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Abstract suited for modeling programming languages with nondeterministic

and nonconfluent behavior. We make important use of nondeter-
minism in our model, as we will explain in section 2.

As a side benefit of using a small-step operational encoding, we
can use PLT Redex [17], a domain-specific language for context-
sensitive term-rewriting systems, to give a directly executable op-
erational encoding for our model. PLT Redex provides a graphical

This paper presents an operational semantics for the core of
Scheme. Our specification improves over the existirrf@R de-
notational specification in four ways. First, it is more complete,
since it containgval quote, anddynamic-wind Second, it models
multiple values in a way that does not require changes to unrelated

parts of the language. Third, it provides a more faithful model of browser for exploring reduction graphs and allows us to maintain

Scheme§ _undeflned order of evalu_atlon. Finally, it is executablg,_ a large test suite of terms and their expected normal forms that we
because itis encoded as a program in PLT Redex, a domain-specific

. . h tan run whenever we change any reduction rules. This test suite in-
!"’.‘”99&99 for writing operatlonal_ semantics. The exe_c_uta_ble SPEC- reases our confidence that our model is a faithful representation of
ification allows others to experiment with our specification and

allows us to build a specification test suite, which improves our Scheme. - .
X : . ! While writing our model, we developed new techniques for
confidence that our system is a faithful model of Scheme.

In addition to contributing a specification of Scheme, this paper modeling some of Scheme's features. In the rest of our paper we

presents several novel modeling techniques for Felleisen Hieb-stylef'rSt introduce those techniques in isolation to explain our models

- . . . o GR for particular Scheme features, and then combine them into a sin-
rewriting semantics that we discovered while developing olR® gle unified model. In section 2 we show how to use nondeterminism

Scheme semantics. All are applicable to a wider range of problems i, model Scheme’s unspecified application order; in section 3 we
than the specific uses we have for them, and the fact that they ghq\y 4 novel technique for modeling multiple return values; in sec-

combine seamlessly in our fU”5|RS model shows that they scale tion 4 we give a model foquote andevalt and in section 5 we give

to real languages. a model forcall/ccin the presence afynamic-windFinally in sec-
tion 6 we combine all those models along with several other more
1 Introduction straightforward featuresf, consand cons-cell mutation, variable-

arity proceduresapply, and an object-identity-sensitive notion of
The Reviset Report on the Algorithmic Language Scheme [15], eqv?equality.
R°RS, provides an informal, English specification of Scheme and  We will assume the reader has a basic familiarity with context-
a denotational model of a core Scheme language. The denota-sensitive reduction semantics. Readers unfamiliar with this system
tional specification is more precise than the informal specification, may wish to consult Felleisen and Flatt’s monograph [5] or Wright
but is also incomplete with respect to it. For instance, the formal and Felleisen [24] for a thorough introduction or our previous work
specification does not present the top-level mentioned throughoutwith Flatt and Felleisen [17] for a somewhat lighter one. We should
the informal specification, and is missing key procedures such asalso emphasize before we proceed that this semantics still leaves
dynamic-windand eval whose inclusion could have a significant  out many important Scheme features — among them the numeric
impact on the formalism. While that is not necessarily a problem tower, the top-level environment, and macros — but that it models
— the measure of a model is not its completeness but its ability to more features than the Report’s formal semantics does and is more
clearly and accurately explain its subject — Gasbichler et al’'s re- suitable for extension.
cent explanation of the difficulties involving dynamic contexts and

threads [12], for instance, demonstrate that the formal model is in- 2 U ified licati q
sufficient for some important questions. : nspecitied application oraer

In this paper we give a new treatment of theRS formal se- In evaluating a procedure call, the'RS document deliberately
mantics that models more of the language described in the informal leaves unspecified the order in which arguments are evaluated, but
semantics section than the formal semantics section in BRSR section 4.1.3 specifies that
Scheme document does. Rather than extending the denotational se- )
mantics with extra constructs, we present an alternate specification ~ the effect of any concurrent evaluation of the operator and
as a small-step operational semantics. We do this for two major rea- ~ OPerand expressions is constrained to be consistent with
sons. First, to make the semantics natively executable: operational ~ Somesequential order of evaluation. The order of evalua-
semantics are much more amenable to direct execution than deno-  tion may be chosen differently for each procedure call.

tational semantics. Second, to allow for nondeterminism and non-I the f | i tion. th th lain how th del
confluence: small-step operational semantics are particularly well- |1 th€ formal Semantics section, the autnors expiain how they mode

this ambiguity:
[w]e mimic [the order of evaluation] by applying arbitrary
Permission to r_nake digital or hard copies_ of all or part of this work for perspna}l or permutationspermuteand unpermute . . to the arguments
classroom use is granted without fee provided that copies are not made or distributed . Il bef d after th | d. Thisi .
for profit or commercial advantage and that copies bear this notice and the full citation in a call betore and after they are evaluated. IS IS not quite

on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
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p = (store((xVv)---)e) C = (v---Ce---)|(set!xC) | (beginCee--) |
e u= (ee--)|(set'xe | (beginee--)|v X = identifiers, store locations for mutable bindings
v = (lambda(x---)e)|n n = numbers
(store((x1 v1) ---) C[((lambda (xz - --) € v - --)]) —  (store((xy v1)--- (x5 V) ---) C[e[X) - - -/ X2 - - -]]) (MA PP
(#x2 = #vo, each fresh)
(store((xy v1) - --) C[((lambda (x2 ---) € va ---)]) —  error: wrong number of arguments (M#ERR)
(#xa # #v2)
(store (X1 v1) - -+ (X V) (X2 V2) - - -) C[(set!x V)]) — (store((xy v1) - -+ (X V) (X2 V=2)- - -) C[O]) (MSET)
(store((xy v1) - - - (x V) (x2 v2) - ) C[X]) —  (store((x1 v1) -+ (xV) (X2 v2) - - ) C[V]) (ML ookup)
(store((x V) - - ) C[(beginv e e ---)]) —  (store((xV) - - -) C[(begine; e --)]) (MSEQ)
(store((x V) - - ) C[(begine)]) —  (store((xV) ---) C[€]) (MTRIVSEQ)
(store ((x V) - - -) C[(— nD)]) —  (store((xV) ---) C[l-nl]) (MNEG)

Figure 1. Core Scheme with mutation

right since it suggests, incorrectly, that the order of evalua- or an answer). Accordingly, there is at most one way to reduce any
tion is constant throughout a program.. [section 7.2] expression.

