
Chaperones and Impersonators: Run-time
Support for Reasonable Interposition

T. Stephen Strickland
Sam Tobin-Hochstadt
Northeastern University

{sstrickl,samth}@ccs.neu.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Matthew Flatt
University of Utah
mflatt@cs.utah.edu

Abstract
Chaperones and impersonators provide run-time support for
interposing on primitive operations such as function calls,
array access and update, and structure field access and up-
date. Unlike most interposition support, chaperones and im-
personators are restricted so that they constrain the behavior
of the interposing code to reasonable interposition, which in
practice preserves the abstraction mechanisms and reasoning
that programmers and compiler analyses rely on.

Chaperones and impersonators are particularly useful for
implementing contracts, and our implementation in Racket
allows us to improve both the expressiveness and the perfor-
mance of Racket’s contract system. Specifically, contracts
on mutable data can be enforced without changing the API
to that data; contracts on large data structures can be checked
lazily on only the accessed parts of the structure; contracts
on objects and classes can be implemented with lower over-
head; and contract wrappers can preserve object equality
where appropriate. With this extension, gradual typing sys-
tems, such as Typed Racket, that rely on contracts for inter-
operation with untyped code can now pass mutable values
safely between typed and untyped modules.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Proxies, interposition, intercession, contracts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Extensibility versus Reasoning
An extensible programming language like Racket (Flatt and
PLT 2010) enables the authors of libraries to design and
maintain seemingly core aspects of a programming lan-
guage, such as a class system, a component system, or a
type system. At the same time, the desire for more extensi-
bility comes at the cost of additional behavior that language
primitives may exhibit, making it harder for programmers to
reason about their programs and for the implementors of the
class, component, or type system to deliver on the promises
that such abstractions typically make.

The Racket contract system is a prime example of this
trade-off in extensibility versus composition. The contract
system can exist in its rich, state-of-the-art form largely be-
cause it can be implemented, modified, and deployed with-
out requiring changes to the core run-time system and com-
piler. At the same time, since the contract system’s job is to
help enforce invariants on functions and data, language ex-
tensions can accidentally subvert the intent of the contract
system if the Racket core becomes too extensible or offers
too much reflective capability.

In this paper, we report on an addition to the Racket core
that enables language features to be implemented in a library
where the features depend on run-time interposition—or
intercession, in the terminology of the CLOS Metaobject
Protocol (Kiczales et al. 1991)—to change the behavior of
core constructs. Contract checking is our most prominent
example, where interposition is needed to trigger contract
checks. For example, if a mutable vector has a contract on its
elements, every use or modification of the vector should be
guarded by a check. An up-front check does not suffice: the
vector may be modified concurrently or through a callback.

If interposition can change the behavior of core con-
structs, however, then it entails the acute possibility of sub-
verting core guarantees of the programming language, espe-
cially those concerning the composition of components. To
balance the needs of extensibility and composition, we have
developed a two-layer system of interposition: chaperones
and impersonators. Chaperones and impersonators are both
proxies, where a wrapper object interposes on operations in-

tended for a target object. Chaperones can only constrain the
behaviors of the objects that they wrap; for an interposed op-
eration, a chaperone must either raise an exception or return
the same value as the original object, possibly wrapped with
a chaperone. Impersonators, in contrast, are relatively free
to change the behavior of the objects that they wrap but they
are not allowed on immutable values. Overall, impersonators
are more expressive than chaperones, but chaperones are al-
lowed on more kinds of values.

Together, chaperones and impersonators are powerful
enough to implement an improved contract system without
subverting guarantees that enable composition of language
extensions. Thanks to chaperones and impersonators, the
Racket contract system now supports higher-order contracts
on mutable objects and generative structs. This improve-
ment directly benefits Racket programmers, and it bene-
fits language extensions that are further layered on the con-
tract system—notably Typed Racket (Tobin-Hochstadt and
Felleisen 2008), whose interoperability with untyped Racket
was improved as a result of the addition of proxies. Fur-
thermore, impersonators can be used to implement tradi-
tional proxy patterns, such as transparent access of remotely
stored fields using standard interfaces, while chaperones can
be used to implement constructs such as revokable mem-
branes (Miller 2006).

Last but not least, building interposition support into the
core compiler and run-time system offers the promise of
better performance, both for code that uses libraries such
as contracts and code that does not. For example, the ad-
dition of contract support for Racket’s class system intro-
duced a factor of three slowdown for some object-oriented
operations, even in programs that did not use contracts at
all; the support for interposition we present here has elimi-
nated this overhead. Our current implementation of chaper-
ones and impersonators compares favorably to current im-
plementations of Javascript proxies (Van Cutsem and Miller
2010), even though chaperones require additional run-time
checks to enforce their constraints.

In short, chaperones and impersonators are a new point
in the design space for interposition that enable important,
higher-level operations (e.g., higher-order contracts on mu-
table containers) to be implemented efficiently without sub-
verting any of the existing guarantees of a language that al-
ready has both threads and state.

Section 2 uses contract checking in Racket to explore is-
sues of expressiveness and invariants related to interposition.
Section 3 describes Racket’s chaperone and impersonator
API and relates it to the implementation of contracts. Sec-
tion 4 reports on additional uses of interposition in Racket:
remote objects and membranes. Section 5 presents a formal
model for a subset of Racket with chaperones and imper-
sonators. Section 6 reports performance numbers. Section 7
discusses related work.

2. Interposition via Contracts
Contract checking is easily the most prominent use of in-
terposition in Racket, and a look at contract checking by
itself exposes many of the expressiveness and invariant-
preservation concerns that affect a more general interpo-
sition mechanism. We therefore start with a careful explo-
ration of Racket contracts as a way of motivating the design
of chaperones and impersonators. Readers familiar with the
issues surrounding the interaction between contracts, mu-
table container types, and parametricity may wish to skip
to section 2.5 to understand what chaperones and imper-
sonators enable in the contract system, and readers not inter-
ested in the motivation behind the design but instead wanting
to get right to the details of programming with chaperones
and impersonators may wish to skip to section 3.

2.1 Predicates and Function Contracts
A contract mediates the dynamic flow of a value across a
boundary:

In Racket, contracts most often mediate the boundaries
between modules. For example, the left and right bub-
bles above match the boundary between the math.rkt and
circles.rkt modules declared as

��������

������� �� �� ����� �� ���

�����������������

��� �������

�����������

�������� �����������

��

The circle on the left is the value 3.141592653589793 as
bound to pi in math.rkt. The dividing line in the picture is
the contract real?, which checks that the value of pi is a real
number as it crosses to the area on the right. The circle on
the right is the successful use of pi’s value in circles.rkt,
since 3.14... is a real number.

Not all contract checks can be performed immediately
when a value crosses a boundary. Some contracts require a
delayed check (Findler and Felleisen 2002), which is like a
boundary wrapped around a value:

Delayed checks are needed for function contracts, such as
when math.rkt exports a sqr function to circles.rkt.

��������

������� ���� �� �� � ���

�����������������

���� ������ � �� �

��������������������

�����������

�������� �����������

���� ��� �����

In this case, an immediate check on sqr cannot guarantee
that the function will only be used on real numbers or that it
will always return non-negative real numbers. Instead, when
sqr is applied inside circles.rkt, the argument crosses the
wrapper boundary and is checked to ensure that it is a real
number:

Similarly, when a call to sqr in circles.rkt returns, the
value going out of sqr crosses the wrapper boundary and is
checked to ensure that it is a non-negative real number:

Other kinds of wrappers can implement contracts that
guarantee a kind of parametricity for functions. Using new-
∀/c, for example, the left-hand poly.rkt module can
promise that its id function returns only values that are pro-
vided to the function:

��������

������� ��� �� ��

�����������������

��� ���� ��� �����������

���� � �� � �����

����������

�������� �����������

��� �������

When the function is called by the right-hand module, the
argument to id is wrapped to make it completely opaque:

When id returns, the result value is checked to have the
opaque wrapper, which is removed as the value crosses back
over the function’s boundary:1

As originally implemented for Racket, simple predicate
contracts, function contracts, and even new-∀/c require no

1 Matthews and Ahmed (2008) show that this wrapper protocol implements
parametricity.

particular run-time support; function wrappers are easily
implemented with λ and opaque wrappers via Racket’s
struct form. Run-time support becomes necessary, how-
ever, to generalize contracts beyond immediate predicates
and function wrappers.

2.2 Compound-Data Contracts
Lists are as common in Racket as functions, and list con-
tracts are correspondingly common. In simple cases, the
contract on a list can be checked immediately, as in the case
of a list of real numbers:

��������

������� ���������

������� � �������� ���������

�����������������

����������

������� ��������������������

�����������

�������� �����������

���������

��� ���

The “()” badge on the circle is meant to suggest “list.” If the
list content is checked completely as it crosses the contract
boundary, elements can be extracted from the list with no
further checks:

��� ���

In the case of a list of functions, the list shape of the value
can be checked immediately, but the functions themselves
may require wrappers. After such a list crosses the contract
boundary, the right-hand module sees a list of wrapped func-
tions, and the wrappers remain intact when functions are ex-
tracted from the list:

��������

������� ����������

������� �������� ��� ������

�����������������

����������

�������

������������������

� �� � ���������������������

�����������

�������� �����������

������ �����������

��� ���

Wrapping the list instead of its elements can be more
efficient in some situations (Findler et al. 2007), but the

element-wrapping approach is effective for checking the
contract. Wrapping the elements of a mutable vector (array),
however, does not work:

��������

������� �����

��������� ��� ��� �����

�����������������

������ ���������

��������������������

�����������

�������� �����������

�����

Since the state vector is mutable, the intent may be that
the left-hand math.rkt module can change the values in
state at any time, with such changes visible to the right-
hand module. Consequently, values must be checked at the
last minute, when they are extracted from the vector in the
right-hand module:

��� ���

The “[]” badge on the circle is meant to suggest “vector.”
Similarly, any value installed by the right-hand module must
be checked as it goes into the vector. If the vector contains
functions instead of real numbers, then extracting from the
vector may add a wrapper.

