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ABSTRACT
As a value flows across the boundary between interoperat-
ing languages, it must be checked and converted to fit the
types and representations of the target language. For simple
forms of data, the checks and coercions can be immediate;
for higher order data, such as functions and objects, some
must be delayed until the value is used in a particular way.
Typically, these coercions and checks are implemented by an
ad-hoc mixture of wrappers, reflection, and dynamic predi-
cates. We observe that 1) the wrapper and reflection oper-
ations fit the profile of mirrors, 2) the checks correspond to
contracts, and 3) the timing and shape of mirror operations
coincide with the timing and shape of contract operations.
Based on these insights, we present a new model of interop-
erability that builds on the ideas of mirrors and contracts,
and we describe an interoperable implementation of Java
and Scheme that is guided by the model.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages, Design

Keywords
Interoperability, mirrors, contracts, Java, Scheme

1. INTRODUCTION
No single programming language is best for all tasks. Even

within a single application, different parts of a large program
might be best implemented with different kinds of languages.
Some parts might be best implemented with objects in a
statically typed language, for example, while other parts
might be best implemented with functions in a dynamically
typed language.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05, October 16–20,2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

Operating systems and virtual machines easily accommo-
date multiple programming languages across multiple ap-
plications. The limiting factor for mixing languages within
a single application, however, is the granularity at which
the languages can interoperate. A byte stream or a COM-
style component model, for example, supports only coarse-
grained interoperability, because all data exchanged between
languages must be explicitly marshaled to a universal data
format. We seek more fine-grained support, where the values
of each language can be used directly in the other language.

In this paper, we report on a design and an implemen-
tation for fine-grained interoperability between a statically
typed, object-oriented language and a dynamically typed,
functional language. Our experiment is based specifically
on Java [21] and PLT Scheme [16], but we describe an ap-
proach to interoperability that is essentially independent of
the two languages, and that can be understood as a combi-
nation of mirrors [9] and contracts [13, 15].

In general, our approach requires extending both lan-
guages. We make the languages’ dynamic semantics match
by adding datatypes and constructs that enable each lan-
guage to express operations central to the other language.
In particular, we add a notion of objects and exceptions to
Scheme, and we extend Java with a notion of functions as
values and with continuations. To make the static seman-
tics of the two languages match, we add a notion of dynam-
ically typed expressions to Java (forcing a static type sys-
tem on Scheme would defeat the point of interoperability).
This change makes Java more compatible with Scheme, and
also compatible with languages like Smalltalk and Python.
Furthermore, our approach to dynamic typing within Java
should work for other statically typed languages.

Given more than a few programming languages, we cannot
expect to modify all the languages to include constructs from
all the others. Our goal is not to define a universal interface
that must cater to a least-common denominator. Instead,
we explore the potential for direct interoperability between
specific languages.

Dynamic Typing in Java
Java supports limited dynamic typing through a catch-all
Object type and run-time casts. These constructs can-
not support more general dynamic operations, including dy-
namic method calls as found in languages like Smalltalk [20]
and Python [36]. In Java, a method invocation is always
tied to the static type of the object; this type must be
known to contain the method, with the proper signature. In
Smalltalk, an object is an instance of a particular class, but



methods are not statically associated with classes. There-
fore, if the class of an object contains the method, it can
always be called. Similarly, primitive operations in Java,
such as +, are statically resolved to operations on specific
types, such as int or double, but in Python and Scheme,
such primitive operations must dispatch based on the run-
time arguments.

To support Smalltalk and Python-like method dispatch in
Java, we must add a new form of method invocation. Instead
of adding special syntax for such calls, however, we choose
to designate certain expressions as dynamically typed, and
then treat method calls with dynamic targets as the new
kind of method call. This naturally extends to treating a +

expression with dynamic sub-expressions as a dynamically
typed addition.

Concretely, we add a dynamic keyword for bindings. We
use dynamic in the type position for a binding, but as a
type, dynamic serves as little more than an alias for Object.
The more important role of dynamic is its effect on method
calls and other primitive operations. Consider the following
example.

Food getFavoriteFood(dynamic fish, Food[] kinds) {
if (fish.hasFavorite())

return new Food(fish.getFavorite());
else

return fish.chooseFavorite(kinds);
}

The dynamic keyword indicates that uses of fish are dy-
namically typed. In particular, the use fish.hasFavorite()
does not rely on declaring any class or interface that con-
tains the hasFavorite method. Instead, the object is in-
spected at run-time to determine whether it implements a
hasFavorite method of no arguments. If so, the method
is called. Meanwhile, the expressions fish.getFavorite()

and fish.chooseFavorite(kinds) imply separate checks for
getFavorite and chooseFavorite methods, but only if those
expressions are evaluated. In fact, there may exist no class
that includes all of the methods hasFavorite, getFavorite,
and chooseFavorite.

One possible implementation of dynamic is to use the Java
reflection API. Indeed, reflection is a popular way to im-
plement interoperability between Java and many other lan-
guages. Building on reflection has a number of drawbacks,
however. It interferes with analysis, constrains the compiler,
and requires extra run-time support that may go unused.

In contrast, an explicit dynamic form gives analysis tools
and the compiler information about where dynamic features
are used and how they are used. This information allows
analysis tools to be more precise, and it gives the compiler
writer more choice in implementations. For example, the
compiler might implement dynamic bindings with a different
kind of value than Object (inserting coercions along with
dynamic checks), which might limit the impact of dynamic
operations on the run-time system.

This insight is exactly the motivation behind mirrors as a
model for reflection [9], instead of building Java-style reflec-
tive operations into a language’s core. Our dynamic form
can be understood partly in terms of mirrors.

Mirrors and Reflection
Support for reflection is usually implemented with a com-
bination of virtual-machine support and a reflection API,
where reflection support is built into every declared class.
A mirror-based implementation of reflection, in contrast,

supports reflection operations separatly from each declared
class.

One way to implement mirror-based reflection is to gen-
erate a mirror class for each declared class. An instance of
the mirror class embeds the base objects, and it contains all
information that is needed to support reflection.

For example, consider the following Food class.

class Food {

Integer amount;

}

In a Java-style reflective system, the Food class automati-
cally includes methods to support reflection operations.
With mirror-based reflection, the Food class contains no such
methods, and reflection operations are instead supplied by
a class like FoodMirror:

class FoodMirror extends ClassMirror {

Food f;

Object getField( String name ) {

if (name.equals("amount"))

return f.amount;

...

}

}

A mirror encapsulates all reflection operations, it is separate
from the base object, and its structure reliably reflects the
structure of the core object [9]. All of these properties are
needed for implementing dynamic, but we need additional
facilities for checking types.

Static Typing with Dynamic Operations
Beyond disambiguating method calls and primitive opera-
tions, Java’s type system ensures that primitive operations
are not misapplied. In order to preserve the type system’s
guarantees for dynamically typed objects, we must protect
operations from misuse by adding suitable checks around
dynamic expressions.

For example, in the program
class Food {

int amount;
Date expiration;

boolean isSuitable(dynamic fish) {
return fish.canEat(amount)

&& (new Date()).before(expiration);
}

}
the type system requires that the call fish.canEat(amount)
produce a boolean. Thus, dynamic checks must not only
ensure that fish contains a canEat method of one argument,
but also that an integer is allowed as the argument, and that
the result is a boolean.

In this case, checks inserted durring compilation around
the fish.canEat call ensure that the type system’s assump-
tions are validated at run time. When objects are passed
into a dynamic method or returned as a dynamic result, im-
mediate checks are insufficient for guaranteeing type safety.
Roughly, objects that are passed into a dynamic context
must be wrapped to ensure that, for subsequent method in-
vocations, the arguments are consistent with the method’s
declared types. The methods may, in turn, involve dynamic

arguments or result, so that a chain of wrappers may be
necessary.