. . . . To model a language with unspecified order of operations in-
In this section we present an operational technique that capturesstead’ we can use a reduction system with non-unique decomposi-

the intended semantics more faithfully. We begin by considering : . . .
. . . tion to model the choice. We might be tempted to use this definition
|
a core Scheme with arbitrary arity procedurest!, numbers, and of evaluation contexts:

negation, but with a fixed left-to-right order of evaluation for ap-
plications, as shown in figure 1. It is a minor variation of Felleisen C:=(e---Ce--9)|...

and Hieb'sAs [6]. A program consists of a store that associates _. . N . .
variable names to values and an expression, where expressions argince this definition allows the hole to appear in any subexpression

built up of numbers, arbitrary-arity lambda terms and applications, ©f @n application, this simple program that negates 1, negates 2, and
set!, andbeginexpressions, and a built-in negation operator. A  then applies a trivial procedure to the results

gives the. rule for application of a procedure to fully-evaluated ar- ((lambda (x y) y) (— 1) (— 2))

guments: make one fresh identifi¢rfor each formal parametes, o ) o

introduce a new binding in the store for ead¢associating it with ~ can be splitinto an evaluation context with eitherX) or (- 2) as

the corresponding argumewtin the application, and then rewrite  the reducible expression.

the application as the procedure’s body with each occurrence of an At first glance, this appears to be a faithful model iz

X; rewritten into the corresponding (in this figure as in all fig- Scheme. It is not. Consider this application of tee&t! expressions
ures in this paper, we will use vertically-centered ellipsesto in a store binding to 1.
indicate any number of occurences, including zero, of the preced- (store ((x 1))

ing element). MAPPERR gives the rule for procedures applied to ((set!x (= X))
the wrong number of arguments: rewrite the term in its entirety to (set-'x(— )

an error message, which halts the program immediately because '

it abandons the application’s original context. EiSrewrites to In Scheme, this program should always reduce to the application
the constant 0 but also replaces the value associated with the giverof zero to zero withx set to1 in the store (and then get stuck).
identifier in the store with the given replacement. (We choose to According to RRS, no matter which of the application’s subterms
haveset! return the constant 0 in this semantics as a “quick and is reduced first, the result should be thais negated twice. If
dirty” unique value; in the examples that follow O never appears in we just modify evaluation contexts as above, however, we allow
any program term except as the result of assignment.pbHuUP other interleavings. The problem is that that definition of evaluation
replaces an identifier with its associated value in the store when contexts would allow a different argument of the same application
that value becomes necessarg.(when it appears as aredex inan to take one step of computation every step of the way, which may

evaluation context). M&Q drops the first subexpression inbe- produce an outcome that could not be reached by any sequential
gin when there are more expressions to evaluate, an@MJEQ ordering.

drops thebeginwhen there is only one expression to evaluate. The  We discovered this problem while experimenting with that re-
last rule, MNEG, simply negates its argument (the notatiohindi- duction system in PLT Redex. We encoded the erroneous reduction
cates the syntactic representation corresponding to the mathematisystem in PLT Redex and automatically generated the reduction
cal numbem). sequence for the above term, shown in figure 2. The first term is

The order of evaluation is determined by the grammar for eval- shown on the left. The top-most and the bottom-most paths corre-
uation contexts@). The first production of the grammar specifies  spond to the two sequential orderings and result in the proper store.
that evaluation of a sub-expression of an application only takes In the middle section, the two assignments are interleaved, resulting
place when all of the sub-expressions to its left are values (or havein —1 being left in the store.
been reduced to values). If we replace that first production with this  Wwith that in mind, we can design a more sophisticated strat-
one: egy that captures unspecified evaluation order but only allows se-

Com quential orderings. Figure 3 shows the necessary revisions to core
w=(e---Cv--) ... 7
Scheme to support %Rs-style procedure applications (each re-
the semantics would specify a right-to-left order instead. places the appropriate rule from figure 1 — the other rules in that

Either of these choices results in a system with unique decom- figure are unchanged). The basic idea is to use non-deterministic
position. That is, each term can only be split into an evaluation con- choice to pick a sub-expression to reduce only when we have not al-
text and a reducible sub-expression in one way (unless it is stuck ready committed to reducing some other subexpression. To achieve



(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1)) (store ((x -1))

((set! x (- 1)) | ((set! x -1) > (0 = (0 > (0
(set! x (- x)))) (set! x (- x)))) (set! x (- x)))) (set! x (- -1)))) (set! x 1)))
% (store ((x -1)) (store ((x -1))
((set! x (- 1)) |—>> ((set! x -1)
(store ((x 1)) 0)) 0))
((set! x -1)
W (set! x (- 1)))) %
(store ((x 1)) (store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x 1))
((set! x (- x)) ((set! x (- 1)) ((set! x -1) (0 (0
(set! x (- x)))) (set! x (- 1)))) P —" . (set! x -1))) 0
»(store((x 1)) o) )
((set! x (- 1))
(set! x -1))) (store ((x -1)) \5 ﬂ
e N — (0 _
(sert x (- nyy) B0 )
(set! x -1)))
(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1)) (store ((x -1))
((seth x (- X)) |=—3> ((set! x (- x)) |[—> ((set! x (- x)) 7
(set! x (- 1)) e o) & = (E))S)et! X (- -1)) [>] (é)s)e” x 1)

Figure 2. Interleavings possible with an erroneous unspecified-application-order model

inert = Ve
C = (inert---C°inert---)|...
(store(---) C[(inert- - - e inert- - -)]) —  (store(---) C[(inert- - - €° inert---)]) (UM ARK)
(store(---) C[((lambda(x---)e° v --)]) —  (store(--- (X' V)---) C[e[X ---/x--]]) (VAPP

(#x = #v, eachx’ fresh)
(store (- - -) C[(=° n!°)]) —  (store(---) C[I-n]) (UNEG)

Figure 3. Revisions to core Scheme to support unspecified application order

that effect, we introduce the non-termiriaért and the notion of a It will either will return eitherl or 2, depending on the order of

marked expression, denoted with theuperscript. (These marks  evaluation. This is the way we want it; the model’s nonconfluence

are not an extension to the general term-rewriting framework — reflects the underspecification o0PRS Scheme rather than a tech-

€® andC® are just alternate typesettings ofigrk €) and (nark nical bug in our model. It does, however, always make progress.

C).) Marks identify chosen expressions: only marked expressions \We formalize this with the following theorem statement:

may be reduced, and only one reducible marked expression may

appear in any application at one time. Tihert production stands THEOREM2.1. For any closed programp in the language of fig-

for terms in which evaluation may not occue., unmarked ex- ure 3, eitherp — p’, wherep' is also closedp — e wheree is

pressions (those expressions we have not tried to evaluate yet) andome error indicator, op is of the form §tore ((x v) - - -) v).

marked values (those expressions we have already finished reduc-

ing). We add the UMRK reduction rule that marks an arbitrary Proof is contained in the first author's master’s thesis [16].

unmarked expression in an application on the condition that every  This technique has other uses besides giving semantics for un-

other expression is inert, and we modify the MAand MNeG specified application evaluation orders. In general, it is useful for

rules rules to apply only to fully-marked applications, becoming modeling any kind of delimited nondeterminism, where evaluation

the UAPPand UNEG rules. may proceed arbitrarily but only at certain points in a program. This
Figure 4 (also generated by PLT Redex) shows how our new is useful for modeling unspecified behaviors and for complex non-

system evaluates the term from figure 2. The initial term appears deterministic features such as threads.

in the center on the left. That term is an application, so the first

reduction either marks the first sub-expression or the second. If 3. Multiple return values

the first subexpression is marked, evaluation continues down to the

bottom of the figure, over to the right and back up to the middle. If R°RS Scheme provides a facility for expressions to evaluate to

the second is marked, evaluation proceeds up, over, and back to thenultiple or no values rather than just a single value. The procedure

middle. In both paths there are a few other application expressionsvaluesbuilds multiple values andall-with-valuesaccepts multiple

to evaluate, leading to smaller separations. Eventually, all of the values. Unlike tuples in SML and Haskell, multiple values are not

terms join back together and the final result in the storg, ias themselves values. For example, this program
shown in the center on the right. '
One should not take that example to mean that this language has (def!ne(f X) (values(+ x x) (x x X))
any kind of confluence property, however. Consider this program: Ege(]f'g()e)(g X9Y)
((lambda (choicg produces an error, since procedure application expects each of its
((lambda (x y) choicg arguments to be a single value (and the resuft isftwo values).
(settchoice ) Instead, the programmer must usal-with-valuesto catch multi-
(set! choice 3)) ple values. It expects a thunk as its first argument, applies the thunk,