��� ���

Finally, installing a function into the vector may also add a
wrapper:

��� ���

In this last case, since both sides of the module boundary see
the same mutable vector, the newly installed function has a
wrapper when accessed from the left-hand math.rkt mod-
ule. That wrapper allows the left-hand module to assume that
any function it calls from the vector will return a suitable re-
sult, or else a contract failure is signalled. Similarly, if the
left-hand module abuses the function by calling on an inap-
propriate argument, a contract failure protects any function
that was installed by the right-hand module, as guaranteed
by the contract on the vector.

2.3 Structure Contracts
Besides functions and built-in datatypes like lists and vec-
tors, Racket allows programmers to define new structure
types. Reliable structure opacity is crucial in the Racket
ecosystem. Not only must ordinary user libraries have their
internal invariants protected, but systems libraries them-
selves assume structure opacity because seemingly core
forms, such as λ or class, are implemented as macros that
use structures.

Racket’s struct form creates a new structure type:

(struct widget (parent label callback))

This declaration binds widget to a constructor that takes
three arguments to create a widget instance, and it binds
widget? to a predicate that produces true for values pro-
duced by widget and false for any other Racket value. The
declaration also binds widget-parent to a selector proce-
dure that extracts the parent field from a widget, and so on.

The following widget.rkt module declares the widget
structure type, but it also uses the #:guard option to add a
contract-like guard on the widget constructor. It demands
that the first constructor argument must be either #f or itself
a widget, otherwise the construction is rejected.2

����������

������� ������ ������� ����� ��������� �����������

��������� �� �� � � �����

��� ��� ������� �� �������� ���

������� � � ��

������ ����������������

������� ������������ ��

������ ��� �������������� ����

����� � ������������ �� ����

�������� �������

�����������������

������������ �������� � �� � ����������

The guard on widget enforces the invariant that a widget’s
parent is either #f or itself a widget. Consequently, the im-
plementation of widget-root can safely recur on a non-
#f parent without double-checking that the parent is itself
a widget, because the widget constructor guarantees this
property.

While the guard on widget enforces an invariant for all
widgets, a structure contract written with struct/c can
constrain a specific widget instance. For example, the con-
tract

(struct/c widget widget? any/c any/c)

describes a widget instance whose first field is a widget (i.e.,
it cannot be #f), while no new promises are offered the sec-
ond and third fields. Along the same lines, the following
scene.rkt module below promises that plot is an instance

2 The info argument to the guard procedure contains information indicating
if the guard is being invoked on a widget instance or a sub-struct of
widget.

of the widget structure whose first field is an OpenGL win-
dow.

���������

�������� �������������

������� ���� ������� ������

�����������������

����� ��������� ������

����������

����� ��������

�����������

�������� ������������

������������

�������������� �����

The plot contract’s promise can be checked through a wrap-
per on plot when the right-hand module accesses the par-
ent field of plot:

� �

The left-hand module can similarly constrain any change to
the widget’s callback function, which may require a wrap-
per on the function as it is installed into the widget:

� �

As in the case of vectors, the wrapper resides on the function
even when it is extracted by the left-hand module, thus
ensuring the requirements on the function that the left-hand
module imposed through a contract.

2.4 Parametric Contracts and Generativity Don’t Mix
Consider the case where the left-hand module claims that the
widget’s parent must be treated parametrically:

���������

�������� �������������

������� ���� ������� ������

�����������������

����� ��������� ������ ��������� ����� ��������

In this case, extracting the parent from the widget produces
an opaque value:

� �

This situation, created by a contract between the scene.rkt
and circles.rkt, is unacceptable to the widget.rkt mod-
ule that created the widget structure type. If circles.rkt
applies widget-root to plot, then widget-root fails with

an internal error: it gets a value for plot’s parent that is nei-
ther #f or a widget, despite the widget #:guard and the
widget? argument contract.

Accordingly, allowing (struct/c widget (new-∀/c)
...) would be a mistake. Furthermore, the problem is not
confined to an immediate use of new-∀/c in struct/c. Just
as scene.rkt must not claim that the parent value of plot
is parametric, it must not claim that the value in the call-
back field of plot is a procedure that consumes or produces
a parametric value. After all, the guard on widget may have
wrapped the procedure to ensure properties of the function.

The general principle is that struct is generative: each
time a struct definition is evaluated, it creates a unique
structure type. If access to a struct-generated constructor
is limited (e.g., to a particular module), then properties of
field values can be ensured by construction. This approach
to information hiding breaks down if the contract system
allows parametric contracts on immutable structures.

The contract system must therefore distinguish contracts
that can break invariants and must be disallowed in certain
contexts from contracts that do not break invariants and are
safe in all contexts. Instead of imposing constraints specific
to combinations of new-∀/c, struct/c, and ->, we seek a
more general categorization of contracts and contract com-
position.

2.5 The Contract Hierarchy
Racket’s original contract system (Findler and Felleisen
2002) distinguishes two classes of contracts:

• Flat contracts are checked completely at boundaries, re-
quiring no additional wrappers.

• Higher-order contracts require wrappers to delay checks.

In generalizing contracts to include compound data types
and programmer-defined structures, we have refined the sec-
ond class to two kinds of higher-order contracts:

• Chaperone contracts can perform immediate checks and
add wrappers to delay checks, but immediate or delayed
checks can only raise errors. That is, the wrapped values
must behave the same after crossing a contract boundary
as before, up to contract failures.

• Impersonator contracts may replace a value at a contract-
boundary crossing with a different or completely opaque
value (as with parametric contracts).

This categorization is a hierarchy: a flat contract can be used
wherever a chaperone contract is allowed, and any kind of
contract can be used where an impersonator contract is al-
lowed. Contract combinators such as listof and -> cre-
ate chaperone contracts when given chaperone contracts,
and they create impersonator contracts when given at least
one impersonator contract. Only chaperone contracts can be
placed on immutable fields in structures like widget, be-

cause more general contracts could produce a different result
for different uses of the value, making it appear mutable.

To summarize the impact of this change on the Racket
contract library, the following table shows the state of con-
tract support in Racket before our generalizations:

���
���������

������������
���������

��������� � �

�������������� � �

������������ � �

����������������� � �

������� �� ��

The tildes indicate points where flat contracts were allowed
for mutable data and structures. In these cases, the contracts
were checked only partly, because mutation could subvert
the checks later. The asterisks on the “objects” line indi-
cates that contracts were supported for our Java-like object
system, but at a high runtime cost to objects that did not
use contracts. Many language extensions in Racket are built
using macros and programmer-defined structure types, and
they would likely suffer in the same way the object system
did with the addition of contracts.

The following table shows the current state of Racket
support for contracts after our generalizations:

���
���������

���������
���������

������������
���������

��������� � � �

�������������� � � �

������������ � � �

����������������� � � �

������� � � �

The unsupported cases in this table are unsupported by de-
sign; those points in the spectrum do not make sense, as
explained above. Contracts are fully supported and reliably
checked in all other points of the space.

3. Chaperones and Impersonators
The Racket run-time system is oblivious to the contract
system. Instead, the run-time system provides chaperones
and impersonators as first-class values, with which it is then
possible to implement chaperone and impersonator contracts
as well as additional proxy patterns.

Figure 1 shows part of the Racket chaperone and imper-
sonator API.3 The API includes a constructor for each prim-
itive datatype that supports interposition on its operations.
The chaperone-of? predicate checks whether a value is a
chaperone of another value—and therefore acceptable, for
example, as a replacement result from another chaperone.

3.1 Chaperoning and Impersonating Functions
The chaperone-procedure function takes a procedure and
creates a chaperone that also acts as a procedure and satisfies
the procedure? predicate. The chaperone accepts the same
number of arguments as the original function, it returns the

3 The complete API is about twice as large (Flatt and PLT 2010, §13.5).

(chaperone-of? a b)

Determines whether a is the same as or a chaperone of b.
(chaperone-procedure proc interp-proc)

Chaperone a procedure, interposing on procedure argu-
ments and results via interp-proc.

(chaperone-vector vec interp-ref interp-set)

Chaperone a vector, interposing on the vector-ref and
vector-set! operations.

(chaperone-struct struct op interp-op)
Chaperone a structure instance, interposing on the sup-
plied accessor and mutator operations for mutable fields.

...

(impersonator-of? a b)

Determines whether a is the same as, an impersonator of,
or a chaperone of b.

(impersonate-procedure proc interp-proc)
Impersonate a procedure.

(impersonate-vector vec interp-ref interp-set)
Impersonate a mutable vector.

(impersonate-struct struct op interp-op)
Impersonate a structure instance.

...

Figure 1: Partial chaperone and impersonator API

same number of results, and when it is called, the chaperone
calls the original function. At the same time, when the chap-
erone is applied, it can check and possibly chaperone the ar-
guments to original function or the results from the original
function.

To chaperone a function, chaperone-procedure needs
the function to chaperone and a function to filter arguments
and results:

(chaperone-procedure orig-proc interpose-proc)

For example, to chaperone a function of two arguments, the
filtering interpose-proc would have the form

(λ (a b) (values new-a new-b))

where a and b are the arguments originally supplied to the
chaperone created by chaperone-procedure, and new-a
and new-b are the replacement arguments that are forwarded
to the chaperoned orig-proc.

An interpose-proc can return an extra value to inter-
pose on the result of the procedure. The extra value must
be a post-interpose-proc function to filter the result of
the chaperoned function. A post-interpose-proc must ac-
cept as many values as the chaperoned function returns,
and it returns replacements for the chaperoned function’s
results. Since the post-interpose-proc is determined af-
ter the arguments are available, the replacement result from
post-interpose-proc can depend on the original argu-
ments provided to interpose-proc.

For example, to chaperone a function of two arguments
that produces a single result, and to adjust the result as well
as the arguments, an interpose-proc would have the form

(λ (a b) (values new-a new-b
; post-interpose-proc:
(λ (result) new-result)))

where result is the result of the chaperoned proc, and
new-result is the result that is delivered to the caller of the
chaperone.