Adding dynamic to Java thus requires a complex array of
checks and coercions to be inserted by the compiler, but we
can make sense of these checks by building on our previous
work for contracts [13, 15]. Contracts introduce run-time
checks on the uses of values, including higher-order functions
in Scheme.

Contracts in a Dynamic Language
In a language like Scheme, arguments to primitive operators
are always checked dynamically, so the language is safe even
without type declarations. Sometimes, however, a program-
mer would like to enforce type-like constraints that raise
an error before the program misapplies operators, providing
better error locality and a clear report of the fault.

For example, suppose a Scheme library includes the fol-
lowing function.

;; save-fish : integer string -> void
(define (save-fish fish-id data)

(write data (open-output-file
(format "fishes/~a.txt" fish-id))))

The comment in the first line indicates that this function
is intended to be used with an integer as the first argu-
ment. The integer is used to generate a filename using the
sprintf-like format function, where the "~a" format direc-
tive converts any kind of value to a string.

If a client calls save-fish with a value other than an
integer, the resulting filename might be invalid, or it might
access files that are intended to be private. For example,
someone might call save-fish with "../../passwords" as
the second argument.

To protect against such problems, the Scheme program-
mer can insert an explicit check for safe-fish’s argument.

(define (save-fish-checked fish-id data)
(check integer? fish-id)
(save-fish fish-id data))

;; export save-fish-checked to clients as save-fish

As we saw with Java, sometimes no immediate check suffices.
For example, in

;; load-interactive : (-> integer) -> string
(define (load-interactive get-id)

(let ([fish-id (get-id)])
(read (open-input-file

(format "fishes/~a.txt" fish-id)))))

the implementor of load-interactive not only insists that
get-id is a function, but also that the function produces
an integer. Simply checking (procedure? get-id) does not
ensure that the function get-id produces an integer, and
a will-return-integer? function cannot be implemented
in general (without solving the halting problem). Thus,
load-interactive must check the result of get-id before
proceeding. To avoid cluttering load-interactive with
checks, the checks can be applied by wrapping a given get-id

with a checked version.

(define (load-interactive-checked get-id)
(check procedure? id)
(define (checked-get-id)

(let ([id (get-id)])
(check integer? id)
id))

(load-interactive checked-get-id))
;; export load-interactive-checked to clients
;; as load-interactive

Clearly, implementing these checks is tedious, and the checks
can be implemented in different ways that might expose dif-
ferent optimizations to the compiler (e.g., eliminating re-
dundant checks) or might allow better error messages.

For these reasons, PLT Scheme programmers do not write
checks directly, but instead use a construct similiar to an
apply-contract form.

(define save-fish-contract
(integer string . -> . void))

(define save-fish-checked
(apply-contract save-fish-contract

save-fish))

(define load-interactive-contract
((-> integer) . -> . string))

(define load-interactive-checked
(apply-contract load-interactive-contract

load-interactive))

Contracts more clearly express the intended checks, and the
compiler ensures that the intended checks are actually ap-
plied (in an efficient way, and with clear error messages).
In other words, after declaring contracts, the programmer
can think of the function arguments as having the declared
“types,” although the type requirements are enforced dy-
namically.

Contracts and Static Types
The Scheme-oriented view of contracts extends naturally to
object-oriented programming [15]. Requiring explicit con-
tracts to support fine-grained interoperability places too much
burden on the programmer, as many checks will be needed
to ensure safety. Further, for type-safety to be maintained,
no contract can be forgotten, which we cannot expect of
programmers.

Therefore, we exploit Java’s type system to reliably infer
and insert all necessary contracts automatically. For exam-
ple, as we saw before, in the method

boolean isSuitable(dynamic fish) {
return fish.canEat(amount)

&& (new Date()).before(expiration);
}

the type system requires that the call fish.canEat(amount)
produces a boolean, etc. We can express all of these type
requirements as an interface-like contract.

contract CanEatContract { boolean canEat(int amt); }

The method name, argument type, and return type in this
contract can all be inferred from the context of the call
fish.canEat(amount). Given this contract, a compiler could
expand the original method to include an explicit contract
application, as follows.

boolean isSuitable(dynamic fishOrig) {
CanEatContract fish =

applyContract(CanEatContract, fishOrig);
return fish.canEat(amount)

&& (new Date()).before(expiration);
}

We explore the details of such compilation more precisely in
Section 2.

Roadmap
Interoperability with Scheme motivates adding dynamic into
Java, and it inspires our use of contract annotations to pre-
serve type safety, but dynamic in Java is useful even without
Scheme interoperability.

Meanwhile, making Java integrate smoothly with Scheme
involves many issues besides dynamic expressions in Java,



and our detailed implementation experience is closely tied
to interoperability with Scheme.

We therefore stage our presentation in four layers:

• Section 2 sketches an implementation of dynamic by
converting a Java program with dynamic into a plain
Java program with explicit mirror classes. This im-
plementation sketch provides a flavor of the coercions
and checks that are introduced by a contract system.

• Section 3 considers an application that is implemented
with a combination of Java and Scheme. The example
highlights how interoperability can be understood in
terms of contracts, and it demonstrates how contracts
provide a useful common vocabulary for dynamic ex-
pressions across languages.

• Section 4 discusses design details specific to making
Scheme and Java interoperate smoothly, such as how
Java classes are mapped to specific module and class
constructs in PLT Scheme.

• Section 5 discusses the implementation of the design
from Section 4. Our implementation [24] compiles Java
to PLT Scheme, so that we can exploit all of our exist-
ing infrastructure for programming environments [14].

2. IMPLEMENTING
DYNAMIC EXPRESSIONS

A compiler for Java with dynamic must choose a uniform
representation for dynamic values. One possible implemen-
tation is a conversion to plain Java: use a Mirror interface
in place of dynamic, and create a Mirror implementation for
each class, interface, and primitive type in the original pro-
gram (if its instances might flow to a dynamic expression).

2.1 Adding Mirrors
Returning to our example,

class Food {
int amount;
Date expiration;

boolean isSuitable(dynamic fish) {
return fish.canEat(amount)

&& (new Date()).before(expiration);
}

}
the converted signature for the isSuitable method using
Mirror is

boolean isSuitable(Mirror fish)

If an expression contains a call of isSuitable with a non-
dynamic argument,

food.isSuitable(new Shark())

the compiler must insert a coercion to the argument’s mir-
ror.

food.isSuitable(new SharkMirror(new Shark()))

Given a Shark declaration
class Shark {

....
boolean canEat(int amt) { .... }

}
the compiler generates a mirror class.

class SharkMirror implements Mirror {
final Shark orig;
SharkMirror(Shark _orig) { orig = _orig; }
...

}

The main operation that the compiler needs on the Mirror

interface is call, which dynamically locates a method by
name and argument count, and then applies an array of
Mirror values to produce a Mirror result. Thus, the imple-
mentation of SharkMirror includes a call method as fol-
lows.

class SharkMirror implements Mirror {
...
Mirror call(String name, Mirror[] args) {

if (name.equals("canEat") && (args.length==1)) {
....

} else
raise new Error("method not understood");

}
}

To implement the dynamic call, the call method of the
class SharkMirror must unpack its arguments (raising an
error if an argument does not have a suitable type), call the
original method, and then pack the result as a Mirror.

Mirror call(String name, Mirror[] args) {
if (name.equals("canEat") && (args.length==1)) {

int amt;
if (args[0] instanceOf IntegerMirror)

amt = ((IntegerMirror)args).intVal();
else

raise new Error("bad argument");
Boolean result = orig.canEat(amt);
return new BooleanMirror(result);

} else
raise new Error("method not understood");

}
This Mirror implementation includes dynamic checks that
are just like contract checks. The check that the argument is
an integer is like the check in save-fish-checked. The coer-
cion of result to a mirror is much like wrapping get-id with
check-get-id; it can be viewed as applying the contract
“must be used as an integer” to the result of the method.