0) catches any number of values that thunk produces, and applies them



(store ((x 1)) (store ((x -1)) (store ((x -1))

((set! x (- x)) |—> ((set! x (- x)) |[—>> ((set! x (- x))°
(set! x -1)°)) 0°)) 0°))
(store ((x 1)) (store ((x -1)) (store ((x -1))
((set! x (- x)) ((set! x (-° x))° ((set! x (- x°))°
(set! x (-° 1°))°)) 0°)) 0°))

(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1))
((set! x (- X)) ((sett x (- x)) ((set! x (-° x°))° ((set! x (- -1°))°
(set! x (-° x°))°)) (set! x (- 1)) 0°)) 0°))

(store ((x 1)) (store ((x 1)) (store ((x -1))

((set! x (- x)) ((set! x (- x)) ((set! x (-°-1°))°
(set! x (-°x))°)) (set! x (- x°))°)) 0°))
R bk v}
(store ((x 1)) (store ((x -1))
((set! x (- x)) ((set! x 1)°
Sl S| (set! x (- %)) o) T\ (store ((x 1))
set! x (- x (0°
(set! x (- x)))) =D (store ((x 1)) (store ((x -1)) > 0°))
((set! x (- x))° (0°
(set! x (- x)))) (set! x 1)°))
(store ((x 1)) (store ((x 1)) (store ((x -1))
((set! x (-°x))° ((set! x (- x°))° (0°
(Set!\;(- x)))) (set! x (- x)))) (set! x (-° -1°))°))
(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1))
((set! x (-° x°))° ((set! x (- 1°))° (0° (0°
(set! x (- x)))) (set! x (- x)))) (set! x (-° x°))°)) (set! x (- -1°))?))
(store ((x 1)) (store ((x -1)) (store ((x -1))
((set! x (-° 1°))° (0° (0°
(set! x (- x)))) (set! x (-°x))°)) (set! x (- x°))°))
(store ((x 1)) (store ((x -1)) (store ((x -1))
((set! x -1)° —3>> (0° —3> (0°
(set! x (- x)))) (set! x (- x)))) (set! x (- x))°))

Figure 4. Evaluation in the unspecified-application-order model

to its second argument. So, a programmer could sufiplsesults directly. Our strategy is distilled in figure 5. That figure contains
to g like this: a pure core Scheme extended withlues and apply-values a
. syntactic form that has as its operands an expression that must
(call-with-values(lambda () (f 3)) g) evaluate to a procedure and another expression that may evaluate
In addition, there is no difference betweealuesapplied to a single to any number of values, and calls the procedure with those values
argument and that argument by itself, gq\alues § (values 9) is as arguments. We usgply-valuesin this section rather thacall-
the same asy(6 9. with-valuesbecause the resulting model is clearer and lagibly-

To model multiple values RS Scheme’s formal semantics Valuesandcall-with-valuescan be defined simply in terms of each

models continuations as functions from an arbitrary number of val- other in RRS Scheme:

ues to a final answer. The informal semantics says that “except for (define (call-with-values thunk ¥

continuations created with theall-with-valuesprocedure, all con- (apply-valuesf (thunk))

tinuations take exactly one value” [15, section 6.4]. The formal se-

mantics reflects this by checking the opposite property: in every (define-syntax apply-values

context that expects a single value, it uses a helper functiogle (syntax-rules()

to ensure that only a single value appears. This indirect checking [(f vs-exp)

impacts the entire semantics: it requires every continuation to ac- (call-with-values(lambda () vs-exp} f)]))

cept any number of arguments initially and requires a cadirigle

at every point where a continuation would be restricted. Our model uses a modest addition to the standard reduction-

Our semantic model captures the difference between contextssemantics formalism. We extend the notation so that holes have
that accept multiple values and contexts that reject multiple values names (written as subscripts) but otherwise behave as unnamed



e (ee---) | x| v] (apply-valuese &

\% z (lambda (x - - -) €) | values
C = J[le|(v---Coe---)]| (apply-valuesC, €) | (apply-valuesv C,)
Co == []o|C
c. == [l|c
Co[((lambda(x---) e Vv---)]e —  Colelx---I--] (VA PP
(#v = #x)
Co[((lambda(x---) e v--)]e — error: wrong number of arguments (\#®ERR)
(#v # #x)
Co[(apply-valuesv; (valuesy --))]le —  Co[(viVa---)] (VA PPVALS)
Co[V]« —  Co[(valuesV] (VPROMOTE)
Co[(values Yo —  GColV] (VDEMOTE)
Co[(values v - )]0 —  error: expected a single value (\HMOTEERR)
(W#1)

Figure 5. Pure core Scheme with multiple values

holes do. The context-matching syntax is now annotated with — ((lambda (y)y) (values }) (VAPP)
names as well, restricting legal decompositions to those where the _, ((lambda (y) y) 1) (VDEMOTE)
hole has the same name.

In figure 5 we use this feature to give three distinct names to 1 (VAPP)

holes, indicated with subscripts], indicates a hole in which any
expression should reduce to an element,df]. indicates a hole because it appears as the second argument cpaly-values
:EdvthItCh ank)]/ ?X‘i)r:?l;lsﬁi'or? Sl?l‘?ul’l? rec:tuice ml(lets l;ll i ~2|lhanrd[ ]r* thr expression. Then VAPVALS applies, followed by V&RP. Then
cates a hole ch either result IS acceptable. There are treey, o oy Values )} is used as an argument to a procedure, so
parallel context nonterminals. The con_té)g)tproduces an element VDEMOTE applies and converts it to the single vallieFinally
of v, C, produces¥yalues v- - -), andC might produce either. VA ppapplies and the result Is )
Since each subexpression OT an app"caF'O'.‘ IS expecte_d to pro- The erroneous expression from the beginning of this section
duce a single value, the evaluation context inside an application is signals an error due to the MOTEERR rule
C,. For the same reason, the evaluation context for the first subex- ’

First, the VARROMOTE applies and promotes 1 intedlues )}

pression ofpply-valuesis C,. The evaluation context for the sec- (g (f3))
ond subexpression, however(s because it is expected to produce —
multiple values. — (g (values 3 9)
Since procedure applications (defined by theP#and VAPP- — error: expected a single value

ERR reductions) andapply-values uses (defined by the \ide-
VALS reduction) may produce a single value galQes v- - -), they
take place iff ]. holes. VRROMOTE, promotes a single valueto
(values Y. Because of the subscript * on the hole, it applies only
when multiple values are expected. ¥R0OTE demotes a single
value insidevaluesto just the value, and VBMOTEERR signals an
error if valuesdoes not return exactly one value. These two rules
apply only when avaluesexpression appears where a single value
is expected. All reductions take place@j to ensure that the final
result of any program is a single value. If we wanted to allow any

number of values as the final result of a program we could replace  proof is contained in the first author's master’s thesis [16].

