWindowto HighlightButton, then temporarily
to Button, and finally back toHighlightButton.

At every point in this class derivation, a programmer specifies ex-
actly the intent for refinement in subclasses. While the overall flow
of control through methods can be complex, it is locally apparent
what results will be achieved. In our example, it is clear that aBor-
derWindowsubclass always usesBorderWindow’s paint, whereas a
Buttonsubclass has the option to replacepaint.

The widget example shows howbeta may be used any number of
times. The implementor ofImageButtondecided that drawing the
images is mandatory, implementing this intent by annotating the
method withbeta. Because of this annotation, whenpaint is called

for a subclass ofImageButton, control first jumps toBorderWin-
dow (as required by theBorderWindowimplementor), but always
to ImageButtonbefore any subclass ofImageButton.

As shown earlier, it is possible to simulate one form of method
extension in a language that has the other form. The simulation
is awkward compared to directly expressing the intended mode of
method refinement. Furthermore, after a method has been writ-
ten without the simulation pattern, converting it to use a simulation
pattern requires extensive modification to descendant classes (since
they must use the new method name introduced by the simula-
tion). In contrast, changing abetaannotation tojava (or vice-versa)
requires modifying only classes that directly refine the changed
method, and not the decedents of those classes.

With java andbeta annotations,final is no longer necessary; afi-
nal method is simply abetamethod that contains no calls toinner.
In the same way that a Java compiler rejects overriding of afinal,
a compiler could statically reject declaration of a method in a sub-
class when a superclass has previously declared the methodbeta
with no inner call.

3 From Java to a Beta/Java Combination

Syntactically, the difference between Java and our extension is the
addition ofjava andbetakeywords for methods in classes, plus the
addition of aninner expression form:

Expression= inner . Identifier (Expression, . . . Expression)
elseStatement

An inner expression can appear only if the enclosing class contains
abetadeclaration forIdentifier, or if such a declaration is inherited
and the enclosing class contains nojava declaration ofIdentifier.
(Using inner.moutside of methodbetamwould be unusual, much
like usingsuper.moutside of a methodm.) If a method has neither
abetanor java annotation,java is assumed.

3.1 Method Dispatch

Dynamically, the difference between Java and our extension to Java
is in method dispatch, including support forinner. If a program
contains nobeta annotations (and therefore noinner expressions),
then method dispatch proceeds exactly as in Java:

• A method call (of the formexpr.methodName) uses the class
of the method’s object to determine the target method imple-
mentation. The target is the implementation in the superclass
that is closest to the instantiated class.

• Eachsuper call is resolved statically to a method implemen-
tation in the closest superclass.

If every method of a program is annotatedbeta, then method dis-
patching proceeds as in Beta:

• A method call uses the first implementation of a method in the
class derivation, starting from the root class. This target can
be resolved statically, assuming that the object expression’s
type is a class (as opposed to an interface).

• An inner call, in contrast, must use the class ofthis to find
the target method. The target is the implementation in the
subclass closest to the class that contains theinner call. If no
target exists, then the default expression is evaluated.

Window

java void paint()

0
BorderWindow

beta void paint()

Button

java void paint()
java void onClick()

1
ImageButton

beta void paint()

ImagePopup

java void paint()
java void onClick()

2

GrayImagePopup

java void paint()
beta void onClick()

inner super

Figure 6. Method dispatch example, with arrows for inner and
super calls inside thepaintmethod

Figure 6 shows one chain in our example GUI widget class hierar-
chy. The extra classesImagePopupandGrayImagePopupillustrate
further uses ofbeta andjava. Arrows on the left side of the figure
show howinner calls forpaint jump from one class to another (the
numbers will be explained in section 3.2), ending at an arrowhead,
and arrows on the right show howsuperpaint calls jump:

• A super call (arrow on the right) behaves exactly as in Java,
always jumping to a statically determined implementation in
a superclass. We disallowsuper calls tobeta declarations,
because they are not useful in our experience, and because
they tend to produce infinite loops that are difficult to debug.

• An inner call (arrow on the left) is slightly different than
in Beta, because the target is not always in the closest sub-
class. Instead, the target is the closest subclass that declares
the methodbeta, or thefarthestsubclass if no subclass con-
tains abetadeclaration of the method.

• A method call in a mixed environment behaves much like an
inner call, where the target of the initial call is the firstbeta
implementation of the method if one exists, and the lastjava
implementation otherwise.

External dispatch andinner go to the highestbeta implementa-
tion of a method, because the programmer’s intent in usingbeta
is to ensure that the code in that method will get called, no matter
how subclasses refine the method. Ultimately, declaring a method
beta should trump any future attempts to override it, because the
enforced behavior may be necessary for the program to behave cor-
rectly.

An inner or external dispatch skipsjava methods, because the
programmer’s intent when usingjava is to allow overriding. The
skipped java implementations are used only if theinner target
chooses to callsuper.