These contracts are driven by the Shark class declaration.
The canEat method is declared to accept a single int ar-
gument and return a boolean result, so the "canEat" case
in SharkMirror’s call checks for an integer and wraps its
result as a boolean.

2.2 Adding Unmirrors
In our Scheme examples, only definitions acquire con-

tracts. In Java with dynamic, variable declarations and
dynamic expressions both acquire contracts. For example,
the call fish.canEat(amount) implies a contract (which we
named CanEatContract from the Introduction) on fish.

Taking representation issues into account, the call to
canEat must also coerce arguments to Mirrors and coerce
the result from Mirror. Just as for declaration-side contracts
and coercions, user-side contracts and coercions can be nat-
urally packaged together in a compiler-generated Unmirror
class, as follows.

....
boolean isSuitable(Mirror fishOrig) {

return new CanEatUnmirror(fishOrig).canEat(amount)
&& new Date().before(expiration);

}
....
final class CanEatUnmirror {

Mirror m;
CanEatUnmirror (Mirror m) { m = m; }

boolean canEat(int amt) {
Mirror[] args = new Mirror[1];
args[0] = new IntegerMirror(amt);

/∗ Might raise a dynamic exception ∗/



Mirror result = m.call("canEat", args);

if (result instanceOf BooleanMirror)
return((BooleanMirror)args).booleanVal();

else
raise new Error("bad result");

}
}

As in SharkMirror, the checks and coercions in the class
CanEatUnmirror are based on the static types surrounding
the fish.canEat(amount) call. Specifically, the argument is
packaged using IntegerMirror because the type of the ar-
gument amount is int. The result is checked to be a boolean

value because the result of fish.canEat(amount) is used as
a boolean.

In general, inference for checks and coercions involves a
straightforward traversal of a program’s expression. Bind-
ing positions, return positions, and conditional-test posi-
tions impose a specific type on dynamic expressions, as do
argument positions of normal Java method calls for non-
overloaded methods. If the context of a dynamic expression
does not impose a specific type, then it is treated as dynamic.
Finally, for dynamically typed method calls, arguments with
specific types impose requirements on the method.

The generated CanEatUnmirror class above has a final

declaration to emphasize that it is completely under the con-
trol of the compiler, which might choose to eliminate the in-
stance and inline its method call. An inlining optimization
produces checks immediately around the dynamic canEat

call, which is what a programmer would intuitively expect.
In contrast, the IntegerMirror object cannot be eliminated
in general; it encapsulates obligations for a dynamic imple-
mentation of canEat, to ensure that canEat uses the integer
safely. This wrapper is consistent with the intuition that
statically typed objects passed to dynamic code must be
wrapped with checks to guard the object.

2.3 General Dynamic Expressions
Looking back at the expansion of isSuitable, we can see

that it does not include any reference to Shark, because
the original method includes no reference to Shark. Indeed,
the method may be called with any kind of object, and it
will succeed as long as the object’s class provides a suit-
able canEat method. The object might, for example, be an
instance of the following Tuna class.

class Tuna {
dynamic size;
boolean finicky = false;

dynamic canEat(dynamic food) {
if (finicky)

return food.isTasty();
else

return food < size;
}

}
The canEat method for the Tuna class potentially uses its

argument as a kind of food, instead of an amount of food.
This method should nevertheless work as an argument to
Food’s isSuitable method, as long as the Tuna instance
is not finicky, because this canEat’s argument is declared
dynamic. If the tuna is finicky, however, the guarded code
detects the error and throws an exception.

The delayed checking of canEat’s argument is reflected in
its Mirror by a lack of checking or coercion of the arguments
in the call method.

class TunaMirror implements Mirror {
Tuna orig;
...
Mirror call(String name, Mirror[] args) {

if (name.equals("canEat") && (args.length==1)){
return orig.canEat(args[0]);

} else ....
} else

raise new Error("method not understood");
}

}
The implementation also has no checking or coercion for

the result of canEat, because the original return type is de-
clared dynamic.

This strategy for dynamic method calls extends naturally
to other kinds of dynamic expressions, such as binding a
dynamic value to a statically typed variable, or adding a
double to a dynamic expression. For example, given the
interface

interface OceanFish { double weight(); }

the method
double totalWeight(dynamic fish,dynamic waterWt) {

OceanFish cf = fish;
return cf.weight() + waterWt;

}
expands as

double totalWeight(Mirror fish, Mirror waterWt) {
OceanFish cf =

(new OceanFishUnmirror(fish)).val();
return cf.weight()

+ new DoubleUnmirror(waterWt).val();
}

....
class OceanFishUnmirror {

Mirror m;
OceanFishUnmirror(Mirror _m) { m = _m; }
OceanFish val() {

if (m instanceOf OceanFishMirror)
return ((OceanFishMirror)m).oceanFishVal();

else
raise new Error("not an OceanFish");

}
}
class DoubleUnmirror {

Mirror m;
DoubleUnmirror(Mirror _m) { m = _m; }
Double val() {

if (m instanceOf DoubleMirror)
return ((DoubleMirror)m).doubleVal();

else
raise new Error("not a double");

}
}

Supporting overloaded operators like + with multiple dy-
namic arguments is only slightly more complex.

2.4 Checks and Coercions
Our implementation sketch for dynamic demonstrates the

two main ingredients in our model of interoperability. Mir-
rors expose information about a class in a way that is more
explicit than Java reflection and more under the control of
the compiler. Contracts correspond to wrappers that enforce
proper use of an object’s methods. Composing these two
operations provides a compact and understandable model
of interoperability.

3. INTEROPERABILITY
The previous section shows how mirrors and contracts can

express the dynamic checks and coercions that are neces-
sary to preserve Java’s type safety in the presence of dy-



;;Implement server functionality
(define (add servlet) ....)
(define (send obj) ....)
(define stylesheets ....)

;;Define contracts for the arguments to server functions
(define servlet

(object-contract
(ok (url . -> . boolean))
(page (url . -> . html))))

(define dialog
(object-contract
(page (-> html))
(parse (form-response . -> . any))))

;;Export server functionality with contracts
(provide/contract [add (servlet . -> . void)])
(provide/contract [send (dialog . -> . any)])
(provide/contract [stylesheets bool])

Figure 1: Server API from Scheme

namic operations. We now show how dynamically enforced
contracts preserve Java’s type safety in Scheme, and how
Scheme’s contracts are preserved in Java programs. In ad-
dition, blame assignment [13] pinpoints the source of the
error when Scheme code abuses a Java value or when Java
code abuses a Scheme value.

3.1 Server and Servlets
We begin by illustrating the need for contracts with an

example. To implement a web-based service, a programmer
might benefit by using both Scheme and Java. Scheme pro-
vides continuations, which are convenient for implementing
web sessions that span requests to the server [22, 33]. Java,
meanwhile, supports many existing libraries for manipulat-
ing HTML, and specific request handlers can be conveniently
packaged as Java-style objects.

Figure 1 presents the interface for a Scheme-implemented
server module. The add and send functions are implemented
in terms of objects:

• The add function registers a servlet to handle requests
to a particular URL. The servlet is represented by
an object that matches the contract servlet. Such
an object has two methods: ok, that checks whether
this servlet should handle a request at the given URL,
and page, that generates a page to satisfy the request.
The contracts url and html are defined elsewhere and
match standard data structures for urls and html.