The evaluation contexts and the three promotion and demotion
rules are all that we need to add multiple values to the language.
Furthermore, the extension of adding names to holes does not
significantly complicate proof of progress for the system, and so we
can prove the following theorem reasonably straightforwardly [16]:

THEOREM 3.1. For any closed programp in the language of fig-
ure 5, eitherp — p’, wherep’ is also closedp — e wheree is an
error indicator, orp is of the form §tore (x v) - - -) v).

Co with C, inall rules. _ ) ) The strategy described in this section can be used whenever the
~ To get a sense of how evaluation proceeds, consider this reduc-notion of a fully-evaluated subterm is different in different parts
tion sequence: of a program. For instance, it can be used to model embedded
((lambda (y) y) sublanguages such as regular-expressions, format strings, and SQL
(@pply-values(lambda (x) (values ¥) 1)) commands, which could help develop theoretical underpinnings
—  ((lambda (y) y) for work like Herman and Meunier’s static analysis of embedded
(apply-values(lambda (x) (values ¥) languages [14].
(values })) (VPROMOTE)
—  ((lambda (y) y) 4. Quote and Eval
((lambda (x) (values ¥) (values })) (VAPPVALS) . ) . -
Scheme inherits the meta-programming faciliteesl and quote
— ((lambda (y) y) from Lisp [22]. Thequote operator turns a program into data and
((lambda () (values ¥) 1)) (VDEMOTE) the eval procedure turns that data back into a program. When

quoted, a program is represented as a list of lists and symbols,
where lists represent parenthesized sequences and symbols repre-
sent identifiers. For examplegote (lambda(x) x)) is a three el-



e = (ee-)|v]|x s = (s--)|n|sy
E = []|(v---Ee--") |  (s---dotsy|(s---dotn)
v = (lambda(x---) €)| (quotesy) S = []l(e---Ss-)
| plnull|n]|prim]|#t|#f |  (lambda(x---)9
| (cconsv 9 | (cconsS 9
prim = eval| cons| car | cdr | eqv? n = numbers
p = pointers sf = (p(consvy)
X = program variables sy = names of symbols
(members obyexceptlambda, quote, ccong (identifiers excepdot)
(store(sf; - - -) E[(cons v Vv»)]) —  (store(sf; --- (p(cons v v2))) E[p]) (ECoNS)
(p fresh)
(store(sfy --- (p(cons vy, vg)) sk ---) E[(carp)]) —  (store(sfy --- (p(cons v, vy)) sk - - ) E[vq]) (ECAR)
(store(sf; --- (p(cons v, vg)) sk ---) E[(cdrp)]) —  (store(sfi --- (p(consy, vy)) sk - --) E[vg]) (ECDR)
(store(sf; - - ) E[(eqv? p p]) —  (store(sf; - - -) E[#1]) (EEQV1)
(store(sfy - - ) E[(eqv? p p2)]) —  (store(sf; - - -) E[#f]) (EEQV2)
(p1 # p2)
(store(sf - --) E[((lambda (x---)e)v--)]) —  (store(sf---) E[e[x---/v--]]) (EAPP)
(#x = #v)
(store(sf - - ) J(quote sexp sexp - - -)] —  (store(sf - --) §(cconssexp (quote sexp)]) (EQUOTESEQ)
(store (sf - - -) S(quote ())] —  (store(sf - --) gnull]) (EQUOTENULL)
(store (sf - - ) §(quote n)] —  (store(sf---) gn)) (EQUOTENUM)
(store(sf - - -) J(cconsv; va]) —  (store(sf--- (p(cons Vv v2))) Spl) (EQUOTEPAIR)
(p fresh)
(store (sf - - -) E[(eval V]) —  (store(sf---)E[Z [ (sf---),v]]) (EEvAL)

Z:(pr—(consvy) xv—s

Z[Snull] =()
Z[Sn] =n
Z | S #] = #t
Z [ S #f] = #f
Z [ S (quotesy) | =sy
Z[Sp] =C[ [ Vol Z#[Va]]

whereSbindsp to (cons v, V)

¢ :sxs—s
€ [ sexp, (sexp - --) |
¢ [sexp,n]
€ [ sexp, sy]
€ [ sexp, #t]
€ [ sexp, #f]

(sexp sexp - - )
(sexp dot n)
(sexp dot sy)
= (sexp dot #t)
= (sexp dot #f)

Figure 6. Core Scheme, extended with eval and quote

ement list whose first and third elements are symbols and whoseEvaluation reductions only apply to a program after it has been

second element is a list of one element:

(cons(quote lambdg
(cons(cons(quote x) null)
(cons(quote x) null)))

R°RS suggests (but does not require) that quoted data be al-

completely compiled.

Each program consists of a store and an expression. Program
expressionsd) can be applications, values, or identifiers. Evalua-
tion contexts E) dictate that evaluation takes place in a left to right
order inside application expressions. The valugsale procedures,
quoted symbols, pointers (to cons cells), null, numbers, primitive

located only once, before the program runs. In systems with that operations, and booleans.

behavior (including all Scheme implementations we tested), this
program returngt:

((lambda (f) (eqv?(f) (f)))

(lambda () (quote (x))))

since the thunk passed aseturns the same result each time it is
called.
Our core Scheme calculus for modeliegplandquoteis shown

in figure 6. (Note that this model simplifies5RS Scheme’sval

The first group of evaluation rules (from B@XS to EAPP)
correspond to the language’s runtime semantics, and show how the
list primitives and procedure application behave.d®S models
the application ofconsto arguments by allocating a new pair
in the store; anctar and cdr select the first and second values
in a pair by rules EEGR and E®R. EEQV1 and EEV2 give
egv?s semantics; it compares pointers for literal syntactic equality
(and, for this language, operates only on pairs). As in the previous
systems we have presented, procedure application is modeled by

procedure in that it does not accept an environment argument.) Torule EAPP as substitution. Since each reduction takes place in an

ensure that a datum behindjaote is inserted into the store only
once, the rewriting system is structured in two tiers roughly corre-
sponding to “compile-time” and “run-time.” Initially, programs are
just viewed as uncompiled s-expressions (elements of then-
terminal; note that we write dotted pairs wittot rather than a
period to avoid meta-circular confusion in our PLT Redex imple-
mentation), which in particular include programs with quoted lists.

evaluation(rather tharcompilation) context, they will only apply
to programs that are completely compiled.

The second group of rules (from EQTESEQto EQUOTEPAIR)
apply at compile-time and show how to compile a program by
rewriting quoted constants into locations in the store. If those rules
used theE context and quoted s-expressions were legal expressions,
quote would merely be a short-hand notation for building lists at

Reduction rules that apply to these uncompiled expressions do notrun-time and the above program would retéfnwhich would not
evaluate them, but instead compile them into program expressionscapture our intended semantics.

that do not contain quoted lists (elements of ¢heonterminal).



p = (store((xV) - - -) (dw (dws- - -) €)) PC ;=  (store((xV) ---) DC)
e = ...]|(push (?< e e_)) | (pop) DC = (dw'((d_ws- -)C)
v := ... | dynamic-wind call/cc C ;= (asinfigure 1)
dws = (xegq
PC[(dynamic-windlambda () e;) —  PC[(begine; (DWWIND)
(lambda () e2) (push(x; e e3))
(lambda () e3))] ((lambda (x2)
(begin (pop) e3 x2))
€2))]
(X1, x2 fresh)
PC[(dw (dws- - -) C[(push xz e1 e2)])] —  PC[(dw (dws- - - (X2 €1 €2)) C[O])] (DWPUSH)
PC[(dw (dws; - - - dws,) C[(pop)])] —  PC[(dw (dws; ---) C[O])] (DWPoP)
PC[(dw (dws; - - -) C[(call/cc v)])] —  PC[(dw (dws; - - ) (DWCaLLcc)
Cl(v1 (lambda (x)
(throw (dws, - - ) C[X))D]
(x fresh)
PC[(dw (dws; - - -) C[(throw (dws; - - -) e1)])] —  PC[(dw (dws; - - ) (DWTHROW)