When the run-time system applies interpose-proc for
a chaperoned function call, it checks that the replacement
arguments from interpose-proc are the same as or chaper-
ones of the original arguments. Similarly, when the run-time
system applies a post-interpose-proc to the chaperoned
call’s result, it checks that the replacement result is the same
as or a chaperone of the original.

Using chaperones to implement contracts is straight-
foward. The contract on a procedure like sqr,

(provide/contract
[sqr (real? . -> . nonnegative-real?)])

is implemented as a chaperone of sqr:

(chaperone-procedure
sqr
(λ (n)

(unless (real? n) (blame client "real"))
(values
n
(λ (result)

(unless (nonnegative-real? result)
(blame provider "nonnegative real"))

result))))

Here, the blame function takes an identifier which names
the blamed party and a string that describes the reason that
party broke the contract. The parties provider and client
are the modules that export and import the sqr function,
respectively.

The -> contract constructor creates a chaperone to imple-
ment a function contract when the argument and result con-
tracts are flat contracts, like real? and nonnegative-real?,
or chaperone contracts. If the -> contract constructor en-
counters an impersonator contract like α, then it must instead
create an impersonator.

The impersonate-procedure constructor works the
same way as chaperone-procedure. When an imperson-
ator is applied, the run-time system skips the check on argu-
ment and result replacements, since they are not required to
be the same as or chaperones of the original arguments and
results. Naturally, the result of impersonate-procedure is
not chaperone-of? the original procedure, so it cannot be
used in situations that require a chaperone.

3.2 Chaperoning and Impersonating Vectors
The chaperone-vector function takes a vector and creates
a chaperone that appears to be like any other vector: the

vector? predicate returns true when applied to the chap-
erone, and equal? can be used to compare the chaperone to
another vector.

To chaperone a vector, chaperone-vector needs the
vector to chaperone and two functions: one function that
interposes on access of vector elements, and another that
interposes on assignments to vector slots:
(chaperone-vector vec interpose-ref interpose-set)

When vector-ref is called on the chaperone with an index
i, interpose-ref is called with three arguments: vec, i,
and the result of (vector-ref vec i), which is the result
that would be returned by the original vector. The result of
interpose-ref is a replacement for (vector-ref vec i),
and so it must be the same as this value or a chaperone
thereof. The protocol for interpose-set is essentially the
same.

For example, the contract for partial-sums!,
(provide/contract
[partial-sums! ((vectorof number?) . -> . any)])

is implemented using chaperone-vector. The installed
chaperone ensures the client supplied a vector that contains
only numbers and constrains partial-sums! from changing
the vector to include non-numbers:
(chaperone-procedure
partial-sums!
(λ (vec)

(unless (vector? vec) (blame client "vector"))
(chaperone-vector
vec
; Check accesses, interpose-ref:
(λ (vec i val)

(unless (number? val) (blame client "number"))
val)

; Check mutations, interpose-set:
(λ (vec i val)

(unless (number? val) (blame provider "number"))
val))))

Note how interpose-ref blames client for a non-number
value, while interpose-set blames provider; if the vector
were a result of partial-sums! instead of an argument,
the roles would be reversed. This swapping of blame labels
is analogous to the swapping that occurs when functions
are used as arguments versus results, and it is supported
naturally by the chaperone API.

It may seem that an interpose-ref needs only an index,
since the interpose-ref provided to chaperone-vector
could capture vec in its closure and extract the original value
from vec. Passing vec, however, helps avoid the extra over-
head of allocating a closure when creating a vector chap-
erone. More significantly, a vector chaperone can wrap an-
other chaperone, in which case the vector-ref interposi-
tion functions compose naturally and with linear complexity
when vec, i, and val are all provided. Along similar lines,
interpose-set could install its replacement value directly
into vec, but to facilitate composition it instead returns a
value to be installed.

The impersonate-vector function works the same way
as chaperone-vector, but without chaperone checks on re-
placement values. In addition, impersonate-vector is lim-
ited to mutable vectors. If a vector is known to be immutable
(via Racket’s immutable? predicate), then vector-ref on a
particular slot should always return the same result. Chap-
erones enforce a suitable notion of “same result,” so im-
mutable vectors can be chaperoned; impersonators could
break the intent of an immutable vector, so immutable vec-
tors cannot be impersonated.

3.3 Chaperoning and Impersonating Structures
As noted in section 2.3, Racket’s struct form creates a new
structure type with a fixed number of fields, and it binds con-
structor, predicate, accessor, and (optionally) mutator func-
tions for the new structure type. For example,
(struct fish (color [weight #:mutable]))

defines the constructor fish to create instances, the predi-
cate fish? to recognize instances, the accessor fish-color
to extract the first field of an instance, and the accessor
fish-weight to the extract the second field of an instance.
Since the second field is annotated #:mutable, struct also
binds set-fish-weight! as a mutator to change an in-
stance’s second field.

The chaperone-struct function creates a chaperone on
an instance of a structure type. Whereas the chaperone con-
structors for functions and vectors take a fixed number of
interposition functions, chaperone-struct deals with arbi-
trary structure types that can have different numbers of fields
and varying visibility of operations. The chaperone-struct
function thus takes a structure instance with a sequence of
pairs of operations and interposition procedures. For exam-
ple, a contract on a fish instance dory—to ensure that dory
is blue and between 10 and 12 pounds—could be imple-
mented as
(chaperone-struct
dory
fish-color (validate-color provider)
fish-weight (validate-weight provider)
set-fish-weight! (validate-weight client))

where validate-color and validate-weight perform the
actual checks.

In principle, every value in Racket is a structure, and
chaperone-vector and chaperone-procedure internally
use chaperone-struct to apply chaperones through inter-
position of private accessors and mutators.4 By exposing
or hiding structure operations, a library implementer can
choose to either allow clients to use chaperone-struct di-
rectly or force clients to use some other chaperone-creation
function that is exported by the library.

The impersonate-struct function works the same
way as chaperone-struct, but without chaperone checks

4 In practice, most (but not all) procedures and vectors have specialized
representations that are exploited by the just-in-time compiler.

on replacement values. Just like impersonate-vector,
impersonate-struct only allows interposition on mutable
fields of a structure.

4. Interposition beyond contracts
Chaperones and impersonators are not limited in use to im-
plementing contracts. To demonstrate additional uses, we
discuss the implementation of remote objects that provide
a local view on a remote service with impersonators, and we
discuss the implementation of revocable membranes (Miller
2006) with chaperones.

4.1 Remote Objects
To illustrate remote objects, we use impersonators to imple-
ment a view on IMAP accounts. The resulting view is ma-
nipulated by the programmer like normal, local data, but the
view retrieves information lazily from the IMAP server us-
ing the interposition capability of impersonators. Since the
data we retrieve from the server is not the same as the data
stored in the wrapped local data structures, we must use im-
personators, not chaperones.

First, we require an existing Racket library that provides
IMAP functionality:
(require net/imp)

Building on this library, an IMAP session is represented as
a hash table that maps mailbox names to mailboxes. A hash-
table impersonator interposes on the lookup, assign, remove,
and key-enumeration operations of a hash table, where the
lookup interposition function first filters the key and returns
another procedure to adjust the lookup result. To simplify the
presentation, the impersonator for the mailbox hash allows
only lookup and key-enumeration (replacing or removing
mailboxes is not allowed), effectively making the table read-
only.
(define (imap-hash server user pass)

(define-values (conn c r)
(imap-connect server user pass "INBOX"))

(define mailboxes
(map second (imap-list-child-mailboxes conn #f)))

(imap-disconnect conn)
(impersonate-hash
(make-hash (map (λ (m) (cons m #f)) mailboxes))
(λ (h k)

(values
k
(λ (h k v)

(imap-mailbox-vector server user pass k))))
(λ (h k v) (error "assign not allowed"))
(λ (h k) (error "remove not allowed"))
(λ (h k) k)))

To client code, the result of imap-hash looks like a hash ta-
ble ht indexed by byte-string mailbox names, so that a client
who wants to read messages from the “Ultra Mega” mail-
box would access messages using (hash-ref ht #"Ultra
Mega"). Instead of returning the placeholder #f that is stored
in the hash table, the table access triggers a download of the
“Ultra Mega” messages via imap-mailbox-vector.

Ultimately, each message contains four parts: (1) the mes-
sage position within the mailbox, (2) the headers of the mes-
sage, (3) the body of the message, and (4) the IMAP flags
associated with the message.
(struct message (pos

[headers #:mutable]
[body #:mutable]
[flags #:mutable]))

Fields other than pos in message are marked as mutable so
that the impersonator can retrieve them lazily. That is, the
impersonator for a message connects to the IMAP server
when any field other than pos is accessed:
(define (imap-message server user pass mbox pos)

(define (fetch-field field)
(define-values (conn c r)

(imap-connect server user pass mbox))
(define val

(first (first
(imap-get-messages conn

(list pos)
(list field)))))

(imap-disconnect conn)
val)

(impersonate-struct
(message pos #f #f #f)
message-headers
(λ (s f) (fetch-field ’header))
message-body
(λ (s f) (fetch-field ’body))
message-flags
(λ (s f) (fetch-field ’flags))))

4.2 Revocable Membranes
Revocable membranes (Donnelley 1976; Miller 2006; Ra-
junas 1989) allow one software component to share values
that contain behavior or state with another component, but
to later revoke access to those values when needed. Such
membranes are useful for providing untrusted parties time-
limited access to sensitive data, and they have been verified
to enforce the appropriate security properties (Murray 2010).

Because the wrapped values should react identically to
the original values except for errors due to the membrane
being revoked, chaperones are sufficient to implement mem-
branes, despite the invariants that Racket enforces. In our
implementation, a component provides chaperoned versions
of values that may contain behavior or state, and the chap-
erone checks for revocation before applying functions and
accessing or mutating state. In addition to demonstrating
the expressiveness of chaperones, previous membrane de-
signs rely on a universal message-passing interface, whereas
chaperones support membranes for data such as vectors and
structures.