• The send function uses continuations to implement an
interactive dialogue with a web client. It takes an ob-
ject that matches the dialog contract to represent the
interaction. This object’s page method generates a
“question” web page to send to the client, and when
the client responds, the parse method is called to parse
the HTTP-delivered response string into a value rep-
resenting the client’s response. (Like url and html,
form-response is defined elsewhere. It matches the
bindings provided to a CGI script.) The result of
parse becomes the result of the send function.

The variable stylesheets indicates if the server is config-
ured to support style sheets.

The contract for add specifies that it accepts one argu-
ment, matching the servlet contract, and it returns noth-
ing. The contract for send indicates that it accepts one ar-
gument, this time matching the dialog contract, and it can
return any value. Finally, stylesheets must be a boolean.
The servlet contract matches objects with two methods.
The first method, ok, accepts a url and returns a boolean,
and the second method, page also accepts a url, but re-
turns html. Similarly, dialog has two methods: page that
accepts no arguments and returns html and parse, from
form-response to any, allowing any value as its result.

Java programmers can use the Scheme server to imple-
ment their web pages. With the dynamic extension, this
can be done without additional API calls or marshaling.
For example, a simple servlet is implemented in Java plus
dynamic as follows.

class Hello {
boolean ok(dynamic u) {

return "hi".equalsIgnoreCase(u.target());
}
HTML page(dynamic u) {

return new HTML("Hello World!");
}

}
This servlet presents a simple page, which has no in-

teractive content, containing the classic greeting. The ok

method of Hello assumes that the given value for u is an
object containing a target method, which will return the
end destination of a URL (i.e. returning "hi" for the URL
"www.server.com/hi"). The page method does not provide
any links or requests for further information, so the dynamic
argument is not used.

This servlet is registered with the server using the add

function from the Scheme server library:
add(new Hello());

Our second example, in Figure 2, uses the send function
to create an interactive web session. The following Welcome

servlet asks the client for a name, and then responds with
a customized “Hello” web page using the response. If the
server supports stylesheets, a fancier web page is generated.
The servlet programmer knows that the String return type
of send will be satisfied, because the parse method of Who
returns a String.

A revised Welcome servlet can use send to get a number
from a second interaction.

class Welcome {
....
HTML page(dynamic u) {

String name = send(new Who());
int num = send(new FavNum());
....

}
}

class FavNum {
HTML page(dynamic u) {
return new HTML(...."What’s your favorite number?"

....);
}
int parse(dynamic a) {

return a.extractValue("num");
}

}
The expected return value of the second use of send is

different from the first use, where the value is stored to an



class Welcome {
....
HTML page(dynamic u) {
String name = send(new Who());
if (stylesheets)

return new HTML(....)
else

return new HTML(...., "Hi " + name));
}

}
class Who {

HTML page(dynamic u) {
return new HTML(.... "What’s your name?" ....

new Form("name", ...) ....
new Button("Submit", ... u ...));

}

String parse(dynamic a) {
return a.extractValue("name");

}
}

Figure 2: Interactive Servlet

int instead of a String. Again, the programmer knows that
the expectation will be satisfied, because FavNum’s parse

produces an int.
A sophisticated whole-program analysis might be able to

discover, as the programmer knows, that the String and
int results from the two different send calls are correlated
with the String and int results from the Who and FavNum

classes. Dynamically checking the results, however, allows
this program to run safely even without such analyses.

3.2 Origin of Contracts
The context of each use of a dynamic variable dictates

its contract. For example, the implementation of ok in
Hello expects u to be an object that has a String-producing
target method. The compiler determines this expectation
by examining the context surrounding the use of u. The
attempt to dispatch a method indicates that this use of u
must be an object. The method name used and the num-
ber of arguments supplied provide the information regarding
what method the object must have. The implementation of
equalsIgnoreCase specifies that the argument must be a
String, which provides the final piece of information re-
garding the expected types of u.

In all circumstances, the use of a dynamic variable pro-
vides the information necessary to derive a contract for it.
For example, the conditional position in an if must be a
boolean, the right-hand side of an assignment must match
the type of the variable in the left-hand side, the argument
to a cast must match the cast type, a constructor’s actual
arguments must match the constructor’s formal arguments,
and primitive operations must all have sensible inputs. If
a dynamic variable occurs in the argument to a method in-
vocation, the class or interface of the receiver dictates the
type. If, however, a dynamic variable occurs as the receiver
of a method, the contract contains a single method whose
arguments match the argument types of the method invo-
cation. If both the receiver and the arguments to a method
invocation have type dynamic, no contract is placed on the
arguments, and the receiver’s contract has a single method
whose arguments have the any contract.

Contracts additionally arise from declarations found within

Scheme libraries, such as the contracts added in the servlet
library. These contracts are attached to references to the
Scheme variables.

3.3 Contract and Evaluation Notation
To discuss the coercions and checks performed by con-

tracts without committing to an implementation strategy,
we show contracts in superscripts above contracted expres-
sions. For the ok example, from Section 3.1, we write an
abstract targetMethod contract for the use of u and apply it
as follows.

targetMethod = object{target : (→ string)}

boolean ok(dynamic u) {
return "hi".equalsIgnoreCase(utargetMethod.target());

}

In this notation, targetMethod provides a name for the
contract, object constructs a contract for an object with the
given methods. The methods are specified by name target,
with the contract following the colon for the method argu-
ments (if the method has arguments) appear to the left of
the →, and the result appears to the right.

We show evaluation via algebraic simplification of expres-
sions, much like earlier models of Java [18, 27]).

3.4 Checking Contracts
Contract enforcement occurs during program execution.

When a contracted value is encountered, the actual val-
ues are checked against the expectations represented by the
contract. To explain how the presence of contracts affect
evaluation, we first examine the evaluation of contracts in
a simple setting. In particular, we first consider dynamic
variables that are bound to values from Scheme, where the
contract inferred from the type context in Java matches the
contract written by the Scheme programmer.

First, imagine that the dynamic variable stylesheet is
used in a context expecting a boolean value. Assuming that
the actual value of stylesheet is false, the evaluation first
looks up value, then checks the contract against the value.
Since the contract matches the value, the contract is dis-
carded

if (stylesheetbool) ....

⇒ if (falsebool) ....
⇒ if (false) ....

If, instead, the value associated with stylesheet is 3, the
contract checker detects and reports an error instead of dis-
carding the contract.

if (stylesheetbool) ....

⇒ if (3bool) ....
⇒ error

In this case, the blame for the contract violation lies with
Scheme, since Scheme promised that stylesheet would be
a boolean.

Wheras simple contracts like bool can be checked imme-
diately, not all contracts can be checked right away. To
demonstrate, we return to our servlet example. Consider
the call to the add function:

add(new Hello());

where the function add is a dynamic variable. The contract
for this use is



hello = object{ ok : (any → bool)
page : (any → html) }

add(hello→void)(new Hello());

In this case, we cannot determine if add’s arguments match
the contract by considering only add itself. We can, how-
ever, check that add is a function and that it has the right
arity. Afterward, we distribute the argument and result con-
tracts to the arguments and to the result of the application,
as follows.

add(hello→void)(new Hello())

⇒ add(hello→void)(objref)

⇒ (add(objrefhello))void

⇒ ....

Assigning blame for such contracts is more complex than
for simple contracts like bool. Clearly, if add is not a func-
tion, Scheme must be to blame. If the argument to add is
not an html object, however, Java must be to blame, since
the html objects flow from Java to Scheme. Similar rea-
soning shows that if the results of add do not match the
contract, Scheme must be to blame, since Scheme is supply-
ing the objects to Java. In general, the language that is in
control of the evaluation at the point where values pass be-
tween languages must be responsible for those values. Since
function arguments flow in the opposite direction from func-
tion results, the guilty party for a function argument is the
opposite of the guilty party for a function result.