Cl(begin .7 [ (dws; - - ), (dws; -~ ) ]
e1)l))

((x1 €1 €2) dws --), ((x1 €3 €4) AW - - ) ]

7 T [(dws -- ), (dwsy -+ ) ]
Tl(x1ere) ) (xeseq) )]

(beginey -y €3--)
(z1 # z2)

Figure 7. Additions to figure 1 to support call/cc and dynamic-wind

Instead, the second group of rewriting rules elimingtmste, As mentioned above, thevalwe present here and in section 6
turning s-expressions into Scheme programs. Though we have pres not as full-featured as thevalof the RS informal description
sented them second, these rules will actually come first in reduction because it does not accept an environment argument. Modeling
sequences, making reduction sequences follow a two-phase pattermn eval that took an environment argument would be somewhat
where the EQOTE rules apply in the first phase and the evaluation more involved but would essentially require only runniepked
rules apply in the second phase. Intuitively, programs in this first programs in an alternate store.
phase are arbitrary s-expressions and values are Scheme programs, The technique used in this section applies generally to lan-
whereas second-phase programs are Scheme expressions and vajuages in which computation of a term proceeds in multiple phases
ues are Scheme values. This parallelism can be seen particularlythat must be considered together — it is not sufficient in our case to
clearly in the definition of the evaluation contexts for application write a preprocessor that moves quoted data in a program into the
expressions. I1$, a rewrite may occur once all of the s-expressions store because that program could aalhl at runtime. Scheme’s
to the left have become Scheme programd,la rewrite may oc- macros are similar in this respect, so the technique shown here
cur once all of the expressions to the left have become values. So,could be used as a basis for modeling them. Staged and partial eval-
for the program above, the only rewriting rules that apply are those uation could also be modeled using this technique.
that rewrite the thunk’s body. Once it contains only a pointer to a
store value, the outer application can proceed. . .

To modeleval we use a technique similar to Mullersify [18]. 5. Call/cc and dynamic-wind

The 7 metafunction accepts a value and turns it back into a pro- gcheme’slynamic-windeature for annotating the dynamic extent
gram (the¢’ function is used byz; it is just the syntactic analogue  of g procedure call with entry and exit code that run whenever the

of cong. Once# completes, evaluation continues as usual. Of program flows into or out of that extent, either through normal pro-

course, reification may produce an s-expression contaguige. gram evaluation or through the invocation of continuation objects
Inthat case, the quote rules apply and put quoted date into the storéyade bycall/cc (the latter situation being the more interesting one,
before evaluation continués. of course). Unfortunately, thougtynamic-winchas a large impact

on the meaning of continuation objectall/cc produces, the ms
%formal semantics does not include any mention of it and models

call/ccwithout respect to it. Here we will show how it works in the

context of the core Scheme with mutation presented in section 2.

IMost Scheme systems share quoted data even across calls to eval. F
example, our semantics produgésfor the following program, but most
Schemes producé.

((lambda (f) Our strategy for modeling these new features is based heavily on
(eqv(f) earlier treatments [4, 10, 12].
(eval(cons’ quote(cons(f) '()))))) The language in figure 7 consists of the core Scheme with

(lambda () (x))) mutation as shown in figure 1 augmented veiéii/cc anddynamic-

We can adapt the definition o to handle this by special handling of wind. The basic strategy we take is to maintain a stack of all

quoted forms during reification: dynamic-windcalls entered but not yet exited, which we call the
i dynamic-wind stack. When we capture a continuation, we record
Z[Sp]=v  if Smapsp, to (cons(quotequotg p2) and mapp; the current dynamic-wind stack. When we throw to a continuation

o (cons V(). object, we use the difference between the current dynamic-wind
which causes our semantics to proditdor the above example, but this ~ stack and that recorded dynamic-wind stack to determine which
technigue does not scale to a full Scheme that includes macros. pre andpostthunks need to be called.



p ;= (store((ptrsV) - - -) (dw (dws- - -) €)) dws == (xcpcp
e = (ee--:) |(feeg |(feg |(setlxe | (beginee--) sV w= VvV |(#%consvy |lam | mulam
| (throw x dws: - - EC[€]) | (push(xe @ e) | (pope) s u=(s-+-) |(s---dotnsg |nss
| lam |mulam|v |x nss == number|#t | #f | [variable exceptiot]
lam := (lambda(x---)ee---) SC = [ |(e---SCs--")
mulam := (lambda(x---dotx)ee---) | (f SCs9 | (if eSCy) | (if e eSC)
v ;= fun | nonfun | (if SC9) | (if eSC)
fun = cp | mp | #%cons| #%null? | #%pair? | (set!xSC)
| #%car | #%cdr | #%set-car! | #%set-cdr! | #%list | (beginSCs---) | (beginee---SCs---)
| #%+ | #%— | #%/ | #%« | #%call/cc | (throw x dws: - - SC) | (push(x SCs) s)
| #%dynamie-wind | #%values| #%call-with—values | (push(xeSC)s) | (push(x e g SC) | (pop SC)
| #%eqv?| #%apply | #%eval | (lambda(x---)SCs---)
nonfun :=  pp | number | #%null | #t | #f | (lambda(x---)ee---SCs---)
| (quote symbo) | unspecified | (lambda(x---dotx)SCs---)
|  (lambda(x---dotx)ee---SCs--)
PC ;= (store((ptrsv) ---) DC) | (cconsSCs) | (cconsv SC)
DC ;= (dw (dws---) EC,)
EC =[] | (inert--- EC,° inert---) var := [variable exceptlot and keywords]
|  (fECoed |(if EC, €) | (set!XxECo) X := [variable names]
| (beginECee---) pp := [pair pointers]
| (#%call-with—value$ (cwv-markEC,) v°) cp := [closure pointers]
EC, = []o|EC mp := [ closure pointers]
EC. = [l+|EC ptr == x|pp|cp|mp
inert = e|w