To represent the membrane, we use a structure type that
contains one field, revoked?, that initially contains #f. We
provide two utility functions on membranes:

• check-membrane, which errors if a membrane has been
revoked, and

• revoke-membrane, which revokes a membrane.

(struct membrane ([revoked? #:mutable #:auto])
#:auto-value #f)

(define (check-membrane m)
(when (membrane-revoked? m)

(error "membrane revoked!")))

(define (revoke-membrane m)
(set-membrane-revoked?! m #t))

Van Cutsem and Miller (2010) and Austin et al. (2011)
implement revocable membranes via a generic proxy mech-
anism that is uniform for all types of value. Thus, they need
to implement only one proxy wrapper that appropriately re-
curs on any values returned from operations. In our sys-
tem, however, different types of values have different chap-
erone interfaces, so we have a central dispatching function,
membrane-value, that consumes a value and adds a mem-
brane to it.

For basic values, like strings or numbers, no wrapping
is necessary. For values like pairs, the pair need not be
wrapped, but the values contained in the pair may require
wrapping. For procedures and vectors, we simply use the
appropriate type of chaperone. The interposing functions
check the membrane, and if it is not yet revoked, allow the
operation to proceed. Attempting to pass a value through a
membrane causes an error if the value cannot be wrapped
and may contain behavior or state.

(define (membrane-value v m)
(cond

[(or (null? v) (string? v) (number? v)) v]
[(pair? v)
(cons (membrane-value (car v) m)

(membrane-value (cdr v) m))]
[(vector? v)
(membrane-vector v m)]
[(procedure? v)
(membrane-procedure v m)]
[(struct? v)
(membrane-struct v m)]
[else
(error "Value cannot flow through membrane" v)]))

To build a membrane, we simply create a chaperone
that calls check-membrane before allowing any operation.
Here’s the code to add the chaperone to a vector.

(define (membrane-vector v m)
(chaperone-vector
v
(λ (v i r)

(check-membrane m)
(membrane-value r m))

(λ (v i r)
(check-membrane m)
(membrane-value r m))))

The other operations are similar (although the structure
membrane is more complex, since structures have many op-
erations in Racket). The full implementation is given in the
technical appendicies that accompany this paper.

5. Reasoning about Reasonable Interposition
This section presents a formal model of our chaperones and
impersonators. Using the model, we can formally establish
limits on allowed interposition, and we can state a precise
theorem that illustrates the desired properties of chaperones.
To begin, we define VectorRacket, a subset of Racket with
both mutable and immutable vectors. We then extend Vec-
torRacket to include chaperones and impersonators for vec-
tors and present our theorem for chaperone erasure.

5.1 Constraining Interposition
By requiring that a chaperone or impersonator is attached to
a value before it flows into otherwise oblivious code, the de-
sign of chaperones and impersonators implicitly constrains
the interposition to that specific value. After a value is chap-
eroned, however, the dynamic behavior of the chaperone is
hardly constrained; it is certainly not constrained to purely
functional behavior. An interposition function associated
with a chaperone can use the full power of Racket, which
means that it can print output, modify global variables, or
even change mutable arguments as they flow through the
interposition layer.

At first glance, a lack of constraints on side effects may
seem like an open invitation to breaking existing invariants
of the programming language. An externally visible side ef-
fect that is performed through a chaperone, however, is no
different from a side effect that is concurrently performed
by another thread. A chaperone may gain access to local
values that might not otherwise be exposed to other threads,
but in a mostly functional language like Racket, those ar-
guments tend to be immutable, which means that extra side
effects through chaperones are constrained already by the
immutability of the data.

In contrast, impersonators are prohibited from acting on
immutable values, precisely to ensure that the invariants
of immutability are preserved. For example, extracting the
value of a field from an immutable structure should always
return the same result; chaperoned structures still preserve
this behavior, thanks to the chaperone-of? check that im-
personators skip.

Since chaperones and impersonators offer little additional
possibilities for side effects compared to threads, and since
Racket libraries must already account for the possibility of
concurrent threads when checking and enforcing invariants,
chaperones and impersonators create few new complications
on that front. We are therefore concerned with the ability
of a chaperone or impersonator to change the result that is
produced by an operation, and hence our investigation con-
centrates on that problem. To further simplify the model, we
restrict attention to procedures and mutable and immutable
vectors, since the structure-type generativity can be simu-
lated through vectors, procedures, and hidden type tags.

���������������� �� ���� ��
����� � ���������� � � ��
������� ��� �� ���� ��
��������� ����������

���������������������������
�������������

������������������������
�������������������

�������������

��������������

�������������

�������� � ��
��������� ��� ����

��������� �� ���� ������������ � � ����
�������������������� � ����

��������������
���������������� ��

�������� � ��
������������� ��� � � ����

������ � � ��
������� ��� �� ��� �� �� �� �� ���� ��

Figure 2: VectorRacket Syntax

5.2 VectorRacket
Figure 2 shows the grammar for VectorRacket. The surface
language (the left-hand column) includes � expressions, ap-
plication, variables (�), ��� expressions, �� expressions, er-
rors, booleans (�), natural numbers (�), a “void” result for
side effects, and primitives. The primitives include opera-
tions for creating and inspecting vectors, as well as two
predicates: ������ to compare two values structurally and
���������� to determine whether a value is an immutable
vector.

The evaluator for VectorRacket (figure 3) returns the
atomic tag proc or vector to indicate that the result of evalua-
tion was some procedure or some vector, respectively. If the
result was some other kind of value, the evaluator returns it
directly. If evaluation gets stuck at a non-value, the evaluator
returns error. The evaluator is a partial function, since it is
undefined when evaluation of a program fails to terminate.

The evaluator uses the reduction relation →, which is
shown in figure 4. The relation uses the additional syntactic
categories given on the right-hand column of figure 2. The
reduction relation operates on programs (�), which consist
of three parts: a store (�) to map locations to procedures
and vectors (��), a boolean to track whether evaluation is in
the dynamic extent of a chaperone’s interposition function
(which aids with the formulation of our formal results),
and an expression. The langauge for expressions is nearly
the same as the set of surface-level expressions, with the
exception that the production ���� �� is added to stand for
a value in the store. Finally, � and � are evaluation contexts
for programs and expressions, respectively.

The rules are mostly standard, with a few exceptions. To
support a notion of equality on procedures, procedures are
allocated in the store via the [procedure] rule, so the [βv]
rule extracts the procedure from the store before substitution.
The rules for �� treat non-�� values as if they were true (as
in Racket).

The [equal?] rule defers to the ����� metafunction (not
shown here), which returns �� when the (potentially infinite)
unfolding of the first argument is equal to the (potentially
infinite) unfolding of the second. The ���������� predicate
detects immutable vectors. The remaining rules handle vec-

EvalJeK =

proc if (() #f e)→∗ (s b (loc x)) and
s(x) = (λ (x ...) e′)

vector if (() #f e)→∗ (s b (loc x))
v if (() #f e)→∗ (s b v)
error: msg if (() #f e)→∗ (s b (error msg))
error if (() #f e)→∗ p′ and

p′ 6→ p′′ for any p′′

Figure 3: VectorRacket Evaluator (function clauses in order)

tor allocation, access, and update, where vector allocation
records whether it was allocated by an interposition (i.e., the
program state’s boolean).

5.3 VectorRacket with Chaperones
Figure 5 extends the syntax of VectorRacket with chaperones
and impersonators. The extensions include three new prim-
itives, value forms for chaperones and impersonators, and
���������� and ������������ forms to record whether
evaluation has entered a chaperone’s interposition functions.

The ���������������� primitive works as in Racket:
its first argument is a vector to be chaperoned, its second
argument is a procedure to interpose on vector access, and its
third argument is a procedure to interpose on vector update:

���� �����������
����������������� ������� � � ��

�� ���� � ��� ���

�� ���� � ��� ����

��

����

If the interposition function attempts to return a completely
different value, the program aborts, signalling an error that
the chaperone misbehaved:

���� �����������
����������������� ������� � � ��

�� ���� � ��� ���

�� ���� � ��� ����

��

�������������������

The [out-cvec-ref] and [in-cvec-ref] rules of figure 6 handle
���������� for chaperones. The two rules are essentially
the same, but [out-cvec-ref] applies when evaluation first
moves into interposition mode, while [in-cvec-ref] applies
when evaluation is already in interposition mode (as indi-
cated by the boolean in the program state). In either case,
the rules expand a ���������� application to extract a value
from the chaperoned vector, apply the interposition function,
and check that the interposition function’s result is a chap-
erone of the original value. The [out-cvec-ref] rule also uses
���������� and ������������ to move into and out of in-
terposition mode. The [setm] and [clearm] helper rules di-
rectly manipulate the boolean in the program state and then
reduce to their arguments.

�� � ���� �� ���� ���� ������������

������� �� ���� ��� � ������ ����

��������������

�� � ������� ��� � ������ �����

�� � �����������������

��������� �� ���� ��������������� ����������� �����

������ ��� �� ���� ��� ���������������� ������

����� � �� ���� ����� ������

�������������

����� �� �� ���� ����� ������

�� � �������� ������������ ��������

�� � ������ �����������

�������������

�� � ��������� �� ����� ���������

�� � ����������� ��� �� �� ��

�� � ��������� � ������ ���������

������������ � � ����� � ������ ����

��������������

�� � ������������� ���� ��������

�� � ��������������� � �� ��

�� � ������������������� � ������ ���������

���������������������� � ����� � ������ ����

��������������

�� � �������������� ���� �� � ������� ��������������

������������ � �� ��� ���� �� �����
� ����������

�������������� � �� ��� �� �� �������������

���� ���������

�� �� ������������� ���� �� ���� �����������

�� �� ������

�������������� �� �� ��� �� �� �������������

���� ���������

�� �� ������������� ���� �� ���� �������������

�� �� ������

������������������������ �� ��� �� �� �������������

���� ���������

Figure 4: VectorRacket Reductions

The [out-cvec-ref] and [in-cvec-ref] rules of figure 6 han-
dle ����������� on vector chaperones in a similar man-
ner. The [ivec-ref] and [ivec-ref] rules handle ����������

and ����������� on impersonators, which do not require
������������� checks. The [cvec] and [ivec] rules handle
chaperone and impersonator construction.