3.2 Compiling Method Dispatch

Typically, dynamic method dispatch in Java uses a virtual method
table, where a target method implementation is obtained by extract-
ing it from a particular slot in the table. This strategy still works
with betamethods, and the only change is in the construction of the
table. Instead of installing the lastjava implementation of a method
into the table, the firstbetamethod (if any) should be installed. The
relevantbeta method resides in a superclass, so incremental com-
pilation of classes in a hierarchy is the same as in Java.

An inner call also needs a dynamic dispatch table, but theinner
table is slightly more complex. The target of aninner call is deter-
mined by both the class of the object on which theinner is called
and the class declaration in which theinner call appears. Thus,
the inner dispatch table is not simply linear in the number ofbeta
methods. In fact, for each method, the table contains an array of
target methods. Aninner call can be mapped statically to an index
for the method’s array, where the index is the total number ofbeta
declarations of the method in theinner call’s class and its super-
classes. Meanwhile, index 0 corresponds to the target for external
method calls.

For example, when thepaint method is called for an instance of
GrayImagePopup, the numbers in Figure 6 correspond to the in-
dices. An external call always starts with index 0, atBorderWin-
dow. An inner call in BorderWindowjumps to the method at index
1, because theBorderWindowintroduces the firstbeta declaration
of paint. An inner call in ImageButtonjumps to the method at in-
dex 2, becauseImageButtonintroduces the secondbetadeclaration
of paint.

In general, for a particular method, class, andinner array index, the
dispatch table contains one of three values:

• It contains null if no further refinements of the method are
declared belowinner calls that use the index.

• It contains the firstbeta declaration of the method below the
inner call, if any such declaration exists.

• It contains the lastjava declaration of the method below the
inner call, if any such delectation exists, and if nobeta dec-
laration is available.

Figure 7 shows the complete method dispatch table forImage-
Popup, and Figure 8 shows the dispatch table forGrayImagePopup.
In both cases, index 0 containsBorderWindow’s method forpaint,
and index 1 containsImageButton’s method. At index 2, theIm-
agePopuptable contains the implementation fromImagePopup, but
it is replaced byGrayImagePopup’s implementation in the table for
GrayImagePopup. Similarly, index 0 foronClick containsImage-
Popup’s implementation inImagePopup’s table, but it is overridden

paint
0 1 2

BorderWindow’s ImageButton’s ImagePopup’s

onClick
0

ImagePopup’s

Figure 7. Dispatch table for ImageButtonin Figure 6

paint
0 1 2

BorderWindow’s ImageButton’s GrayImagePopup’s

onClick
0 1

GrayImagePopup’s null

Figure 8. Dispatch table forGrayImageButtonin Figure 6

with GrayImagePopup’s implementation inGrayImagePopup’s ta-
ble. Finally, index 1 foronClick in GrayImagePopupcontains null,
because no method refines thebetadeclaration ofonClick in Gray-
ImagePopup.

To explain table construction another way, abeta method occupies
an index permanently, in all subclasses, and increases the size of
the method’s array, whereas ajava method occupies an index only
until it is replaced by a subclass implementation. If no methods
are declaredbeta (either in the whole program or for a particular
method), then this algorithm degenerates to the usual Java-style al-
gorithm (either for the whole table or for an individual row). For an
instance ofImagePopup, all declarations ofonClickarejava, so the
onClick row in Figure 7 has a single slot, just as in a Java dispatch
table.

In the case ofpaint for ImagePopup, everyinner call has a target
method, since the lastpaint method in the chain is declaredjava.
The lastonClickmethod ofGrayImagePopup, however, is declared
beta. If the GrayImagePopupcontains aninner call for onClick,
there is no target method, which means that theinner’s elseexpres-
sion is used at run time. This lack of a target is reflected by a null
pointer for index 1 in theonClick row of the dispatch table. Thus,
an inner call at run time first checks whether the relevant table slot
is null; if so, it uses theelseexpression, otherwise it jumps to the
table-indicated method.

A Java-style dispatch table always has sizeO(m) for m distinct
methods in the class, but the size of a dispatch table withinner de-
pends on both the number of methods in the class and the number of
beta implementations of the method. A two-dimensional array for
the inner table would thus requireO(m×n) space form methods
and a maximumbetadepth ofn. Our implementation uses an array
of arrays, instead (as suggested by Figure 7 and Figure 8), so that
the size isO(m+ p) for p totalbetadeclarations, which tends to be
much smaller thanO(m×n).

3.3 Interfaces

The beta and java keywords apply only to method implementa-
tions in a class. Because interfaces reflect subtyping and not behav-
ior, these keywords are not needed in an interface declaration. A

method call through an interface behaves the same as an external
method call using the object’s type. In compilation terms, interface
dispatch needs only the implementation that is stored in a virtual
method table, so interface-based method calls are effectively un-
changed compared to Java.