Figure 8. Grammar for full Scheme semantics

That strategy is formally encoded in three parts. First, we add simply discards any common prefix the two stacks may have, which
a dynamic-wind stack to each program context. It contains one correspond to dynamic extents that were never left or entered dur-
dynamic context framedvg for each annotated dynamic extent ing the transitions from the time the continuation object was created
in which the current evaluation is taking place. A dynamic context and the time it was invoked. Then, once the two stacks have been
frame is a triple consisting of a unique identifier and e and trimmed to the point where they have distinct heads, the metafunc-
postthunks of the correspondingdynamic-windcall. The unique tion produces degin expression consisting of applications of all
identifier allows us to disambiguate multiple dynamic evaluations thepostthunks from.7’s first argument, invoked in order, followed
of the same syntactic appearance alyaamic-windexpression. by all theprethunks from.Z’s second argument, invoked in reverse
Second, we add the primitive procedure vatlygmamic-windto order (which we indicate with the special notation,, indicating
the set of values, which expects each of its three arguments toa sequence being expanded out backwards).
evaluate to a thunk. Then using the DW\® rule it invokes its
pre thunk, pushes a dynamic context frame onto the stack with a 6. Operational semantics for RPRS Scheme
fresh identifier and its owpre andpostthunks, evaluates its second ) : . ) :
thunk, pops its dynamic context frame off the stack, evaluates its 1 NiS Section combines the techniques from sections 2 through 5
postthunk, and finally returns the value its second thunk evaluated With other known techniques for modeling programming languages

to. To allow the program to manipulate the stack, we introduce the to build a model of RRS Scheme that includes all the features from
pushandpop forms and their associated reduction rules DV$R those sections along withand booleans, mathematical operations
and DWRoP. The former pushes a new dynamic context frame onto (but not the numeric tower), list constructors, selectors, mutators
the end of the stack, and the latter pops the last context frame offand predicates;-lambda procedurésapply, and object identity-

the stack (and then evaluates to the trivial vayevhich is never ~ based equivalence. Although this section appears large and com-
used). These two forms are intended to be used onigymamic- plex at first, it is mostly just a simple combination of the previous
wind, never by the programmer directly. four sections. ) )
The third piece iscall/cc. When call/cc is called, the DW- This specification is executable, and the figures presented in
CaLLcc rule builds a continuation object that consists of a pro- this section were automatically generated from the source code
cedure of one argument, a fresh identifier we will callhat pro- that implements the specification. Since an executable specification

cedure’s body is ghrow form that consists of the current dynamic ~ was an explicit goal of our work, we have made some modeling
stack and the expression formed by pluggiigto the hole of the choices that may not be obvious at first. For example, there are
evaluation context where the applicatiorcatl/ccitself was found. many expressions whose return values are explicitly unspecified in
A throw form is itself evaluated using the DWARow rule by dis- the RPRS Scheme document, such as the resultsaftexpression.
carding the evaluation context in which it was found, replacing the A non-executable specification might model the evaluation of those
dynamic stack with its own stored dynamic stack, and replacing the expressions using the rule schema

entire program body with a specially-construchet)in expression o

built b)? thgef meta%unction F()whereyT standslﬁ?“trimr,)” because vv. PQunspecifiefl — PClV]
it trims away the common context frames leaving only the suffixes 3

Whose_pre_- or post-thunks need to be_ exe_cuted). That function COM-i1y section 4.1.4 of the Report that accept an arbitrary number of arguments

pares its first argument, the dynamic-wind stack of the dynamic peyond a certain minimum. The name dates back at least to Indiana Univer-

context being exited, with its second argument, the dynamic-wind sity's Scheme 84 system whei®LAMBDA was a keyword used to declare

stack of the context being entered. The first rule in its definition procedures that accepted any number of arguments and collected them in a
list [11].

Procedures declared with an improper list of formal arguments described



meaning that an unspecified term reduces to any value. Instead, wehave to be dereferenced before use, so neither qualifies as an irre-
model unspecified results with a special valuspecifiedhat has ducible value.

no associated reduction rules and will cause programs that inspect it )

to get stuck. We also chose to ignore out-of-memory errors. These6-2 Relations

would be easy to add at the expense of a additional clutter when |n the remaining figures, we will make heavy use of various reduc-
visualizing traces: reductions from each allocation site to the out- tion relation symbols. The basic reduction relation we will use is

of-memory error would suffice. —, which indicates that the program term on the left reduces in
one step to the term on the right. We also use two other relations to
6.1 Grammar aid in the system’s readability, defined in terms of theelation:

The grammar for RRS Scheme programs is given in figure 8. In
that figure, a program (given by thenonterminal) consists of a
store, a dynamic-wind stack, and an expression. & hentermi-
nal gives expressions, which in addition to standard Scheme core
forms can behrow, push andpop, as in section 5. Valuew) are . )
either procedures or non-procedure values, but notice that syntactic ® € —° error: siff PC[e] — error: s _ .
lambda terms are not values themselves. Instead, procedure val- The term on the left signals an error, halting the program imme-
ues fun) can be references to procedures in the stopahdmp) diately.
or the built-in procedures, Whilf_e tHambda form, as we will see, 6.3 Basic syntactic forms
places new procedure values into the store when evaluated. Non-
procedure valuesnpnfur) include pair pointers, numbersyll, Figure 9 shows rules for the basic syntactic forms. Foiiftlierm,
booleans, symbols, and the unspecified value. if the test position evaluates to anything other thénthe term

As in section 4, we write dotted pairs (as in the parameter list rewrites to its “then” subexpression. If the test position evaluates

of a u-lambday) withdot rather than a period to avoid meta-circular 0 #f, it rewrites to its “else” subexpression, if presamspecified
confusion in our PLT Redex implementation. otherwise. For théegin form, the evaluation contexts defined in

Section 6 of the RRS Scheme specification indicates that prim- figure 8 ensure that the first term obagin expression containing
itive procedures are bound to names in the initial environment, but &t 1€ast two expressions is evaluated fully; then these rules cause
that those names can be mutated during the course of a programbeg'” expression that consists of a fully-evaluated value followed
To model that, we use special names Wi prefixes to indicate by one or more expressions to rewrite to a rggin expression

the actual built-in procedures, and we bind those values to their With the initial value dropped. These rules also specify thzggin
#% less names in the initial store: form with only a single expression reduces immediately to that

(store ((list #94list) ( #9scons(car #9%ca) (cdr #%cd) expression, even if that expression is not yet a value.
store ((list #%olist) (cons #%cons(car #%cai) (cdr #%c : ,
(pair? #%pair (null #o6null) (null? #%null? Because our model does not take into accoltRK Scheme’s

numeric tower, we model its numeric operations in terms of true
(se;((;ar! #%ieo/%car!/) #(#so/et-cdr;i%se%cdr!) mathematical functions. We assume that we can identify the true
Egalllc?;&zalllg)(é naorgigwinoé)#o/od namiewind) number represented by each numeric term and model each numeric
(values #%valud chll-with-values 4% ():/allrlwliltehufu values procedure by performing the appropriate mathematical operation

on those true numbers: is modeled by summation on the repre-
(eav? #%equvp(apply #%apply (eval #%eva) - - ) sented numbers,is modeled by multiplication, and so on.

o (e ---e,)—=°€iff PC[(€] - - - €))] — PCI[¢]
The application on the left reduces to the term on the right in
a program context, assuming that all of the expressions in the
application are marked.

There are three different contexts we will make use of: program
evaluation contexts, dynamic-wind contexts, and expression con-
texts. Each program evaluation context (PC) contains a store, andThe rules for constructing nesonscells are given in figure 10.

a dynamic-wind context. Each dynamic-wind context (DC) con- Since all cons cells are mutable and therefore can be distinguished
tains a dynamic-wind stack and an expression context. Expressioneven when they hold identical values, we cannot allé¥%¢ons vy
contexts (EC) are the contexts in which program evaluation takes to be a value itself. Instead, tW8oconsrule introduces a new pair
place; they allow evaluation in marked sub-expressions of an ap- into the store and reduces to a pointer to that new pair. #¥gigt
plication (as in section 2), the test positionsibexpressions, in Vi ---) rule rewrites to (ambda x X) v; - - -), taking advantage of
setlexpressions and in the first position ibvegin (as long as there  the -lambda application rules described in the next subsection.