The ������������� primitive defers to the metafunction
������������ of figure 6. The result of ������������ is ��
for syntactically identical values. If both arguments are im-
mutable vectors of the same length, the elements are checked
point-wise. If the first argument is a location in the store
that points at a chaperone, the metafunction recurs using the
chaperoned value. Otherwise, ������������ returns ��.

5.4 Chaperone Erasure
To state our central theorem on chaperone proxies, we need
the notion of chaperone erasure for a subset of programs. If a

���
������������������������������� � � ������������������������ � � ��
������������������������ ������������������ ��

Figure 5: VectorRacket Chaperone Syntax Extensions

�� �� ������������� ���� �� ���� ���������������

�� �� ������ ����� ����������� � ����
���� ����� ����������� �� � � �������

�������������
��� �������������� ��� ����

���
������ �����������������

������������������������ � � ���������

�� �� ������������� ���� �� ���� ��������������

�� �� ������ ����� ����������� � ����
���� ����� �� � � ������

��� �������������� ��� ����

���
������ ����������������

������������������������ � � ���������

�� � ������������� ���� �� �� ����� �������

�� � ��������������� ���� �� �� ����� ���������

�� �� �������������� ���� �� � ���� ����������������

�� �� ������ ����� ����������� �� � � �����
�������������
��� �������������� ��� ��

������������ � � ����
������ ����������������

������������������������ � � ���������

�� �� �������������� ���� �� � ���� ���������������

�� �� ������ ����� �� � � ����
��� �������������� ��� ��

������������ � � ����
������ ���������������

������������������������ � � ���������

�� � ������������� ���� �� ���� �����������

�� � ���� � � ����������� � �����

�������������������������� � � ���������

�� � �������������� ���� �� � ���� ������������

�� � �������������� � � �� � � �����

�������������������������� � � ���������

�� � ������������������� � � ���� �������

���������������������� � � ��� � ������ ����

������������������� � �� ���������

�� � ��������������������� � � ���� �������

������������������������ � � ��� � ������ ����

�������������������� � �� ���������

�� � ���������������� �� ����� ������

�� � ������������������ ��� �� �� ��

���������������� �� � �� ��� ��

���������������� ���� ��� �� �� ��� ���������������� �� �� ��

������������������������ � � ���������

���������������� ���� ��� ���� �� �� ��� ������������������� ��� �� �� � ��� ��

������������������������ �� �������������

����������������� �� ����������������� ������������ �����

���������������� ��� �� �� ��� ��

Figure 6: VectorRacket Chaperone Reductions and Meta-
functions

well-behaved program with chaperones evaluates to a value,
then the program with all chaperones removed will evaluate
to an equivalent value. In our model, a well-behaved pro-
gram is a program whose chaperone wrappers do not affect
mutable vectors used by the “main” program, that is, the pro-
gram with chaperones erased. There are two ways that chap-
erones might do this: through mutating vectors allocated by
the main program, or providing the main program with vec-
tors allocated by the chaperone, which can later be used as a
channel of communication.

Since chaperone wrappers must return values that are
chaperones of the appropriate argument, and chaperones
must share the same mutable state, providing the main pro-
gram with chaperone-allocated vectors is only possible by
placing that vector in a vector allocated by the main pro-
gram. Thus, we need only detect the mutation of main pro-
gram state within a chaperone wrapper to detect ill-behaved
programs. We do this by looking for reductions where the
left hand side is marked as being under the dynamic extent
of a chaperone wrapper and the redex is a ����������� on
a vector allocated outside of any chaperone wrappers.

Theorem 1. For all �, if ���� � ���� and that evalua-
tion contains no reductions whose left hand side is of the
form ��� �� �������������� ���� �� �� ���� where ����� =
������� �� �� ����, then ���� �� ����, where �� is the same
as � but where any uses of ���������������� are replaced
with �� �� � �� ��.

Proof sketch To prove this theorem, we look at the trace
of reductions for both the unerased and erased programs.
First, we set up an approximation relation that relates pro-
gram traces in the unerased reduction trace to program states
in the erased reduction trace. Erased program states are ap-
proximately equal to unerased program states when they
contain the same expression, modulo the replacement of
���������������� with �� �� � �� ��, and the graph of
memory allocated by the main program is the same in both,
modulo any chaperones allocated by the unerased program.
We then show that VectorRacket reduction respects this ap-
proximation, and that values from approximated states are
equal under our evaluation function.

The full proof is given in the technical appendicies.

6. Performance
Although our motivation for adding chaperones and imper-
sonators to Racket is to increase the expressiveness of the
contract system, performance is a major concern. Our pri-
mary concern is that support for chaperones, impersonators,
and contracts is “pay as you go” as much as possible; that
is, programs that do not use the features should not pay for
them. A secondary concern is the performance of chaper-
ones, impersonators, and contracts themselves, which should
not impose excessive overheads on programs that use them.

The Racket implementation uses a just-in-time (JIT)
compiler to convert bytecode into machine code for each
function when the function is first called. When the JIT
compiler encounters certain primitive operations, such as
vector-ref, it generates inline code to implement the op-
eration’s common case. The common case corresponds to a
non-chaperone, non-impersonator object. For example, the
inlined vector-ref code checks whether its first argument
has the vector type tag, checks whether its second argument
is a fixnum, checks whether the fixnum is in range for the
vector, and finally extracts the fixnum-indexed element from
the vector; if any of the checks fail, the generated machine
code bails out to a slower path, which is responsible for
handling chaperones as well as raising exceptions for bad
arguments. The addition of chaperones thus has no effect
on the machine code generated by the JIT compiler or its
resulting performance when chaperones are not used in dy-
namically typed Racket code. We therefore concentrate our
performance analysis on the overhead of using chaperones
and impersonators, both by comparing this overhead to pro-
grams without interposition as well as comparing the per-
formance of chaperones and impersonators to other proxy
systems.

The source code for all of the benchmarks presented in
this section are in the technical appendices.

6.1 Procedure Performance
To measure the performance overhead of chaperones and im-
personators for procedures, we start with microbenchmarks
comparing Racket to two variants of Scheme—Chicken and
Larceny—plus two variants of Javascript—V8 and Spider-
Monkey, with JägerMonkey and type inference (Hackett and
Guo 2012) enabled for the latter.

The first set of benchmarks involve 10 million calls to the
identity function in increasingly expensive configurations,
with results shown in figure 7:

• direct — Each call is a direct call, which is inlined by the
Racket compiler and most others.

• indirect — Each call is through a variable that is as-
signed to the identity function. Since Racket is designed
for functional programming, its compiler makes no at-
tempt to see through the assignment, so the assignment
disables inlining of the function. For Javascript, the in-
direction is similarly just an assignment, but Javascript
implementations tend to see through such assignments;
and we make no attempt to obfuscate the program further
from Javascript JITs.

• wrapped — Each call is through a function that calls the
identity function. Like indirect, both the identity func-
tion and its wrapper are hidden from the Racket com-
piler via assignments to prevent inlining—and therefore
to simulate at the source level the kind of indirections that
a chaperone or impersonator create.

Run times in milliseconds

Racket Chicken Larceny V8 SM
direct 29 115 66 42 37
indirect 123 226 63 40± 46
wrapped 176 218 85± 36 95
wrapped+check 358 446 163 195 139
wrapped+return 562± 525 197 401 1,211

proxy – – – 1,903± 1,931
impersonate 922 – – – –
chaperone 920 – – – –
impersonate+return 1,642 – – – –
chaperone+return 1,676 – – – –

church 1,258 1,113 706 2,282 9,368
church-wrap 4,067 8,014 3,458 8,071 26,785

church-proxy – – – 41,717 79,214
church-chaperone 43,805 – – – –
church-chaperone/a 4,653 – – – –
church-contract 7,607 – – 293,149† 226,135†

Average of three runs; ± inidicates a standard deviation between 5%
and 10% of the average, while all others are within 5% of the average.
Benchmark machine: MacBook Air, 1.8 GHz Intel Core i7, 4GB running
OS X 10.7.4. Implementations: Racket v5.3.0.16 (git b0f81b5365) 64-bit,
Chicken v4.7.0 64-bit using -O3 -no-trace, Larceny v0.98b1 32-bit us-
ing -r6rs -program, V8 shell v3.12.19 (git cb989e6db8) 64-bit using
--harmony, SpiderMonkey v1.8.5+ (hg 23a7ba542bb5) 64-bit using -m -n,
where † uses contracts generated by Contracts.coffee 0.2.0 (Disney 2012),
and the V8 run further uses --noincremental-marking to avoid a problem
with weak maps.

Figure 7: Procedure-call microbenchmark results

• wrapped+check — Each call to a function like wrapped
is generated by a higher-order function that accepts a
function to convert to the original function’s argument
and another to convert the result; the identity conversion
is provided. This variant simulates the old implementa-
tion of contracts in Racket by using lambda as the inter-
position mechanism instead of impersonate-procedure
or chaperone-procedure.

• wrapped+return — Like wrapped, but in addition to
returning the result of the identity function, the wrapper
returns another function (also the identity function) that
the caller should apply to the result. This variant simu-
lates interposition on both the arguments and results of
a wrapped function as performed by chaperones and im-
personators, but staying within normal function calls.

• proxy — For Javascript, calls the identity function
through a proxy created by Proxy.createFunction (Van
Cutsem and Miller 2010), which is roughly analogous to
calling a function through an impersonator.

• impersonate and chaperone — For Racket, calls the
identity function through an impersonator and chaperone,
respectively, interposing only on the arguments of the
function.