3.4 Differences from Beta

Technically, even for a program that contains onlybeta methods,
our language differs from Beta in two respects that are unrelated to
method dispatch:

• Our inner form contains explicit arguments, instead of im-
plicitly using the enclosing method’s arguments (or, more pre-
cisely, the current values of the argument variables, in the case
that the variables have been assigned). This form ofinner call
more closely parallelssuper, allows the values passed toin-
ner to be changed non-imperatively, and allows aninner call
for a particular method to appear in any other method (again,
like super).

• Our inner form includes a default expression to evaluate when
no subclass implementation is available, whereas Beta de-
faults to a null operation. We include a default expression
to make the language more value oriented.

4 BetaJava Model

To demonstrate type soundness of our combination of Beta-style
and Java-style methods, we define a complete formal model for BE-
TAJAVA in the style of CLASSICJAVA [14].

The model simplifies Java considerably, eliminating constructs that
are irrelevant to method dispatch. For example, the model does not
include local variables,if statements, or exceptions. Unlike CLAS-
SICJAVA , the BETAJAVA model further omits fields, but we have
preserved enough CLASSICJAVA structure in our BETAJAVA model
to ensure that fields could be added back to the model, exactly as
they appear in CLASSICJAVA . We also omit interfaces from BETA-
JAVA , becausebeta andjava play no role in interface declarations.

Figure 9 contains the syntax of BETAJAVA programs in our model.
A programP consists of a sequence of class declarations followed
by a single expression. The expression plays the role ofmain to
start the program. Each class declaration contains a sequence of
method declarations, and each method is annotated with eitherbeta
or java. A method body consists of a single expression, which is
either a variable (i.e., a reference to a method argument orthis),
thenull keyword, an object creationnew c, or a method call. Each
method call has one of three shapes:

• A method call of the forme.md(e1, . . .en) is a normal call to
the methodmd in the object produced bye.

• A method callsuper var:c.md(e1, . . .en) must appear only
within a method (as enforced by the type system). Thevar
part of the call is intended to bethis, which is implicit in
Java. An explicit target simplifies our evaluation rules, but
this could be inserted automatically by an elaboration step, as
in CLASSICJAVA . Similarly, the classc named in asupercall
must be the name of the containing class’s immediate super-
class. Again,c could be inserted by elaboration, and our type
system ensures that the correctc is named.

P = defn. . . defn e

defn = classc extendsc { meth. . . meth}
meth = kind t m(t var, . . . t var){ e}
kind = beta | java

c = a class name orObject
md = a method name
var = a variable name orthis

t = c

e = var
| null
| newc
| e.md(e, . . .e)
| supervar:c.md(e, . . .e)
| inner var:c.md(e, . . .e) elsee

ě = e | ⊥
č = c | ⊥
ĉ = c | >

Figure 9. Syntax of BETA JAVA

• A method callinner var:c.md(e1, . . .en) elsee must appear
only within a method (again, as enforced by the type system).
As with super calls, var is intended to bethis, and a class
c is named for the convenience of our evaluation rules. For
inner, the givenc must be the class containing theinner call,
as opposed its superclass, and the type system ensures this
correlation. The extraelsee at the end of aninner call pro-
vides the expression to evaluate if, at run time, no extending
method is provided byvar (in a subclass ofc).

The non-terminals ˇe, č, andĉ in Figure 9 are for auxiliary relations
in the evaluation rules, and they are not part of the concrete syntax.

4.1 BetaJava Type Checking

The type-checking rules for BETAJAVA closely resemble those
of CLASSICJAVA , building on a number of simple predicates
and relations that are defined in Figure 10. For example, the
CLASSESONCE(P) predicate checks that each class name is de-
fined only once. The≺P relation associates each class in the pro-
gramP with the class that it extends, and∈∈P captures the method
declarations ofP.

The≤P relation fills out the subclass relationship as the transitive
closure of≺P. (The extension to> and⊥ is used in the eval-
uation rules.) Two additional predicates check global properties:
CLASSESDEFINED(P) ensures that the class hierarchy ofP forms
a tree, and EXTENSIONSCONSISTENT(P) ensures that every decla-
ration of a method in a class derivation uses the same signature.

Finally, the∈P relation combines the methods that a class declares
with the methods that it inherits from its superclasses. The∈P re-
lation can be interpreted as a function from classes to method-tuple
sets, or as a function from class–method combinations to method
implementations. Specifically, for a classc and method namemd,
∈P locates the most specific implementation ofmd, which is the
one declared closest toc in the class hierarchy. This relation is the

same as in CLASSICJAVA , except that the method implementation’s
kind is included on the left-hand side of the relation.