To show blame more clearly during evaluation, we anno-
tate contracts that blame Java with JS: and contracts that
blame Scheme with SJ:. We put both letters into each ex-
ponent to capture all of the potentially guilty parties for
each contract, even though the evaluation will arrange to
have the guilty party first in each exponent at the point the
violation is discovered. We also show the annotations be-
ing pushed into the arrow contract as a separate step that
corresponds to the check that a value is a procedure of the
right arity.

The following shows the earlier example with the addi-
tional annotations. In the transition from the second step
to the third, the annotations are pushed into the arguments
and results of add’s contract. This corresponds to the dis-
covery that add is indeed a function.

addSJ:(hello→void)(new Hello())

⇒ addSJ:(hello→void)(objref)

⇒ add(JS:hello→SJ:void)(objref)

⇒ (add(objrefJS:hello))SJ:void

⇒ ....

Like procedure contracts, object contracts must also be
distributed to method arguments and results during method
invocation. For example, when objref flows into Scheme,
it maintains the hello contract until Scheme invokes one of
its methods. At that point, the any and html contracts
distribute to the method invocations arguments and result.

(send objrefJS:hello page url)

⇒ (send objref page urlSJ:any)JS:html

⇒ ...

Consequently, url values that flow from Scheme into Java
must respect Java’s type discipline, as enforced by the con-
tract checker.

The contract inferred from Java’s type context may not
always match the contract written by the Scheme program-
mer. Still, we can use the same basic technique for checking

such mismatched contracts. Instead of using a single con-
tract to enforce both Java’s and Scheme’s obligations how-
ever, we use two contracts: one synthesized from Java’s type
context, and one extracted from Scheme’s provide/contract
form. Since the two contracts have different sources, there
are now three potential sources of an error: Java does not
meet Scheme’s contract, Scheme does not meet Java’s con-
tract, or the two contracts do not match. To capture the
third kind of blame, we imagine a third party, named C,
that mediates the composition and is blamed for any mis-
match between the Java-side contracts and the Scheme-side
contracts.

As an example, imagine that the Java program contains
1 + add(new Hello())

The context of add dictates that its contract must be
hello → int but Scheme has promised hello → void.

To enforce these two contracts on the same value, we put
them both into the exponent on add, using C as the opposite
party for both the Scheme contract and the Java contract:

1+addSC:(hello→void),CJ:(hello→int)(new Hello())

Since the value initially flows from Scheme to Java, we put
SC on the Scheme contract, indicating that Scheme is ini-
tially responsible for the value itself, and we put CJ on
the Java contract, indicating that Java is responsible for
arguments flowing into the value. Following the same sim-
plification steps as before, but with the new contracts, we
get

⇒ 1+addSC:(hello→void),CJ:(hello→int)(objref)

⇒ 1+add(CS:hello→SC:void),(JC:hello→CJ:void)(objref)

⇒ 1+(add(objrefJC:hello,CS:hello))SC:void,CJ:int

At this point, the two contracts on objref are identical,
so we know that the composer can never be blamed. The
contract on the results, however, are different. Assuming
that add matches its Scheme contract, we eventually get
something like the following (where void is a special value
in Scheme that has no operations, unlike void in Java):

⇒ 1+voidSC:void,CJ:int

Now, since the value is indeed void, the Scheme contract can
be discarded and we are left with

⇒ 1+voidCJ:int

which aborts the program, since void is not an integer. In
this case, C is blamed, indicating that a mis-match between
the two contracts was detected.

In a real implementation, the annotations S, J , and C
point to the program points where the code first began in-
teroperating, so that the contract failure pinpoints a specific
expression, and not merely a specific side of the interoper-
ating code. We believe that precise blame is crucial to pro-
viding the kind of feedback that a Java programmer expects
from a type failure, even when that failure is dynamic rather
than static.

4. JAVA AND SCHEME SPECIFICALLY
So far, we have described a model of interoperability that

is mostly independent of Java and Scheme. Our introduc-
tion of coercions depends on Java-side dynamic annotations,
but the same strategy works with other languages as long
as interoperating operations are syntactically distinguished
from language-local operations. Our strategy for introduc-
ing contracts for type safety could, in principle, be adapted
to other typed languages. Finally, constructors such as ->



and object-contract are specific to Java and Scheme, but
the underlying model of contracts and coercions works the
same with different constructors for different languages.

Meanwhile, to complete the interoperability picture for
Java and Scheme specifically, we must consider many ad-
ditional details, including the rules of coercion for various
forms of data, how modularity constructs in each language
map to the other to enable cross-language references, and
how the control-flow constructs of each language relate.

4.1 Data Mapping
Java provides two kinds of data: primitive values and in-

stances of classes. Primitive values include ints, doubles,
and chars. Arrays are instances of array classes, but they
are provided special syntax and language support. To a
lesser extent, instances of the String class are also treated
differently than other classes.

Scheme provides a richer set of primitive data, including
real numbers, complex numbers, characters, strings, sym-
bols, pairs, and vectors. Of course, Scheme also provides
functions as values.

To bridge the gap between objects and functions, we add
functions to Java and objects to Scheme. Among primitive
data, a Java integer can be used directly as a Scheme exact
number, a Java double can be used directly as a Scheme
inexact number, and Scheme numbers can be used directly
in Java as long as they can be represented as an int or
double value. Characters are nearly equivalent in both lan-
guages. Finally, strings and arrays are treated specifically,
as we describe below. For all other forms of data, opera-
tions must be performed through facilities provided in the
language specifying the data.

Functions and Objects
A function call in our extended Java has the same syntax as
a static method call, except that the function position is an
expression of type dynamic. A static method can be used in
a dynamic expression position, in which case it is coerced to
a Scheme function. Java methods cannot be used as func-
tions. We have so far not added a non-static procedure form
to Java (to enable closures to be created in Java), but such
a form would be straightforward to define.

An object in our extended Scheme is an instance of a
class. Scheme classes can be implemented as subtypes of
Java classes, and vice-versa. A class form in Scheme cre-
ates a class, a new form instantiates a class, a send form
performs a method call on a given object, and field accessor
and mutator functions support field access.

Strings
A Java String is different from a Scheme string. In Java,
a String is also an Object, whereas a PLT Scheme string
is not naturally a PLT Scheme object. Instead of picking a
uniform representation, we implement strings differently for
each language, and dynamic coercions shift between repre-
sentations.

Arrays
A Scheme vector is like an array, but a Java array cannot be
a Scheme vector, because a Java array can be cast to and
from Object. Also, assignments to an array index must be
checked to ensure that only objects of a suitable type are
placed into the array. For example, an array created to con-

tain Fish objects might be cast to Object[]. Assignments
into the array must be checked to ensure that only Fish

objects appear in the array.
To allow casts and implement Java’s restrictions, a Java

array is an instance of a class that descends from Object,
and it has no relation to a Scheme vector. This mismatch
between Java and Scheme is partly due to a lack of support
for mutable vectors in our current contract implementation.
The mismatch limits interoperability, and we hope to resolve
this mismatch with future improvements to our contract sys-
tem.

4.2 Program Organization
Java provides packages and classes for program organi-

zation. Packages organize classes in the large, and classes
organize static methods and nested classes (in addition gen-
erating objects). A unit of compilation in Java is orthogonal
to either of these in Java; a compilation is defined by a set
of .java files that include mutual type references.

PLT Scheme provides a module form for organizing pro-
grams in the large [17]. A module contains definitions and
expressions, much like the conventional Scheme top level,
but with explicit exports of definitions that other modules
can use, and with explicit imports for all bindings that are
not defined within the module. A module is also a com-
pilation unit in PLT Scheme. Modules cannot be nested,
but they can be placed into a collection hierarchy that is
analogous to a package hierarchy.