• impersonate+return and chaperone+return — For
Racket, calls the identity function through an imperson-
ator and chaperone, respectively, interposing on both the
arguments and results of the function with the identity
conversion.

Although it is difficult to compare performance across lan-
guages with different semantics, these results suggest that
Racket’s performance is not out of line with other dynamic-
language implementations, both in terms of its baseline per-
formance and in the performance of chaperones and imper-
sonators compared to Javascript proxy implementations.

In addition to calling the identity function 10 million
times, we also run a λ-calculus computation of factorial us-
ing Church numerals, which stresses higher-order functions.
Again, we try several variants with results shown in figure 7:

• church — Computes the factorial of 9 using Church
numerals.

• church-wrap — Like church, but with wrapping func-
tions to simulate contract checks. The simulated contracts
are higher order, involving about 360 wrappers and just
short of 10 million applications of wrapped functions.

• church-proxy — Like church-wrap, but implementing
wrappers with Javascript proxies.

• church-chaperone — Like church-wrap, but imple-
menting wrappers with chaperones.

• church-chaperone/a — Like church-chaperone, but
recognizing (any/c . -> . any) contracts to avoid un-
necessary chaperoning in that case, which is the kind of
shortcut that Racket’s contract system detects.

• church-contract — Like church-wrap, but using either
Racket contracts, which are in turn implemented with
chaperones, or Contracts.coffee (Disney 2012), which
compiles to JavaScript proxies.

The initial church variants corroborate the other microbench-
mark results. The church-contract result shows Racket’s
performance to be significantly better than the JavaScript
versions, but this is likely because of optimizations that the
Racket contract library performs, and not due to differences
at the proxy/chaperone layer.

To check the effect of chaperones in realistic applications,
we use a few existing Racket programs and tests that make
heavy use of functions with contracts:

• make guide — Builds a representation of the Racket
Guide, which involves many constructors such as section
and element, as well as the decoding of some string lit-
erals into typesetting elements. Most contract checking
involves the constructors.

• render guide — Renders the documentation from make
guide to HTML. The relevant contracts are on structure
accessors (but not individual structure instances) and on
functions to resolve cross references.

msecs makes calls

make guide 10,792 14,051 90,924 chaperone
10,818 14,049 90,922 impersonate
10,606 13,602 89,914 no interpose
10,467 13,602 0 no chaperone

proxy overhead: 1%
additional chaperone overhead: 0%
contract checking overhead: 2%

render guide 3,727 2,188 1,846,966 chaperone
3,741 2,188 1,846,966 impersonate
2,044 172 1,730,158 no interpose
1,889 172 0 no chaperone

proxy overhead: 8%
additional chaperone overhead: 0%
contract checking overhead: 83%

keyboard 7,258 160 1,244,705 chaperone
7,253 160 1,244,705 impersonate
5,321 0 1,244,545 no interpose
5,182 0 0 no chaperone

proxy overhead: 3%
additional chaperone overhead: 0%
contract checking overhead: 36%

slideshow 5,180 6,467 208,263 chaperone
5,168 6,467 208,263 impersonate
4,776 4,605 206,401 no interpose
4,663 4,605 0 no chaperone

proxy overhead: 2%
additional chaperone overhead: 0%
contract checking overhead: 8%

plot 2,394 1,755 274,768 chaperone
2,362 1,755 274,768 impersonate
1,886 1,750 136,923 no interpose
1,854 1,750 0 no chaperone

proxy overhead: 2%
additional chaperone overhead: 1%
contract checking overhead: 25%

typecheck 47,816 1,975,414 7,440,497 chaperone
47,302 1,975,414 7,440,497 impersonate
24,144 918,343 3,482,644 no interpose
22,610 918,491 0 no chaperone

proxy overhead: 7%
additional chaperone overhead: 1%
contract checking overhead: 96%

Figure 8: Realistic procedure benchmark results

Run times in milliseconds

Racket ∼Racket Chicken Larceny V8 SM
bubble 1,317 1,315 4,341 680 463 552

proxy – – – – 124,215 97,226
chaperone 6,358 29,171 – – – –

unsafe 885 – 3,020± 815 – –
unsafe* 692 – – – – –

∼Racket corresponds to Racket without specialized JIT handling of chap-
eroned vectors. Chicken in unsafe mode corresponds to adding -unsafe.
Larceny in unsafe mode corresponds to setting (compiler-switches
’fast-unsafe) before using compile-file.

Figure 9: Vector microbenchmark results

• keyboard — A test of DrRacket’s responsiveness to key-
board events, which simulates a user typing “(abc)” 400
times. DrRacket reacts by adding the characters to an
editor buffer, matching parentheses and syntax-coloring
through an associated coroutine (that is covered in the
timing result). Contracts from many different Racket li-
braries are involved.

• slideshow — Construction of a Slideshow talk that in-
cludes many animations, so that the slide set contains
over 1000 frames. The relevant contracts are mainly on
the construction of “pict” values that are composed to
form the animation frames.

• plot — Renders a 3-D plot to a PNG file. The relevant
contracts are mainly on the drawing library.

• typecheck — Runs the Typed Racket compiler on test
input. The Typed Racket compiler uses many higher-
order contracts on its internal modules.

Figure 8 shows timing results. For each program, we
show the run time, number of created procedure chaperones
(“makes”), and number of calls to chaperoned procedures
(“calls”). We then show how the timing changes when chap-
erones are replaced internally with impersonators (skipping
the chaperone-of? check), when application of a chaperone
procedure redirects internally to the chaperoned procedure
(avoiding the overhead of the interposition procedures that
actually check contracts), and when chaperone-procedure
is internally short-circuited to just return the procedure (ef-
fectively disabling the contracts in the original code). The
results show that the cost of checking contracts is some-
times quite significant—as exposed by the time difference
when interposition procedures are skipped—while the over-
head of the core chaperone and impersonator mechanism is
negligible or small for these programs.

6.2 Vector Performance
Our microbenchmark for vector performance is bubble sort
on a vector of 10,000 integers in reverse order. Figure 9

msecs makes refs

ode-apply 10,632 1,456,221 40,817,268 chaperone
10,236 1,456,221 40,817,268 impersonate
9,265 1,456,221 40,817,268 no interpose
7,794 1,456,221 0 no chaperone
5,532 0 0 no procedure

vector proxy overhead: 19%
additional vector chaperone overhead: 4%
vector contract checking overhead: 10%
procedure and vector contract use overhead: 92%

Figure 10: Realistic vector benchmark results

shows timing results, where the “∼Racket” column cor-
responds to Racket with specific JIT support for chaper-
oned vectors removed; we include the column to demon-
strate how building chaperone and impersonator support into
the run-time system allows the JIT to substantially reduce
the overhead of proxies on vectors. The proxy variant for
Javascript uses makeForwardingHandler from Van Cutsem
and Miller (2010), while chaperone uses a Racket vector
chaperone.

Besides the overhead of proxies when used, and in con-
trast to procedure chaperones and inspectors, chaperones
and inspectors for vectors are not completely “pay as you
go” in Racket. The table in Figure 9 includes an unsafe row
to show the performance of bubble sort when vector-ref
operations are replaced by unsafe-vector-ref. While
the unsafe-vector-ref operation assumes that its ar-
guments are a vector and an in-range index, the vector
may be a chaperoned or impersonated vector. The un-
safe* row shows performance using unsafe-vector*-ref,
which assumes a non-chaperoned, non-impersonated vec-
tor. These unsafe operations are suitable for use in macro
expansions or typed contexts where the operations are
statically known to be safe, and in most such contexts,
unsafe-vector-ref must be used. The difference in per-
formance between unsafe and unsafe* thus reflects a price
imposed on unsafe-vector-ref by the existence of chap-
erones and impersonators. The cost is small, though not neg-
ligible for the microbenchmark.

We use the williams/science.plt PLaneT package
to illustrate the impact on realistic programs with exten-
sive use of vector contracts. Many functions from this
package expect vectors of real numbers as inputs. We ad-
justed a test case for ode-evolve-apply so that it per-
forms 1,456,221 iterations; the argument vector in the test is
short, but the vector is accessed frequently, so that 40 mil-
lion accesses are chaperoned. Figure 10 shows the bench-
mark results; as for the benchmark suite for procedures,
we show how the timing changes when chaperones are re-
placed internally with impersonators, when access of a chap-
eroned vector directly accesses the vector content (skip-
ping the interposition that checks for a real number), and
when chaperone-vector is internally short-circuited to re-

Run times in milliseconds

Racket Chicken Larceny V8 SM
direct 902 2,324± 756± 293 349

proxy – – – 39,345 21,768
chaperone 5,835 – – – –

unsafe 289 1,250± 800 – –
unsafe* 285 – – – –

Figure 11: Structure microbenchmark results

turn its first argument (as if no contracts were present in
the original code). Finally, we show the time when both
chaperone-vector and chaperone-procedure are short-
circuited, which completely removes the contract from
ode-evolve-apply. The cost of checking the contract on
vector elements is small, while the use of a contract over-
all is a substantial cost. The overhead imposed specifically
by the chaperone and impersonator mechanism is more sub-
stantial than in the case of procedures, but it is in line with
the overall cost of using contracts.

6.3 Structure Performance
Our microbenchmark for structure performance is to access
the first field of a two-element structure 100 million times.
Figure 11 shows timing results that are analogous to the vec-
tor benchmarks. Although an unsafe structure reference via
unsafe-struct-ref must pay for the existence of chaper-
ones and impersonators, the extra test makes little difference
in our benchmark, as reflected in the close results for unsafe
and unsafe*; that the difference appears so small is prob-
ably due to accessing the same structure repeatedly in the
microbenchmark, so that the type tag is always in cache.