Complete type-checking rules for BETAJAVA appear in Figure 11.
The rules include the following judgments:

`p P programP is well-typed
P`d defn classdefnin programP has well-typed methods

P,c`m meth methodmethin classc has a well-typed body
P,Γ `e e : t expressionehas typet in environmentΓ
P,Γ `s e : t the type ofe is a subtype oft in environmentΓ

To summarize the type rules, a program is well-typed if its class
definitions are well-typed and its final expression is well-typed in
an empty environment. A class definition is well-typed when its
methods are well-typed. A method is well-typed when its body is
well-typed in an environment that includes the method’s arguments.
For expressions, anull or new c expression is always well-typed,
andvar is well-typed if it is bound in the environment.

A call to a methodmd is well-typed if the∈P relation finds a consis-
tent declaration ofmd in a particular class. In the case of a normal
method call, the class is determined by the type of the target object.
In the case of asupercall, the class is named in the call, and it must
be the superclass of the type ofthis (where the type ofthis effec-
tively names the class where thesupercall appears). In the case of
an inner call, the classc is named in the call,c must be the type of
this, and the most-specificmd for c must have kindbeta.

4.2 BetaJava Evaluation

The relations∈j
P and ∈b

P capture the essence ofbeta-sensitive

method dispatch (see Figure 12). The∈j
P and∈b

P relations find a
java or beta method only between classesc′ andc′′ in a chain of
class extensions. These relations also accept a default expressione′

to use if no method can be found. (These pieces are assembled as
[c′,c′′](e′) to the right of∈j

P or∈b
P.)

The two relations implement a two-phase search for a method. The
∈b

P relation first attempts to find abeta method, and if the search

fails, it delegates to∈j
P to find ajava method. The∈b

P relation uses
max≤P to find the highestbeta method in a class derivation (i.e.,

closest to the root class), while∈j
P uses min≤P to find the lowest

method (i.e., closest to the instantiated class).

Since it implements the Java-like part of method search,∈j
P relation

is similar to∈P, except that it takes into account an upper boundc′′

and a default expression. The upper bound corresponds to a class
with an inner call, where a legal target method must appear in a
subclass. If no method is found and the default expression is used,
then arbitrary “method” arguments are selected by the relation, with
the constraint that the argument variables do not appear in the ex-
pression.

The∈b
P relation searches primarily for abetamethod below the up-

per boundc′′. If no betamethod is found,∈b
P uses∈j

P to search for
a java method, instead. Meanwhile, the default expression passed
to ∈j

P corresponds to the default expression for aninner call, in
case neither kind of method is found.

Using these two relations, the operational semantics for BETAJAVA
is defined as a contextual rewriting system on pairs of expressions

CLASSESONCE(P) iff (classc · · · classc′ is in P) impliesc 6= c′

OBJECTBUILTIN (P) iff class Object is not inP

METHODSONCEPERCLASS(P) iff
(classc extendsc′ {· · · t1 md1 · · · t2 md2 · · ·} is in P) impliesmd1 6= md2

CLASSESDEFINED(P) iff (c is in P) impliesc = Object or (classc is in P)

c≺P c′ iff classc extendsc′ is in P

〈m,kind,(t1 . . . tn→ t0),(var1, . . .varn),e〉∈∈Pc iff
classc extendsc′ {· · · kind t0 md(t1 var1, . . . tn varn){ e} · · ·} is in P

≤P = transitive–reflexive closure of≺P plusc≤P > and⊥≤P c

<P = irreflexive restriction of≤P

WELLFOUNDEDCLASSES(P) iff ≤P is antisymmetric

EXTENSIONSCONSISTENT(P) iff
(〈m,kind,(t1 . . . tn→ t0),(var1, . . .varn),e〉∈∈Pc1)
and(〈m,kind′,(t ′1 . . . t ′n→ t ′0),(var′1, . . .var′n),e

′〉∈∈Pc2)
implies(c1 6≤P c2 or (t1 . . . tn→ t0) = (t ′1 . . . t ′n→ t ′0))

〈m,kind,(t1 . . . tn→ t0),(var1, . . .varn),e〉 ∈P c iff
c = min≤P({c | c′ ≤P c and〈m,kind,(t ′1 . . . t ′n→ t ′0),(var′1, . . .var′n),e

′′〉∈∈Pc})
and〈m,kind,(t1 . . . tn→ t0),(var1, . . .varn),e〉∈∈Pc

Figure 10. Predicates and relations for BETA JAVA

P`d defn1 . . . P`d defnn P, /0 `e e : t
`p P whereP = defn1 . . . defnn e, CLASSESONCE(P),

OBJECTBUILTIN (P),METHODSONCEPERCLASS(P),
CLASSESDEFINED(P),WELLFOUNDEDCLASSES(P),
and EXTENSIONSCONSISTENT(P)

P, this:c,var1:t1, . . .varn:tn `s e : t0
P,c`m kind t0 md(t1 var1, . . . tn varn){ e} P,Γ `e e : c′