6.4 Cons and cons-cell mutation

are at least two expressions in thegin). The evaluation context Figure 11 gives rules farar andcdr. Application of either pro-
for #%call-with—valuesis explained in section 6.7. The E@nd cedure to a pair pointer rewrites to the contents of the appropriate
EC. evaluation contexts anidert work like C, andC.. andinert field in the pair being pointed to. If either selector is applied to a
from section 3. non-pair value, the term rewrites to an error message.

The dws non-terminal corresponds to one frame of dynamic-  The predicates in figure 12 are similarly simple. H#épair?
wind context information and its use is explained in section 5. The procedure reduces tt if its argument is identifiable as a pair
svnon-terminal generates values that appear in the store. pointer and#f otherwise. The#%null? procedure reduces #t if

S-expressionss(andns9 and s-expression contexts (SC) cor- and only if it is supplied with the built-in null value.
respond to s-expressions and s-expression contexts from section 4. Figure 13 gives rules foset-car! and set-cdr} for cons-cell
There are more possible s-expression contexts in the full languagemutation. The#%set-car! and#%set-cdr! rules are the same as
because there are more possible syntactic forms. the car andcdr rules, respectively, except that instead of reducing
Finally, thex nonterminal represents both program variables and to the current value of appropriate component of the pair being
binding locations, and thpp, cp, andmp nonterminals represent  pointed to, they replace that component with the given replacement
pointers to pairs, fixed-arity procedures, and variable-arity proce- then rewrite to an unspecified value.
dures, respectively. Thatr non-terminal is a short-hand for terms
that index into the store. One subtle point here is thatvtipeo-
duction producegp, cp, andmpbut notx. Those variables are not  The rules in figure 14 handle variable lookup and variable assign-
included because free variables are not values and bound variablesnent: a binding pointer is replaced with its value in the store when

6.5 Procedures and assignable variables



PCl(fvier &) — |(°C[e1]#f) PC[eginve e ---)] —  PC[(begine; e ---)]
v # PCl(begine;)] ~  PCli]
PC[(f #fe1 e2)] —  PClex] (+ Tl -+ —°  Ixnp...
PC[(f v1 e1)] —  PClel (= Tyl gl -+ ) —° Tn—(Zng--)
(v1 ##0) (=l —° I
. (*frﬂ...) —© MTIn---1
PCI(f #f )] —  PClunspecifietl ¢ 'yl Tngl --2) 0 Iny/(Ing---)
G fnﬂ) —° 1/ nﬂ
Figure 9. Basic syntactic forms
(store ((ptry svy) --+) —  (store((ptry svy) - - - (p; (#%CONS Var Vegr)))
DC[(#%COI’]§ Vear® Vcdro)]) Dc[pz])
(p; fresh
PCI@#%list vi© -- )] —  PC[((ambda (dot 1) 1)° vi° - - )]
Figure 10. List constructors
(store ((ptry svy) - - — (store ((ptrs svq) - - - (#%null? #%nul)  —°  #t
(pp: (#%6CONS Yar Vear)) (PP; (#96CONS ¥ar Vedr)) | (sosnuil? v) o #f
(Ptritz SVig1) ") (ptriys SVigr) -9 (Vi # #%nul)
DC[(#%car pp;°)]) DC[Vcar]) v
(#%car v;°) —¢  error: can't take car of non-pair | (#%pair? pp —e
(Vi € pp) (#%pair? v;) —o  #f
(store ((ptry svy) - - - —  (store((ptrs svq) - - (vi & pp)
(pp; (#%cCONS ¥ar Vedr)) (pp; (#%CONS ¥ar Vedr))
(Ptriys SVigs)--) (Ptriys SVit1)---)
DC[(#%cdr® pp;°)]) DClVear])
(#%cdr v;°) —¢ error: can’t take cdr of non-pair
(vi & pp)
Figure 11. List accessors Figure 12. List predicates

dereferenced, and mutation of a binding pointer is represented byeled by creating one new binding pointer in the store per formal
replacing the value pointed to by the upddtenbda is the only argument where the value being pointed to by each pointer is the
binding form in this semantics, so the rules for procedure calls are argument supplied in the appropriate position, and rewriting to the
the only ones that introduce new bindings. Procedure calls are mod-procedure’s body with these new bound-variable pointers substi-
eled by two features: closure introduction and procedure applica- tuted for occurrences of the formal arguments.
tion. Application of au-lambda allocates a list for its extra argu-
The rules in figure 15 govern the introduction of closure val- ments, applies the initial portion of the arguments as usual, and
ues into the store. Like cons cells, procedures are not values, butapplies the extra arguments into the last argument of the procedure
pointers to them are; procedures are modeled this way so that wethat actually contains the body expressions. The funcflarsed
can modekqv?more accurately. The allocation rule for fixed-arity here is a metafunction that builds the syntax abaslist from its
procedures is straightforward. The allocation felambda proce- arguments:
dures always puts two procedures into the store: a gtlémmbda
procedure whose body contains a call to an ordinary procedure, and LIxy---]
an ordinary procedure that contains the origindhmbda’s body y
expressions.
The reason for arranging the system this way is so that when a
p-lambda procedure is applied, we can rewrite it into a correspond-  The last rules specify the behavior of Schenagiglyprocedure
ing call to the fixed-arity code pointer and thereby use the same re-which accepts a procedure and an arbitrary number of arguments,
duction for both kinds of applications. The rules in figure 16 show the last of which must be a list. It calls the procedure with the
this and the rest of the rules for application in detail. The first rule arguments and the contents of the list as subsequent arguments. To
shows how marks are placed in applications, which is just as in model it, the first two#%applyrules flatten out the argument list
section 2. Application of a procedure pointer to arguments is mod- and, when the list is exhausted, reduce to a normal application.

#%consxC [y---])
#%null

Lo
s}
I n



(store((ptr; svy) - -- -
(ppl (#%COnS ¥Yar Vcdr))
(Ptrit s SVig1) - -)
DC[(#%set-car!® pp;° Vnew°)])

(#%set-car!® v1° v°) —¢

(store((ptr; svy) - -- —
(ppz (#%COnS Var Vcdr))
(Ptriys SVigys)---)
DC[(#%set-cdr!° pp;° Vnew°)])

(#%set-cdr!® v;° v°) —¢

(store ((ptrs svy) - - (store ((ptr; svy) - -

(ppl (#%cons Yiew Vcdr)) (Xi Svi)
(Ptrits SVit1) ) (Ptrits SVitr) )
DClunspecifief) DC[x;])
error: can't set-car! on a non-pair (store ((ptry svy) - -+
(v1 € pp) (x; sv;)

(ptrigs SVigz1)--+)

(store ((ptr; svy) - -- DC[(set!X; Vnew)])

(pp; (#%cCONS Va1 Vinew))
(ptritz SVigz) ")
DClunspecifiet)
error: can't set-cdr! on a non-pair
(v1 & pp)

—  (store((ptr; svy) - --
(xi sv;)

(Ptrits SVigr) -+

DC[sv])
—  (store((ptr; svy) - --
(Xi Vnew)

(Ptriys SViyr) -

DClunspecifiet)

Figure 13. Cons cell mutation

(store ((ptr; svy) ---)
DC[lam;])

(store ((ptr; sv;) - - -)

DC[(lambda (x; - - - dotx,) e; ez --)])

—  (store((ptr; sv;) - - - (cp; lam;))
DClcps])
(cp; fresh

—  (store((ptr; svy) - - -

(mp;, cp; fresh

Figure 14. Variable mutation and lookup

(mp; (lambda (x; - - - dot X,.) (Cp; X1 - - - X))
(cp; (lambda (xq - - - %) 1 & - - -)))

PCl(nert; - -- & inert; 1 - - )]

(store ((ptr; svy) - - -

(cp; (lambda (X1 - - -) €pody1 Ebody2 * * *))
(ptriqz SVitq) <)

DC[(CpZO Va'rglo o )])

(store((ptrsy) - - -

(cp; (lambda(x; ---) e

(ptrsy) ---)
DC[(sz‘O Var’glo o )])

(store ((ptrs svy) - - -

(mp; (lambda (x; - - - doty) (cp: X1 - - - )))
(Ptriys SVigr) )
e VRO .