From the Scheme perspective, Java packages and the static
parts of classes can be treated like modules, with the class
itself as an implicit export of the “module”. From the Java
perspective, Scheme modules can be treated like classes with
only static components.

4.3 Control Flow
Java and Scheme provide essentially the same call-by-

value, eager evaluation model. Scheme supports first-class
continuations and tail evaluation, both of which are con-
sistent with Java [11, 35], so our extended Java supports
them.

PLT Scheme provides an exception system that behaves
much like Java’s. A value can be raised as an exception us-
ing raise, which is like Java’s throw, and an exception can
be caught using with-handlers, which is like Java’s try.
The with-handlers form includes a predicate for the ex-
ception and a handler, which is analogous to Java’s implicit
instance test with catch and the body of the catch form.
We implement Java’s finally clause using dynamic-wind.

Unlike Java’s throw, the PLT’s raise accepts any value,
not just instances of a throwable. Nevertheless, PLT tools
work best when the raised value is an instance of the exn

record. This record contains fields specifying the message,
source location of the error, and tracing information. We
therefore connect the Throwable Java class to PLT Scheme’s
exception records.

When the Throwable is given to throw, a contract is im-
plied that coerces the Throwable into the Scheme form. A
catch form implies a contract that expects a Scheme ex-
ception record and coerces the value into a Throwable. In
circumstances where the exception value does not reflect a
Throwable instance, the coercion creates a new Throwable

instance of the appropriate type with the information pro-
vided by the exception record.



Besides generally fostering interoperability, this re-use of
PLT Scheme’s exception system ensures that Java programs
running within DrScheme get source highlighting and stack
traces for errors. All of Java’s other built-in exception classes
derive from Throwable, and therefore inherit this behavior.

4.4 Using Scheme from Java
Our extended Java compiler treats the package name

scheme as an entry point into the Scheme module names-
pace. Consequently, the import statement

import scheme.web.server;

directs the compiler to search for a Scheme module server

in the “web” collection.
The Java program can refer to a binding that is exported

by the server module in the same way as accessing a pack-
age member or a static class member:

server.serve();

Statically, the compiler determines whether serve is ex-
ported from the server module. If not, a compile-time error
is reported. Otherwise, the reference is treated as an expres-
sion of type dynamic.

Naming conventions in Scheme are different than naming
conventions in Java, and Scheme names can contain charac-
ters that are not permitted within Java names. Several such
characters are used frequently by convention, including “-”,
“?”, and “>”. To ease cross-language references, the Java
compiler converts Scheme names that follow certain conven-
tions to names using Java conventions. Dashes in Scheme
names are dropped, and the following letter is capitalized;
arrows -> in scheme names are replaced by To, and the fol-
lowing letter is capitalized; and trailing question marks are
replaced by P. Thus, a Scheme name add-server becomes
addServer, and url-ok? becomes urlOkP. In the rare case
where a convention does not make a Scheme name Java-
friendly, the programmer can implement a small Scheme
module to re-export a name that is more friendly.

4.5 Using Java from Scheme
A Scheme module imports bindings with an import-like

require form, and this form can be used with a suitable path
to import a Java class into a Scheme module. The module
gains access to the class, its (non-private) static members,
a set of field accessors, and the nested classes of the Java
code.

Although every Java identifier is a legal Scheme identi-
fier, Java’s overloading and scoping rules mean that the full
name of a Java method or field includes type information.
Scheme programmers can access a specific method or field in
a class by using a mangled name. For example, the mangled
name of the canEat method of Shark is canEat-int. This
mangling causes two problems for interoperability. The first
problem is that asking the programmer to manually mangle
names make calling Java from Scheme difficult. The second
problem is that it inhibits the use of Scheme-oriented code
on Java objects.

A related problem is that instantiating PLT Scheme classes
differs from instantiating Java classes. Java’s new form is
similar to a method call, in that the class can support mul-
tiple constructors, and the arguments in the new form disam-
biguate the overloaded call. Scheme classes have a single ini-
tialization entry point (though classes can support optional

Figure 3: Java Box

keyword arguments for this initialization). Instantiating a
Java class from Scheme is therefore a two-step process of
creating the object and then calling an initialization method
that corresponds to a specific constructor.

We are exploring two solutions to these problems. The
first solution is to introduce Java-specific notation into
Scheme programs for Java-specific calls. Figure 3 shows
boxed Java expressions within a Scheme program in the
DrScheme programming environment. This approach makes
class instantiation and method calls simpler, at least when
no overloading must be resolved.

Our second solution is to compile Java classes with extra
mappings for non-overloaded method names. These extra
mappings convert a Java-style name to a Scheme-style name,
such as converting canEat to can-eat, without mangling the
name with types. In the common case where overloading
is not used, this makes invocation of Java methods look
syntactically like invocations of Scheme methods, which is
especially valuable for reusing Scheme-specific code on Java
objects.

Another possibility is to adjust dynamic method calls in
Scheme. Method dispatch in Scheme could use contract in-
formation to search for a method in the object whose man-
gling is consistent with the actual arguments.

A Scheme module can attach contracts to its exports, as
in Figure 1, to protect itself from abuse and to help pinpoint
misuse of the module from Java code. When writing code
that is specifically intended for use from Java, a Scheme pro-
grammer might more conveniently create a Java wrapper for
the Scheme module, where the Java types effectively provide
contract declarations for the Scheme code.

5. IMPLEMENTATION
Our implementation compiles Java to PLT Scheme. We

compile Java to Scheme (in contrast to the more popular ap-
proach of compiling Scheme to Java) so that we can run Java
programs to execute within our DrScheme environment [14]
and so we can control the compilation and error messages
of Java programs for pedagogic purposes [23].

Our compiler begins by parsing Java code using a LEX-



/YACC-style parser generator. It then processes the Java
source for type-checking and contract and mirror insertions,
and then produces PLT Scheme modules for evaluation.
Compilation preserves the original source location informa-
tion, so that run-time errors, including contract violations,
can report their exact location.

5.1 Compilation Model
As mentioned in Section 4.2, Java classes are treated as

PLT Scheme modules, so our compiler produces one module
per Java class. However, reference cycles can occur among
classes in Java, as long as they do not lead to inheritance
cycles. For example in the classes Swordfish and Bait

class Swordfish extends Fish {
Bait favBait = new Bait ...

}
class Bait {

Fish f;
... (Swordfish) f ...

}
Swordfish creates instance of Bait, and Bait casts to

Swordfish. Compiling both the instantiation and the cast
requires information about the structure of the other class.
These two classes contain cyclic references.

PLT Scheme modules, the compilation unit for Scheme
programs, do not allow cyclic references. Therefore, to ac-
commodate reference cycles between classes, our compiler
produces a single Scheme module for each collection of
strongly-connected Java classes. In the case of Swordfish
and Bait, the classes are compiled into one module, which
reflects that these classes form a single compilation unit.
Meanwhile, each class used by the dependent group is im-
ported into the module.

To retain the Java notion of importing individual classes
for program organization, our compiler actually produces
N +1 modules for N mutually dependent Java sources: one
that combines the Java code into a compilation unit, and
then one for each class to re-export the parts of the compi-
lation unit that are specific to that class.1 So, in addition to
one module containing Swordfish and Bait, the compilation
of these classes also creates a Swordfish module, which re-
exports the Swordfish class and any static members, and
a Bait module, which re-exports the Bait class and any
static members. Thus, Scheme and Java programmers alike
can import each class individually.