P,Γ `s e : c wherec′ ≤P c

P,Γ `e newc : c P,Γ `e null : c P,Γ `e var : t whereΓ(var) = t

P,Γ `e e : c P,Γ `s e1 : t1 . . . P,Γ `s en : tn
P,Γ `e e.md(e1, . . .en) : t0 where〈md,kind,(t1 . . . tn→ t0),(var1, . . .varn),e0〉 ∈P c

P,Γ `s e1 : t1 . . . P,Γ `s en : tn
P,Γ `e supervar:c.md(e1, . . .en) : t0

whereΓ(var) = c′, c′ ≺P c
and〈md,kind,(t1 . . . tn→ t0),(var1, . . .varn),e〉 ∈P c

P,Γ `s e1 : t1 . . . P,Γ `s en : tn P,Γ `s e0 : t0
P,Γ `e inner var:c.md(e1, . . .en) elsee0 : t0

whereΓ(var) = c
and〈md,beta,(t1 . . . tn→ t0),(var1, . . .varn),e〉 ∈P c

Figure 11. Type-checking rules for BETA JAVA

〈m,var1, . . .varn, ě〉 ∈j
P [c′,c′′](ě′) iff

ĉ = min≤P({>}∪{c | c′ ≤P c andc <P c′′ and〈m,kind,(t ′1 . . . t ′n→ t ′0),(var′1, . . .var′n),e
′′〉∈∈Pc})

and(〈m,kind,(t1 . . . tn→ t0),(var1, . . .varn), ě〉∈∈P ĉ
or (ĉ =>, ě= ě′, andvar1, . . .varn not ine))

〈m,var1, . . .varn, ě〉 ∈b
P [c′,c′′](ě′) iff

č = max≤P({⊥}∪{c | c′ ≤P c andc <P c′′ and〈m,beta,(t ′1 . . . t ′n→ t ′0),(var′1, . . .var′n),e
′′〉∈∈Pc})

and(〈m,beta,(t1 . . . tn→ t0),(var1, . . .varn), ě〉∈∈P č
or (č =⊥ and〈m,var1, . . .varn, ě〉 ∈j

P [c′,c′′](ě′)))

Figure 12. Relations for BETA JAVA evaluation

v = null
| var

E = []
| E.md(e, . . .e)
| v.md(v, . . .v,E,e, . . .e)
| superv:c.md(v, . . .v,E,e, . . .e)
| inner v:c.md(v, . . .v,E,e, . . .e) elsee

P` 〈E[newc],Σ〉 7−→bj 〈E[var],Σ[var← 〈c〉]〉
wherevar 6∈ dom(Σ)

P` 〈E[var.md(v1, . . .vn)],Σ〉 7−→bj 〈E[e[varn← vn] . . . [var1← v1][this← var]],Σ〉
whereΣ(var) = 〈c〉 and〈md,var1, . . .varn,e〉 ∈b

P [c,Object](⊥)
P` 〈E[supervar:c.md(v1, . . .vn)],Σ〉 7−→bj 〈E[e[varn← vn] . . . [var1← v1][this← var]],Σ〉

where〈md, java,(t1 . . . tn→ t0),(var1, . . .varn),e〉 ∈P c

P` 〈E[inner var:c.md(v1, . . .vn) elsee′],Σ〉 7−→bj 〈E[e[varn← vn] . . . [var1← v1][this← var]],Σ〉
whereΣ(var) = 〈c0〉 and〈md,var1, . . .varn,e〉 ∈b

P [c0,c](e′)

Figure 13. Evaluation rules for BETA JAVA

and stores. As in CLASSICJAVA , a storeΣ is a mapping from gen-
eratedvars to class-tagged records. Since the BETAJAVA model
does not include fields or field assignments, the store is technically
unnecessary, but we preserve it for consistency with CLASSICJAVA .

The complete evaluation rules are in Figure 13. Normal method
calls use∈b

P with Object as the upper bound, which finds either
the firstbeta method or the lastjava method. Aninner call also
uses∈b

P , but with the class named in the call as an exclusive upper
bound for finding a method. Asuper call merely uses∈P, as in
CLASSICJAVA , reflecting thatsuperdispatch behaves as in Java.

The static and dynamic nature of method calls is apparent in the
model’s relations. For example, the use of∈P for supercalls relies
on no dynamic information, so it can be computed statically. Sim-
ilarly, the result of∈b

P for a method call can be precomputed if the
type of the object expression includes abeta method; at run-time,
the class will be a subtype of the static type, but the subtype cannot
override thebeta method. In contrast, the result for∈b

P in an inner
call cannot be pre-computed from just the object expression’s type.