For a more realistic benchmark, we re-use a benchmark
from Findler et al. (2007)’s work on lazy contracts that con-
sists of replaying a trace of heap operations from Felzen-
szwalb and McAllester (2006)’s vision algorithm. We replay
the trace in a binomial heap. Contracts on the heap opera-
tions ensure that the heap is well-formed, but checking them
at every step is prohibitively expensive, so the contracts are
checked lazily. These contracts ensure that the structure of
the heap is well-formed as far as it is explored, but unex-
plored parts of the heap are not checked. The original im-
plementation of lazy structure contracts required that the
program is changed to use a special structure-declaration
form, while the new chaperone-based version works with
the original structure declaration. The chaperone-based ver-
sion is also lazier, in that structure checks are triggered per-
field; with the old implementation, an access of any of a
structure’s fields would trigger checking on all of the fields.
An advantage of the old implementation, however, was that
it could drop unchecked field values after checking them,

msecs makes refs Mbytes

lazy 18,616 6,026,413 235,002,269 446 chaperone
22,122 0 0 227 original
2,824 0 0 153 no contract

structure contract checking overhead: 559%
chaperones versus original: 84%

Figure 12: Realistic structure benchmark results

while the chaperone-based implementation merely prevents
the unchecked variants from being accessed.

Figure 12 shows the result of running the benchmark on
a picture of a koala’s face. The figure shows the running
times, number of created structure chaperones, number of
chaperoned structure references, and peak memory use of
the benchmark in three configurations: using the chaperone-
based implementation of lazy contracts, using the original
implementation of lazy contracts, and using no contracts.
The chaperone-based implementation is faster than the orig-
inal implementation, mainly due to its finer granularity of
contract checking, but it also uses more memory, since it
retains unchecked versions after checked versions are avail-
able. Overall, the benchmark results show that chaperones
perform well for lazy structure contracts.

Aside from these benchmarks, structure chaperones in
Racket directly improved the performance of Racket’s class
system. Prior to support for chaperones, the class system
implemented object-specific wrappers that operated like im-
personators. All object operations required a check on the
target object to determine whether it was a wrapped ob-
ject, and since this test was outside the core run-time sys-
tem, the JIT compiler was not able to recognize the imper-
sonator pattern and optimize for the common case. In fact,
the check interfered with optimizations that the JIT com-
piler could otherwise perform, and the result was a 3x slow-
down on field-intensive microbenchmarks that did not use
contracts (Strickland and Felleisen 2010). After switching
the implementation to use impersonators, this slowdown was
completely eliminated.

6.4 Discussion
Chaperones and impersonators, as implemented in Racket,
are expressive and expensive constructs; microbenchmarks
indicate a factor of 5 to 10 in run time over normal, unin-
lined function call or a vector or structure access (see Fig-
ure 7). Despite this cost, real applications experience a much
lower slowdown when using them, up to a factor of 2 and
usually less (see the “contract checking overhead” results in
Figures 8 and 10), although lazy contracts can be expensive
(see Figure 12). Considering our microbenchmarks and our
measurements of larger applications as a whole, we draw the
following conclusions:

• Racket’s baseline performance and its proxy perfor-
mance are on par with other production systems offering

similar functionality (see Figure 7). Slower performance
from Racket’s impersonators compared to JavaScript’s
proxies would have been a cause for concern, since the
overall design of Racket generally makes it easier to im-
plement efficiently than JavaScript.

• The design of interposition to Racket imposes almost no
cost on the remainder of the system when it is not used,
and the exception for unsafe operations is small (see the
unsafe vs. unsafe* lines in Figures 7, 9, and 11).

• The cost of interposition is quite reasonable for our pri-
mary application, contract checking. In real programs,
the cost of interposition itself is dominated by the cost
of actually checking the contracts. (Contrast the “proxy
overhead” lines and “contract checking overhead” lines
of Figures 8 and 10; see also the “chaperones versus orig-
inal” line of Figure 12.)

• Although Racket supports a rich hierarchy of interposi-
tion to maintain the language invariants, this additional
complexity and the required dynamic checks imposes at
most 4% overhead in all of our testing (as reflected by
the “additional chaperone overhead” results in Figures 8
and 10). As mentioned in Section 7, JavaScript’s proxy
design limits its expressiveness by reducing the dynamic
checks it performs, but our measurements indicate that
these checks are inexpensive.

• Adding support for interposition to the Racket run-
time realizes significant performance benefits for exist-
ing Racket libraries that otherwise implement interposi-
tion manually, such as class contracts and lazy structure
contracts (see Figure 12 and the last paragraph of Sec-
tion 6.3).

7. Related Work
Related work falls into two main categories: implementa-
tions of interposition and implementations of contracts.

7.1 Other Interposition Implementations
The most closely related work to ours is the proxy de-
sign (Van Cutsem and Miller 2010) proposed for JavaScript,
which is currently implemented in both Firefox and Chrome-
and used in the benchmarks of section 6. Building on the
design of mirages in AmbientTalk (Dedecker et al. 2005;
Mostinckx et al. 2009), proxies allow interposition of al-
most any operation performed on JavaScript objects. Like
our design, theirs does not support interposition on some
operations, including instanceof tests, typeof tests, and
the equality operator ===. Since JavaScript operations such
as vector indexing are represented as message sends, only
one proxy API is needed, in contrast to our separate APIs
for separate kinds of Racket values.

The JavaScript proxy API is in flux; in particular, Van
Cutsem and Miller have recently proposed a new design
called direct proxies (Van Cutsem and Miller 2012) for the

proxy system which differs significantly from the original
design as implemented in current JavaScript engines. We
discuss both designs here.

The initial JavaScript proxy design differed most signifi-
cantly from chaperones by dispensing with the object being
wrapped by the proxy. In other words, a proxy was not a
proxy for any other object. This simplifies the implementa-
tion of some uses of proxies, but in practice, most uses of
proxies have a “target,” as chaperones do.

This difference lead to the second major difference be-
tween JavaScript proxies and our design: how each avoids
breaking existing language invariants. JavaScript provides
very few invariants that programmers may assume about
the behavior of objects, due to pervasive mutability of both
objects and prototypes—even allowing so-called “monkey-
patching” where the behavior of all objects is affected by a
single mutation. Further, there is no analogue in JavaScript
of the type tests provided by struct predicates (see section 2.3
for the importance of these in Racket) and thus JavaScript
programmers do not conditionalize code on such tests. Fi-
nally, JavaScript provides no reliable structural equality
comparison. Since these invariants do not hold for JavaScript
programs, proxies need not respect them, simplifying their
design considerably.

In contrast, the existing design of Racket, as in most
languages, ensures that programmers can reason using a
wide variety of invariants based on information hiding, type
and equality testing, and immutable objects. Programmers
rely on these invariants to build applications, and compilers
and static checkers rely on them to reason about programs.
Therefore, our design of an interposition API is constrained
to respect them.

The current JavaScript language does, however, provide
reflective operations which can prevent future mutations to
a single field, or to an entire object. The original proxy de-
sign handled this awkwardly, by producing an entire new ob-
ject which was then restricted from being mutated. This pre-
vented any further interposition on operations on immutable
objects, as well as adding implementation complexity.

These problems, along with discussions with the authors
of this paper (chaperones and impersonators were origi-
nally added to Racket in May 2010), led Van Cutsem and
Miller to propose a new proxy API, dubbed direct prox-
ies, which is closely related to our design of chaperones
and impersonators. In this design, proxies are always prox-
ies for a particular object. Further, proxies are required to
respect the mutability constraints of the proxied object—if
a field is immutable, the result of a proxied access to the
field is checked to be identical to the underlying field. Since
JavaScript objects and fields can transition from mutable to
immutable during execution, the proxy design does not dis-
tinguish ahead of time between chaperones and imperson-
ators; instead the new invariants are enforced once a field
has become immutable.

While the direct proxy design is quite similar to ours, it is
more limited in a fundamental way: proxies for immutable
or otherwise restricted fields must produce identical results,
whereas chaperones may produce results with further chap-
erone wrapping, as checked by the chaperone-of? proce-
dure. This significantly complicates using JavaScript prox-
ies to implementing higher-order contracts on immutable
data, including any contract on methods of an immutable ob-
ject. The measurements of section 6 demonstrate that these
checks impose little overhead, and therefore the JavaScript
design could be significantly more expressive with rela-
tively little performance cost. These wrappings do affect
the identity of objects, as compared with JavaScript’s ===
or Racket’s eq? comparisons. Since JavaScript, much more
than Racket, relies on object identity for comparison, this
consideration led the designers of proxies to impose this
restriction.5

Austin et al. (2011) extend the original JavaScript proxy
design to primitive values such as integers and use the sys-
tem to design a contract system (without blame) for a core
JavaScript calculus, including mutable data.

Many other tools that allow unrestricted forms of prox-
ying help to implement contracts but sacrifice the kind of
control over invariants that contracts are intended to pro-
mote. Notable examples include the MOP (Kiczales et al.
1991), aspect-oriented programming (Kiczales et al. 1997),
and java.lang.reflect.Proxy (Oracle 2000).

In this vein, our goals with chaperones and impersonators
are related to the ideas of observers and assistants (Clifton
and Leavens 2002), narrowing advice (Rinard et al. 2004),
and harmless advice (Dantas and Walker 2006), and other
systems like Open Modules (Aldrich 2005) and EffectiveAd-
vice (Oliveira et al. 2010) enforce harmless advice by con-
straining side effects.

Chaperones and impersonators, in contrast, represent a
new design point in this space with a different trade-off be-
tween enforceable invariants and interposition expressive-
ness. Specifically, Racketeers already program in a world
with mutable state and concurrency, so we do not try to
regain the kinds of reasoning that such a combination al-
ready invalidates. Instead, since most Racket programs op-
erate mostly with immutable values, chaperones and imper-
sonators are limited to ensure that invariants relating to the
behavior of immutable structures are preserved.

Although Balzer et al. (2005) point out that aspects alone
do not provide all of the tools necessary to implement con-
tracts, aspects would allow us to implement the core func-
tionality of contract checking and, in Racket, macros make
up the difference.