5.2 Statements and Expressions
Java and PLT Scheme both enforce the same evaluation

order on their programs. Therefore, those Java constructs
that are subsumed by Scheme constructs have a straight-
forward translation. For example,

bool a = varA < varB, b = varA > 0;
if (a && b)
res = varA;

else
res = varB;

translates into

(let ((a (< varA varB))
(b (> varA 0)))

(if (and a b)
(set! res varA)
(set! res varB)))

with annotations specifying the source location. Indeed, the

1If a class is not a member of any dependency cycle, then
the compiler produces only one module.

majority of Java’s statements and expressions translate as
expected.

5.3 Classes
A Java class can contain fields, methods, nested classes

(and interfaces), and code blocks, each of which can be
static. A PLT Scheme class is similar, except that it does
not support static members. Nevertheless, a static member
closely corresponds to a Scheme function, value, or expres-
sion within a restricted namespace, i.e., a module, so static
Java members are compiled to these Scheme forms.

An instance of a class is created with the new form. Eval-
uation of this form triggers the evaluation of the expressions
in the top level of the class body. These expressions serve the
same purpose as a single Java constructor. However, a Java
class can contain multiple constructors, preventing a direct
translation from a Java constructor to a sequence of top-
level expressions. Instead, we translate Java constructors
as normal methods in the Scheme class, and we translate a
Java new expression into a Scheme new followed by a call to
a constructor method.

In supporting dynamic, mirrors and unmirrors are neces-
sary for each class. The mirror provides both checks and
conversions for objects when they enter dynamic contexts.
These checks ensure that methods are provided with the
correct number and kind of arguments. After the checks,
the argument values are unmirrored as the method is called.
The result of a method is also mirrored before it is returned.
For a class

class Fish {
String getColor(String format) { ... }

}
the mirror generated by the compiler is

(define fish-mirror
(class object% ()

(define (fish ...))
; ". args" puts all arguments into a list
(define (getColor . args)

(if (= (length args) 1)
(if (is-string? (first args))

(apply-string-mirror
(send fish getColor

(apply-string-unmirror
(first args))))

(raise TYPE-MISMATCH-ERROR))
(raise ARG-NUMBER-WRONG-ERROR)))

(super-new)))

The apply-string-unmirror wraps the value with an-
other class, in which each method return is checked before
return, and all arguments are converted before the function
is called. The is-A? check, performs a check that ensures
the provided value is the correct kind of data, and where an
object is required, contains the correct fields and methods.

5.4 Fields and Methods
Non-static Java fields translate into Scheme field dec-

larations. A static Java field, meanwhile, translates into a
Scheme top-level definition. Thus, the fields

class Square extends Shape {
static int avgLength = 1;
int sideLength = 1;

}
become, roughly

(define avgLength 1)

and



(define Square
(class Shape

(field (sideLength 1)) · · ·))

However, the above translation does not connect the variable
avgLength to the containing class Square. If multiple classes
within a compilation unit contain a static field avgLength,
the definitions would conflict. For non-static fields, Scheme
classes do not allow subclasses to shadow field names again
potentially allowing conflicts. Additionally, to avoid con-
flicts between Java’s distinct namespaces for fields, meth-
ods, and classes, we append a ~f to the name. Therefore,
we combine avgLength with the class name and ~f, forming
the result as Square-avgLength~f, and sideLength becomes
Square-sideLength~f. Note that Scheme programmers us-
ing this name effectively indicate the field’s class.

Compilation generates a mutator function for both of these
fields, plus an accessor function for the instance (non-static)
field. Since the module form prohibits mutating an imported
identifier, the mutator function Square-avgLength-set! pro-
vides the only means of modifying the static field’s value.
If the static field is final, this mutator is not exported.
Also, instance field mutators are not generated when they
are final. Thus, even without Scheme-side compile-time
checking, Scheme programmers cannot violate Java’s final
semantics.

Similarly, instance methods translate into Scheme meth-
ods and static methods into function definitions with the
class name prepended, but the name must be further man-
gled to support overloading. For example, if the Who class
in Section 3 contained an additional page that took two ar-
guments, name mangling would be necessary to distinguish
them within Scheme. The translated methods would become
page-dynamic and page-dynamic-dynamic.

Constructors are compiled as methods, which we identify
with special names. The constructor for Welcome in Sec-
tion 3 translates into Welcome-constructor. Technically
the -constructor suffix is not necessary to avoid conflicts,
but it clarifies that the method corresponds to a constructor.

A private Java member does not translate to a private

Scheme member, because static Java members are not part
of the Scheme class, but Java allows them to access all of the
class’s members. We protect private members from out-
side access by making the member name local to a module
with PLT Scheme’s define-local-member-name macro; the
Java-to-Scheme compiler ensures that all accesses within a
compilation unit are legal. Our compiler does not currently
preserve protection for protected and package members.

5.5 Nested Classes
In Java, a nested class may either be static or an instance

class, also known as an inner class. An inner class can appear
as a member of a class, within statement blocks, or after new
(i.e. an anonymous inner class).

Static nested classes are equivalent to top-level classes
that have the same scope as their containing class, with the
restriction that they may not contain inner classes. These
can be accessed without directly accessing the containing
class. When compiled to Java bytecodes, nested classes are
lifted out and result in separate .class files. We also lift
a nested class, and provide a separate module for external
access. We treat a nested class and its container as members
of a cycle, placing both in the same module.

Inner classes are also compiled to separate classes. Un-

like static nested classes, they may not be accessed except
through an instance of their containing class or within the
containing method. A separate module is therefore not pro-
vided, and construction may only occur through a method
within the containing class.

For member inner classes, the name of a nested class is
the concatenation of the containing class’s name with the
class’s own name. Class B in

class A {
class B {
}

}
is accessed as A.B. For named classes within a block state-

ment, we amend the name with uniquely specifying informa-
tion, so that it cannot conflict with other class names, and
lift the class as we would a member inner. Similarly, anony-
mous inner classes are given a unique name and lifted, as is
done by bytecode compilers.

5.6 Dynamically checked values
After type checking determines the expected types of dy-

namically typed variables, the compiled uses are augmented
with contracts and mirrors. Consider the following program
fragment:

URL knownURL = ...;
boolean sameAs( dynamic givenURL ) {

return knownURL.equals(givenURL);
}

From the context, this usage of dynamic variable givenURL
assumes that givenURL is an Object. Within the call to
equals, givenURL is replaced with

(if (satisfies-interface? Object givenURL)
(apply-unmirror-Object givenURL)
(ERROR))

When executed, the satisfies-interface? function en-
sures that givenURL is a Scheme object containing the meth-
ods (with the correct number of arguments) of a Java Object

instance. The apply-unmirror-Object function wraps thee
usage of givenURL with the unmirror for Object discussed
in Section 5.3. This unmirror ensures that values returned
from method calls on givenURL are properly checked and
unmirrored. Additionally, apply-unmirror-Object guaran-
tees that any Java values passed as method arguments are
properly mirrored.

For interoperability, Java Strings entering Scheme need
to be converted into Scheme strings. Therefore, a string
unmirror converts a Scheme string into an instance of the
Java class, by embedding the value inside of the Java object.
Similarly, a String mirror extracts the Scheme string from
the String object.

When dynamically typed variables are used as objects,
with unknown classes, the wrapping uses a contract to en-
sure that the value is an object with the named method or
field, and then mirrors the arguments in place, while unmir-
roring the expected value. In the example

URL serverBase = ...;
...
... givenURL.rootedAt(serverBase) ...

The givenURL use is wrapped with an object-contract,
ensuring that givenURL is an object (not necessarily a Java
Object) with a rootedAt method taking one argument. The
serverBase value is mirrored and the result of the call is
checked and unmirrored in place.

The translation of dynamically typed variables used as
functions is similar to their use as objects.

send(who) + " welcome"



the dynamic send variable use is wrapped with a contract:
(any . -> . string). This contract ensures that send is
a function that returns a string. The who value is wrapped
with a mirror. Further, a string unmirror is wrapped around
the return.