4.3 BetaJava Soundness

For a well-typed program, evaluation can either produce a value,
loop indefinitely, or get stuck attempting to call a method ofnull .
The last possibility would correspond to a run-time error in a Java
implementation. These type rules preclude a “method not under-
stood” run-time error, however, which is the essence of soundness
for an object-oriented language.

Theorem 1 (Type Soundness): If̀ p P where P =
defn1 . . . defnn e, then either
• P` 〈e, /0〉 7−→→bj 〈v,Σ〉 for somev andΣ;

• P ` 〈e, /0〉 7−→→bj 〈e′,Σ〉 implies
P ` 〈e′,Σ〉 7−→bj 〈e′′,Σ′〉 for some e′′ and
Σ′; or

• P ` 〈e, /0〉 7−→→bj 〈E[null .md(v1, . . .vn)],Σ〉 for
someE, md, v1, . . .vn, andΣ.

The main lemma in support of this theorem states that each
step taken in the evaluation preserves the type correctness of the
expression-store pair (relative to the program) [26]. Specifically,
for a configuration on the left-hand side of an evaluation step, there
exists a type environment that establishes the expression’s type as
somet. This environment must be consistent with the store.

The soundness proof for CLASSICJAVA [13] is easily adapted to
BETAJAVA . The super rule is unchanged, so the the proof that
a method is found is also unchanged. The normal- andinner-
call forms use the new method-finding relation∈b

P, but ∈b
P finds

a method anytime that∈P finds one, and if different implementa-
tions are found, then EXTENSIONSCONSISTENT(P) ensures that
the types are consistent.

5 Implementation and Experience

MzScheme is the base language for the PLT Scheme programming
suite, which includes DrScheme [11]. MzScheme extends the stan-

dard Scheme language [19] with numerous constructs, including a
Java-like object system.2 The object system is used primarily to
implement DrScheme’s graphical interface.

5.1 Base Implementation

Classes and objects in MzScheme are dynamically typed, which
means that a method call from outside an object typically requires
a dynamic method-name lookup. Self andsuper calls within an
object, however, are always resolved at class-construction time. A
self call uses a virtual method table indirection, and asuper call is
a direct function call. In short, these calls are implemented as in a
statically typed object-oriented language, such as Java.

Classes are values in MzScheme, and the superclass position in a
class declaration can be an arbitrary expression. Consequently, a
mixin can be defined by placing aclassexpression within a proce-
dure that accepts a superclass argument. DrScheme uses this form
of mixin extensively. For example, the “autosave” behavior for a
text editor is implemented as a mixin, so that autosaving can be
added to any class that implements the text-editor interface. Add-
on tools for DrScheme introduce new mixins to extend DrScheme’s
behavior.

The autosave mixin must extend the editor’son-closemethod,
which is called when the editor’s window is closed, so that the au-
tosave timer is disabled. In previous versions of DrScheme, only
Java-style methods were available, so a mixin that overrideson-
closewas obligated to call the superclass method. Failing to call
the superclass method in a tool-introduced extension would create
a bug or resource leak in DrScheme’s core, and such a leak appeared
in practice. Fixing the bug was trivial, but discovering the bug was
difficult, because the mixin implementor naturally concentrated on
testing the mixin’s ownon-closebehavior. Many otheron-...meth-
ods in DrScheme have the same protocol, with the same danger of
errors.

5.2 Adding Inner

An inner method call is implemented in MzScheme using an aux-
illary method table, as described in Section 3.2. Overall, to im-
plement a prototype combination ofbeta and inner, we added or
changed roughly 100 lines of Scheme macro code in the 2800-line
implementation of MzScheme’s object system. Our production ver-
sion added another 150 lines of code.

Before addinginner to MzScheme, each method was declared as
eitherpublic or override. A public declaration indicates that the
method is new in the class, whereasoverride indicates that the
method should be declared already in the superclass (in which case
super can be used). This distinction is statically apparent in Java,
but not in MzScheme, due to MzScheme’s form of classes as values.

After addinginner to MzScheme, a method declaration must de-
clare whether the method is new, overriding, or augmenting, and
also whether subclasses are allowed to override or augment the
method. We defined a different keyword for each combination, as
shown in Figure 14. For example, thepubment keyword means
“new public method, allow augmentonly.”

We are converting many of DrScheme’son-...methods frompublic
to pubment, thus eliminating the potential for bugs in DrScheme’s

2Technically, the object system is an external library.

allow override allow augment
new method public pubment

override existing override overment
augment existing augride augment

Figure 14. Method keywords in MzScheme

core due to a missing call to a superclass method in an add-on tool.
We expect also to simplify the set of methods in our classes, much
asbetamethods eliminated the need for apaintInnermethod in the
example of Section 2.

6 Related Work

Smalltalk [16] was the first language to popularize extension as
overriding behavior. This branch of extension has inspired many
languages, including C++ [25] and Java [17]. Although many of
these languages added additional features such as multiple inheri-
tance and mixins, they all maintained overriding as the only form
of method refinement.