7.2 Other Contract Implementations
Eiffel (Meyer 1991), the original embodiment of Design by
Contract, supports contracts directly in the language run-

5 Personal communication, Tom Van Cutsem, August 2012.

time system. Contracts in Eiffel are limited so that they can
be compiled directly into pre- and post-condition checks
on methods; for example, higher-order contracts on individ-
ual objects are not supported. Eiffel is also less extensible
as a programming language. Other notable examples in the
Eiffel category include Euclid (Lampson et al. 1977), Ada
(via Anna (Luckham and Henke 1985)), D (Digital Mars
1999), and others have built contract extensions for exist-
ing languages including for Java, Python, Perl, and Ruby
and Ciao (Mera et al. 2009). In all of these cases, contracts
are more easily implemented in the core or through pre-
preprocessing since the contracts are more limited, the lan-
guage is typically less extensible, and the contract system is
always less extensible.

Disney (2012) uses JavaScript proxies to implement con-
tracts, producing a system that supports many of the contract
system features described in section 2, although lacking ex-
tensions such as opaque contracts. We take this as validation
of the strategy presented here: design a robust system for
low-level interposition, and build a contract system (as well
as other applications) on top. Our microbenchmark results
indicate that the system is not yet performant under heavy
use of contracts.

Several libraries for Haskell (Chitil 2012; Chitil and Huch
2006; Chitil et al. 2003; Hinze et al. 2006) support con-
tract and assertion checkers that include both specifications
for higher-order functions and combinators for building the
specifications. Their implementations could benefit from
support for impersonators and chaperones.

Finally, Findler, Guo, and Rogers’s earlier work on lazy
contracts (Findler et al. 2007) helped us understand how
impersonators and chaperones should work, although their
work does not handle contracts on mutable data structures.

8. Conclusion
New language constructs provide a way for programmers to
express and then rely on complex invariants about program
behaviors. Implementing some constructs—-such as a full-
featured contract system—requires the ability to interpose
on the programming language’s primitive operations. At the
same time, general-purpose interposition on primitive opera-
tions makes reasoning about program behavior too difficult,
because it forces programmers to cope with the possibility
of invoking unknown and potentially untrusted code, even
when using seemingly simple operations like vector lookup
or field selection. Worse, Racket programmers routinely ex-
ploit generativity to ensure that complex invariants on data
structures hold; with unrestricted forms of interposition, a
simple tag check cannot reliably ensure these invariants.

To address these two problems, we have designed chap-
erones and impersonators as a controlled form of interposi-
tion. The design enables the implementation of a rich con-
tract system without giving away the programmer’s ability
to reason about the behavior of programs.

Acknowledgements
Thanks to Tom Van Cutsem for valuable discussions about
proxies and chaperones over several years. Thanks to Daniel
Brown, Christos Dimoulas, and Matthias Felleisen for their
feedback on earlier versions of this work.

The technical appendicies are available in the ACM Dig-
ital Library (together with this paper) and online at
http://sstrickl.net/chaperones/

Bibliography
Jonathan Aldrich. Open Modules: Modular Reasoning About Ad-

vice. In Proc. European Conf. Object-Oriented Programming,
2005.

Thomas H. Austin, Tim Disney, and Cormac Flanagan. Virtual
Values for Language Extension. In Proc. ACM Conf. Object-
Oriented Programming, Systems, Languages and Applications,
2011.

Stephanie Balzer, Patrick Eugster, and Bertrand Meyer. Can As-
pects Implement Contracts? In Proc. Rapid Implemetation of
Software Engineering Techniques, pp. 145–157, 2005.

Olaf Chitil. Practical Typed Lazy Contracts. In Proc. ACM Intl.
Conf. Functional Programming, 2012.

Olaf Chitil and Frank Huch. A pattern logic for prompt lazy asser-
tions. In Proc. Intl. Sym. Functional and Logic Programming,
pp. 126–144, 2006.

Olaf Chitil, Dan McNeill, and Colin Runciman. Lazy Assertions.
In Proc. Intl. Sym. Functional and Logic Programming, 2003.

Curtis Clifton and Gary T. Leavens. Observers and assistants: A
proposal for modular aspect-oriented reasoning. In Proc. Foun-
dations of Aspect-Oriented Languages, 2002.

Daniel S. Dantas and David Walker. Harmless Advice. In Proc.
ACM Sym. Principles of Programming Languages, 2006.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo
D’Hondt, and Wolfgang De Meuter. Ambient-Oriented Pro-
gramming. In Proc. ACM Conf. Object-Oriented Programming,
Systems, Languages and Applications, pp. 31–40, 2005.

Digital Mars. D Programming Language. 1999. http://www.
digitalmars.com/d/

Tim Disney. Contracts.coffee. 2012. http://disnetdev.com/
contracts.coffee/

James E. Donnelley. A distributed capability computing system. In
Proc. Intl. Conf. on Computer Communication, 1976.

Pedro Felzenszwalb and David McAllester. A min-cover approach
for finding salient curves. In Proc. IEEE Wksp. Perceptual Or-
ganization in Computer Vision, 2006.

Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-
Order Functions. In Proc. ACM Intl. Conf. Functional Program-
ming, pp. 48–59, 2002.

Robert Bruce Findler, Shu-yu Guo, and Anne Rogers. Lazy Con-
tract Checking for Immutable Data Structures. In Proc. Imple-
mentation and Application of Functional Languages, 2007.

Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-
2010-1, 2010. http://racket-lang.org/tr1/

Brian Hackett and Shu-Yu Guo. Fast and precise type inference for
JavaScript. In Proc. Conf. on Programming Language Design
and Implementation, 2012.

Ralf Hinze, Johan Jeuring, and Andres Löh. Typed Contracts for
Functional Programming. In Proc. Sym. Functional and Logic
Programming, pp. 208–225, 2006.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Proc. European Conf. Object-
Oriented Programming, pp. 220–242, 1997.

Gregor J. Kiczales, James des Rivieres, and Daniel G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and
G. J. Popek. Report on the programming language Euclid. ACM
SIGPLAN Notices 12(2), pp. 1–79, 1977.

D. C. Luckham and F. W. von Henke. An overview of Anna, a
specification language for Ada. IEEE Software 2(2), pp. 9–22,
1985.

Jacob Matthews and Amal Ahmed. Parametric Polymorphism
Through Run-Time Sealing, or, Theorems for Low, Low Prices!
In Proc. European Sym. on Programming, 2008.

E. Mera, P. Lopez-Garcia, and M. Hermenegildo. Integrating Soft-
ware Testing and Run-Time Checking in an Assertion Verifi-
cation Framework. In Proc. Intl. Conf. on Logic Programming,
LNCS 5649, 2009.

Bertrand Meyer. Eiffel : The Language. Prentice Hall PTR, 1991.
Mark S. Miller. Robust Composition: Towards a Unified Approach

to Access Control and Concurrency Control. PhD dissertation,
John Hopkins University, 2006.

Stijn Mostinckx, Tom Van Cutsem, Elisa Gonzalez Boix, Stijn
Timbermont, Éric Tanter, and Wolfgang De Meuter. Mirror-
based reflection in AmbientTalk. Software—Practice and Ex-
perience 39, pp. 661–699, 2009.

Toby Murray. Analysing the Security Properties of Object-
Capability Patterns. PhD dissertation, Hertford College, Oxford
University, 2010.

Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook.
EffectiveAdvice: Disciplined Advice with Explicit Effects. In
Proc. Aspect-Oriented Software Development, 2010.

Oracle. java.lang.reflect.Proxy. 2000. http://download.oracle.
com/javase/6/docs/api/java/lang/reflect/Proxy.html

Susan A. Rajunas. The KeyKOS/KeySAFE system design. Key
Logic, Inc, SEC009-01, 1989. http://www.cis.upenn.edu/
~KeyKOS

Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A Clas-
sification System and Analysis for Aspect-Oriented Programs.
In Proc. Intl. Sym. on the Foundations of Software Engineering,
2004.

T. Stephen Strickland and Matthias Felleisen. Contracts for First-
Class Classes. In Proc. Dynamic Languages Symposium, pp.
97–112, 2010.

Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Im-
plementation of Typed Scheme. In Proc. ACM Sym. Principles
of Programming Languages, pp. 395–406, 2008.

Tom Van Cutsem and Mark Miller. Proxies: Design Principles for
Robust Object-oriented Intercession APIs. In Proc. Dynamic
Languages Symposium, pp. 59–72, 2010.

Tom Van Cutsem and Mark Miller. On the design of the EC-
MAScript Reflection API. Vrije Universiteit Brussel, VUB-
SOFT-TR-12-03, 2012.

http://sstrickl.net/chaperones/
http://www.digitalmars.com/d/
http://www.digitalmars.com/d/
http://disnetdev.com/contracts.coffee/
http://disnetdev.com/contracts.coffee/
http://racket-lang.org/tr1/
http://download.oracle.com/javase/6/docs/api/java/lang/reflect/Proxy.html
http://download.oracle.com/javase/6/docs/api/java/lang/reflect/Proxy.html
http://www.cis.upenn.edu/~KeyKOS
http://www.cis.upenn.edu/~KeyKOS

	1 Extensibility versus Reasoning
	2 Interposition via Contracts
	2.1 Predicates and Function Contracts
	2.2 Compound-Data Contracts
	2.3 Structure Contracts
	2.4 Parametric Contracts and Generativity Don't Mix
	2.5 The Contract Hierarchy

	3 Chaperones and Impersonators
	3.1 Chaperoning and Impersonating Functions
	3.2 Chaperoning and Impersonating Vectors
	3.3 Chaperoning and Impersonating Structures

	4 Interposition beyond contracts
	4.1 Remote Objects
	4.2 Revocable Membranes

	5 Reasoning about Reasonable Interposition
	5.1 Constraining Interposition
	5.2 VectorRacket
	5.3 VectorRacket with Chaperones
	5.4 Chaperone Erasure

	6 Performance
	6.1 Procedure Performance
	6.2 Vector Performance
	6.3 Structure Performance
	6.4 Discussion

	7 Related Work
	7.1 Other Interposition Implementations
	7.2 Other Contract Implementations

	8 Conclusion