5.7 Native Methods
Methods annotated in Java with native are typically im-

plemented in C according to JNI [28]. Although PLT Scheme
also provides a native interface to C code, considerable work
remains to bridge the PLT and JNI interfaces.

For now, our system assumes Scheme as the implemen-
tation language for native methods. When the compiler
encounters a class using native methods, such as

class Time {
static native long getSeconds(long since);
native long getLifetime();

}
the resulting module for Time requires a Scheme mod-

ule Time-native-methods which must provide a function for
each native method. The name of the native method must
be the Scheme version of the name, with -native appended
at the end. Thus a native function for getSeconds should
be named Time-getSeconds-long-native and getLifetime

should be getLifetime-native.
Within the compiled code, a stub method is generated for

each native method in the class, which calls the Scheme na-
tive function. When getSeconds is called, its argument is
passed to Time-getSeconds-long-native by the stub, along
with the class value, relevant accessors and mutators, and
generics for private methods. An instance method, such
as getLifetime, additionally receives this as its first argu-
ment.

6. RELATED WORK
Related work fits into three broad categories: dynamic

expressions for statically typed languages, language inter-
operability, and other interoperable implementations of Java
with functional languages.

6.1 Mixing Dynamic and Static Types
Strongtalk [8] adds an optional static type system to

Smalltalk. On the boundary between typed and untyped
expressions the compiler either assumes a type or relies on
an annotation from the programmer. Unlike our system,
these types are not validated at runtime, so that if a type
annotation or assumption is incorrect, typed operations can
be misapplied.

Starting from the other side, others have proposed a
Dynamic type constructor for ML [1, 12], and our dynamic

declaration is similar to this constructor. The Dynamic con-
structor encapsulates data with unknown types, with the
intent that untyped data arises from I/O calls, as opposed
to other programming languages. In order to extract data
from a Dynamic value, programmers first explicitly test the
type of the value. Only data with named types can be ex-
tracted. Like our system, these types are checked at run
time, but a programmer must explicitly cast the data and
provide datatype definitions for all values.

6.2 Language Interoperability
Component models, such as COM [34], CORBA [31],

SOM [25], and DOM [37], support language interoperability
through a shared interface definition language (IDL). Each

IDL is effectively a universal interface for data interchange,
so that more than two languages can communicate with an
application, but this “least common denominator” approach
limits the granularity of interoperability. Furthermore, the
component model is generally specified outside the program-
ming language, so that it is relatively opaque to compilers
and analysis tools.

The Microsoft .NET framework [32, 26, 10] is similar
to component models, but interoperating languages are all
compiled to a Common Intermediate Language (CIL). This
approach make interoperability more apparent to the com-
piler, but also limits implementation strategies for languages
to those that fit well into CIL.

SWIG [4] bridges C-level libraries and higher-level (often
dynamic) languages by automatically generating glue code
from C and C++ sources. Programmers can implement new
modules for SWIG to support bridges from C to new pro-
gramming languages, but only to the degree supported by a
foreign-function interface in the non-C language. In short,
SWIG supports interoperability much like component mod-
els or .NET, but with C as the universal API.

The nlffi-gen [6] foreign-function interface for ML pro-
duces ML bindings for C header files. The system also
provides an encoding of C datatypes into ML so that ML
programmers may directly access C datatypes. Marshaling
of data occurs within the ML program, written by the pro-
grammer, where necessary. The system does not provide
support for ML data representation into the C code. Inter-
operating between ML and C is easier for the programmer,
although type-safety and data representation are still a con-
cern for the programmer.

Furr and Foster have developed a system that analyzes
C foreign-function libraries for OCaml [19]. Their tool uses
OCaml type information to statically locate misuses of the
OCaml data within C. In a sense, this tool effectively bridges
the gap between a strongly typed language and a weakly
typed language by strengthening the latter’s type system.

6.3 Java and Functional Languages
Several Scheme implementations implement interoperabil-

ity with Java while compiling Scheme to Java.
JScheme [2, 3] compiles to Java a dialect of Scheme resem-

bling the R4RS standard. Within Scheme, the programmer
can use static methods and fields, create instances of classes
and access their methods and fields, and implement exist-
ing interfaces. Scheme names containing certain characters
are interpreted automatically as manglings of Java names.
Java’s reflection functionality is employed to select (based on
the runtime type of the arguments) which method to call.
This technique is slower than selecting the method stati-
cally, but requires less mangling. From Java, users can call
the JScheme compiler or interpreter and receive Java values
from Scheme programs. These values are the Java repre-
sentations of Scheme values (i.e instances of closure objects,
pair classes and other values which require the user to not
just know Scheme but how the compiler compiles Scheme),
and must be cast from Object at runtime.

The code fragment below illustrates a use of Scheme’s
complex numbers through the JScheme API:

import jscheme.JS;
...
int x, y;
...
JS scheme = new JS();



scheme.load(new java.io.FileReader("math.init"));
Object z = scheme.call("make-rectangular",

scheme.toObject(x),
scheme.toObject(y));

double m =
scheme.doubleValue(scheme.call("magnitude", z));

...

JScheme’s interoperability through an API is typical of Java–
Scheme implementations, and other implementations that
target Java.

SISC [29] interprets the R5RS standard dialect of Scheme,
using a Java class to represent each kind of Scheme value.
Closures are represented as Java instances containing an ex-
plicit environment. Various SISC methods provide interac-
tion with Java [30]. As with JScheme the user may instanti-
ate Java objects, access methods and fields, and implement
an interface. When passing Scheme values into Java pro-
grams, they must be converted from Scheme objects into the
values expected by Java, and vice-versa. To access Scheme
from Java, the interpreter is invoked with appropriate point-
ers to the Scheme code.

Kawa [7] compiles R5RS code to Java bytecode. Func-
tions are represented as classes, and Scheme values are rep-
resented by Java implementations. Java static methods may
be accessed through a special primitive function class. Val-
ues must be converted from Kawa specific representations
into values expected by Java. In general, reflection is used
to select the method called, but in some cases, the compiler
can determine which overloaded method should be called
and specifies it statically. Accessing Scheme values from
Java is similar to access in JScheme.

MLj [5] compiles ML to Java, and it supports considerable
interoperability between ML and Java code. MLj relies on
static checking and shared representations ensure that inter-
operability is safe; not all ML values can flow into Java. Of
course, MLj adds no new degree of dynamic typing to Java.

7. CONCLUSION
Fine-grained language interoperability is an elusive goal.

Practically all attempts fall into one of two categories: rela-
tively coarse-grained interoperability for all languages through
a universal data API, or relatively fine-grained and carefully
crafted interoperability for a pair languages.

Our attempt falls squarely in the second category, but we
believe that it is a step towards a general model of fine-
grained interoperability. We believe that such a model can
be used to formally support soundness claims, to guide com-
piler writers in implementing interoperability, and to help
programmers understand the definition of a particular in-
stance of interoperability. Certainly, when implementing our
current system, understanding coercions through a composi-
tion with contracts helped us to insert coercions in the right
places.

Many steps remain toward a complete model. In particu-
lar, we suggest a formal account of interoperability in terms
of mirrors and contracts, but a complete formal account re-
mains ongoing work. Also, the Java- and Scheme- specific
details of our implementation are as ad hoc as any previous
attempt; we have more work to do in finding general princi-
ples. Nevertheless, by showing a hint of a formal model and
by completing an implementation for Java and Scheme, we
hope to have demonstrated the role of contracts and mirrors
in taming interoperability.

Our implementation is available with the current release
of the DrScheme software system: www.plt-scheme.org/

download/ The language level must be set to Experimental
Languages: ProfessorJ : Java + dynamic
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