CLOS [18] is another language on the Smalltalk branch of method
extension, but it supports aninner-like call through an:around
qualifier andcall-next-method. Normally, call-next-methodacts
like super in Java. In the case wherecall-next-methodis used in
the least specific:around method, the most specific method with-
out a qualifier will be called. This pattern simulates a singleinner
call, but there is no way to simulate multipleinner calls that move
down a class hierarchy, nor is there a way to usecall-next-method
as asuper-like call and aninner-like call in the same method.

Beta [20] inspired gbeta [9]. In gbeta, methods are treated as a
sequence of method bodies (which gbeta callsmixins); an inner
statement goes from the current method body to the next one in the
sequence. By default, the methods are ordered from the first dec-
laration of the method to the last augmentation, but a programmer
can control the order through specific merging operators [10]. For
example, the programmer can name an individual method body and
later add a new body immediately before or after the named one. A
programmer can also place a newly declared body at the beginning
of the method’s sequence. Clearly, ourbetaandinner declarations
cannot emulate such general merging operations, but gbeta’s merg-
ing operations also cannot implement our semantics. In particular,
gbeta offers no way to ensure that a behavior is never overridden
(as guaranteed by ourbeta).

As far we know, no one has created a simple extension to a Beta-like
language that allows method overriding andsuperwithout allowing
Beta method to be overridden. We also have found no work adding
a simpleinner extension to a Java-like language.

Cook, in his Ph.D. thesis [7], develops a semantic model of inheri-
tance and uses it in the analysis of various programming languages,
including Smalltalk and Beta. He observes that the underlying in-
heritance mechanisms of Beta and Smalltalk are the same. The dif-
ference is in the combination of inherited structure with local def-
initions: Smalltalk and Beta have inverted inheritance hierarchies,
with Beta’s superpatterns acting as subclasses and subpatterns as
superclasses. Cook’s model can express method refinement as ei-
ther overriding and augmenting, but not both behaviors combined.

Clark [6] describes a functional language with primitives for object-
oriented programming. In his language, an extension of a class
is a function of the shadowed definitions available insuper plus
the shadowing definitions available to the superclass ininner. He
briefly addresses the issue of whether a subclass definition should
shadow a superclass definition or vice versa, but only to define the
choice as one or the other.

Bracha and Cook [5] propose mixins as a method of combin-
ing the inheritance mechanisms of Java and Beta. By choosing
the correct composition of mixins, a programmer can achieve ei-
ther Java-like or Beta-like behavior from methods. Ancona and
Zucca [3, 2] similarly demonstrate formally how overriding op-
erators can be expressed in a mixin-based framework, but these
systems do not allow both accessing behavior from a previously
composed mixin’s method and accessing behavior from a succes-
sively composed mixin’s method; the mixin composition operator
determines which will occur. Furthermore, a tedious programming
pattern is required to simulate Java-style and Beta-style extension,
which is only a slight improvement over the programming pattern
required in Java to achieve Beta-style refinement.

Duggan [8] describes a language with mixins that includessuper
and inner constructs, but theinner construct does not correspond
directly to Beta’sinner. Duggan’s system includes an operation to
combine two mixins, and in the case that the mixins both define a
particular method, one definition will override the other. Theinner
keyword allows the overriding definition to make use of the over-
ridden one. Thus,inner provides access to a method of a combined
mixin, rather than a method of a subclass. (Thesuper construct,
meanwhile, has the traditional meaning, referring to the base mixin
from which a mixin inherits.)

Bettini et al. [4] present an extension to Java based on thedeco-
rator design pattern. By relying explicitly on a delegation-style of
method refinement instead of a more specific method-refinement
construct, a class can retain primary control of a method. Their sys-
tem is not a simple extension of Java, but rather requires a program-
mer to adopt a drastically different way of thinking about classes in
order to use their extension. Also, it is unclear how their extension
would work for methods whose return type is notvoid.

The GNU EDMA system [24] supports object-oriented design
through a C library of functions to mimic class and object con-
struction. The library provides specific functions to simulate both
Java-style and Beta-style method refinement, and no doubt a com-
bination can be implemented. It appears that no such combination
has been worked out to date.

7 Conclusion and Future Work

Programmers benefit by having both Java-style method overriding
and Beta-style method augmentation within a single programming
language. We have shown why such a combination is beneficial,
we have demonstrated that our formulation of the combination is
sound, and we have shown that it can be implemented with rela-
tively minor changes to an existing Java-like language.

Although we have mainly considered the combination in the context
of class-based languages, we have also noted that mixins magnify
our interest in the combination. From a mixin perspective, a default
expression forsuper may be as useful as a default expression for
inner, allowing a programmer to apply a mixin to a class without
a base method for asuper call. We see no immediate uses for this

generalization, but we intend to watch for places in DrScheme’s
implementation that could benefit fromsuperdefaults.

The MzScheme changes described in Section 5 are included in ver-
sion 299.10 and later. An implementation of Section 4’s model of
BETAJAVA (using the PLT reduction semantics tool [23]) is avail-
able at the following web site:

http://www.cs.utah.edu/plt/super+inner/

Acknowledgments

We would like to thank Yang Liu for work on a prototype combina-
tion of betaandjava dispatching, Richard Cobbe for his CLASSIC-
JAVA reduction semantics, Erik Ernst for comments and compar-
isons to gbeta’s merging operators, and the anonymous reviewers
for their suggestions.

8 References

[1] P. America. Designing an object-oriented programming lan-
guage with behavioural subtyping. InProc. ACM Inter-
national Workshop on Foundations of Object-Oriented Lan-
guages, volume 489 ofLecture Notes in Computer Science,
pages 60–90. Springer-Verlag, 1991.

[2] D. Ancona and E. Zucca. Overriding operators in a mixin-
based framework. InProc. Symposium on Programming Lan-
guage Implementation and Logic Programming, pages 47–61,
1997.

[3] D. Ancona and E. Zucca. A theory of mixin modules: Basic
and derived operators.Mathematical Structures in Computer
Science, 8(4):401–446, 1998.

[4] L. Bettini, S. Capecchi, and B. Venneri. Extending Java to
dynamic object behaviors. InProc. Workshop on Object-
Oriented Developments, volume 82. Elsevier, 2003.

[5] G. Bracha and W. Cook. Mixin-based inheritance. InProc.
Joint ACM Conf. on Object-Oriented Programming, Systems,
Languages and Applications and the European Conference on
Object-Oriented Programming, Oct. 1990.

[6] A. Clark. A layered object-oriented programming language.
GEC Journal of Research, 11(2):173–180, 1994.

[7] W. R. Cook.A Denotational Semantics of Inheritance. Ph.D.
thesis, Department of Computer Science, Brown University,
Providence, RI, May 1989.

[8] D. Duggan. A mixin-based, semantics-based approach to
reusing domain-specific programming languages. InProc.
European Conference on Object-Oriented Programming, vol-
ume 1850 ofLNCS, pages 179–200, Berlin Heidelberg, 2000.
Springer-Verlag.

[9] E. Ernst. gbeta – a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD the-
sis, Department of Computer Science, University of Aarhus,
Århus, Denmark, 1999.

[10] E. Ernst. Propagating class and method combination. In
Proc. European Conference on Object-Oriented Program-
ming, LNCS 1628, pages 67–91. Springer-Verlag, June 1999.

[11] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and
M. Felleisen. DrScheme: A pedagogic programming environ-
ment for Scheme. InProc. Symposium on Programming Lan-

guage Implementation and Logic Programming, pages 369–
388, Sept. 1997.

[12] M. Flatt. PLT MzScheme: Language manual. Technical Re-
port TR97-280, Rice University, 1997.

[13] M. Flatt. Programming Languages for Reusable Software
Components. PhD thesis, Rice University, 1999.

[14] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. InProc. ACM Symposium on Principles of Program-
ming Languages, pages 171–183, Jan. 1998.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[16] A. Goldberg and D. Robson.Smalltalk 80: The Language.
Addison-Wesley, Reading, 1989.

[17] J. Gosling, B. Joy, and G. Steele.The Java Language Spec-
ification. The Java Series. Addison-Wesley, Reading, MA,
USA, June 1996.

[18] S. E. Keene.Object-Oriented Programming in Common LISP,
a Programmer’s Guide to CLOS. Addison-Wesley, 1988.

[19] R. Kelsey, W. Clinger, and J. Rees (Eds.). The revised5 re-
port on the algorithmic language Scheme.ACM SIGPLAN
Notices, 33(9), Sept. 1998.

[20] O. Lehrmann Madsen, B. Møller-Pedersen, and K. Nygaard.
Object-oriented programming in the BETA programming lan-
guage. ACM Press/Addison-Wesley, 1993.

[21] B. H. Liskov and J. Wing. Behavioral subtyping using in-
variants and constraints. Technical Report CMU CS-99-156,
School of Computer Science, Carnegie Mellon University,
July 1999.

[22] B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Computing Systems, November
1994.

[23] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen.
A visual environment for developing context-sensitive term
rewriting systems. InProc. International Conference on
Rewriting Techniques and Applications, June 2004.

[24] D. M. Oliveira. GNU EDMA.
http://www.gnu.org/software/edma/edma.html.

[25] B. Stroustrup.The C++ Programming Language. Addison-
Wesley, third edition, 2000.

[26] A. Wright and M. Felleisen. A syntactic approach to type
soundness. Technical Report 160, Rice University, 1991.In-
formation and Computation, volume 115(1), 1994, pp. 38–94.