DC[(mp; Vn1°

(store((ptrsy) - - -

(mp; (lambda (x; - - - dot x) (cp Xx- - -)))

(ptrsy)---)
DC[(mpzo Varglo o )])

(nonfur? ve .. .)

(store ((ptr; svy) - --

(PP; (#%CONS ¥ar Vedr))
(Ptriy s SVigr)--)

Figure 15. Procedure introduction

— PC[(nert; - -- e;° inertjyq - - -)]
— (store ((ptr; svy) - --

(ptr1+1 SV1+1) e
(Xar92 Va'rgl) o )

(cp; (lambda (X1 - - ) €p0dy1 €body2 - - *))

DC[(begineyoay1 Ehody2 - - X1 -+ Xarg2 -+ -)])

(#Xarg = #Va'rg f Xargg s fres}')

— error: arity mismatch

e )) (#Xarg 7£ #Varg)

— (store ((ptrs svy) - --

(Ptriys SVigs) )
DCI(cpt Vn1® -+« L[VR® ---])])
(#x = #v,)

— error: too few arguments
(#Xarg < #Var_q)

—¢  error: can't apply non-function

— (store ((ptry svy) - -
(PP; (#%CONS ¥ar Vedr))
(Ptrig s SVigs)--)

(mp; (lambda (x; - - - doty) (cp; X1 - - - ¥)))

DC[(#%apply’ V¢° Varg1® - - - PP;°)]) DC[(#%apply’ V§° Varg1® - - - Vear® Vedr®)])
(#%apply v Vargt - - - #%null) = (Vf Vargl =)
(#%apply Vi° Varg1® -+ Vigst©) —¢  error: apply must take a list as its last argument

(Viast € PPU {#%null})

Figure 16. Procedure application

)

)



(store ((ptrs Svs) - - -) (store ((ptrs svs) - - +)

(dw (dws - -+) (dw (dws; - -+)
EC, [(#%call/c® v;°)]) EC:1[(push dws; epe.t)]))
—  (store((ptrs svs) - - -) —  (store((ptrs svs) - - )
(dw (dws; - - -) (dw (dws; dws; - - -)
EC;[(v; (lambda (dot args) ECi[enext])

(throw x;, dws; - - -
EC, [(beginx; (#%apply #%values arg}§)))]))

(x. x,, fresh) (store ((ptrs svs) - - +)

(dw (dws, dws, - - -)

ECi1[(pop enczt)]))
(store ((ptrs svs) - - -) —  (store((ptrs sv) - - )
(dw (dws; - - -) (dw (dws; - -+)
EC; [(#%dynamie-wind® cp; © cpz° cps3°)])) ECi[enext]))
—  (store((ptrs SVs) - - )
(dw (dws; ---) store ((ptrs SVs) - - -
ECiloean(cn) | e )
push {xi ¢p; €ps ) EC, [(throw x;, dws; - - - ECy[en
((lambda (xo) (pop (begin (cps) Xa))) L (store(( pltl[’( o X [e2])])
(cp)))) (dw (dws; - - )
(X1, X2 fresh) (begin7 [(dws; ---), (dws, )]
ECo[e2]))
Figure 17. Call/cc and dynamic-wind Figure 18. Call/cc and dynamic-wind support
PCv1]+« — PC[@#%values§ v, °)] (#%eqv? pp pp;) —°  #t
PC[@#%values v1°)]o — PCjv1] (#%eqv? cpcp;) —°  #
PC[#%values v1° - )]0 — error: wrong number of values|  (#%eqv? numbarnumbei) —°  #t
(v #1) (#%equ? v V1) —°  #t
(#%call-with—values V,qis Viun) —°  (#%call-with—values$ PC[(#%equ? v1° v2°)] N PC#]
(CWV-n)Wafk(szs)) (V1 # Vo)
Viun® N
PC[(%call-with—values —  PClWfun® Varg® - )] (#heqv?vi® ) " eror: afiy mismateh
(cwv-mark(#%values Vo ° - - -)) (#v1 #2)
Vfuno)]
(#%call—with—value$ v;° ---) —¢  error: arity mismatch
(#v; #2)
Figure 19. Multiple values and call-with-values Figure 20. Eqv and equivalence
6.6 Call/cc There is one twist, though, since rather than dpply-values
Our technique for modelingall/cc and dynamic-wingd shown in primitive given in section 3, RRS Scheme providesall-with-

figures 17 and 18, is essentially the technique from section 5. values so we model it directly. To do so, we have to use the mech-
Apart from the change of using procedure pointers rather than the &nisms described in section 3, along Wlt.h a new context containing
literal source text of procedures as required to model equality (see CWVv-mark A term of the form §%call—with—values thunk ¥ re-
section 6.8), the only substantial change is that the continuation duces to #%call-with—values(cwv-mark(thunk) f); that is, it
procedures in this model accept any number of arguments. ThePlaces a special mark around the application of the thunk to no

trimming metafunction? is the same function defined in section 5. arguments. At that point the evaluation contexts defined in fig-
ure 8 will apply and reduce the applied thunk in a multi-value con-

text. When that reduction sequence yields a result (which will be a
multiple-values expression), the entaall-with-valuesexpression
reduces to the application of the second procedure to those pro-
Multiple values in the full language are nearly identical to multi- duced values.

ple values in section 3, and in particular the context arrangement
and promotion and demotion rules are the same. Furthermore, eve
though the present system is much larger than the system presente
in section 3, the rules for multiple values are still completely or- Figure 20 shows the rules feqv? Since all mutable values (and
thogonal to the rules that implement the other features. procedures) are allocated in the stoegyv?is a simple matter

6.7 Multiple values and call-with-values

.8 Eqv? and equivalence



(store ((ptrs svy)---) —  (store((ptry svy)---)

DC[(#%evaP v °)]) DC[Z [((ptrs sv1) - - ), va]l)
(store((ptr; sv;) ---) —  (store((ptr; svy)---)
(dw (dws ---) (dw (dws -- )
EC1[SCi[(quote (st sz - - -)D) EC41[SCi[(ccons(quote si) (quote (sz - - )I])
(store ((ptrs svy) ---) —  (store((ptry svy)---)
(dw (dws ---) (dw (dws ---)
EC1[SC1[(quote ()II)) EC1[SC1[#%nulll])
(store ((ptr; sv;)---) —  (store((ptr; svy)---)
(dw (dws, - - ) (dw (dws -- )
EC; [SC; [(quote numbei )]])) EC; [SCi[number]]))
(store ((ptr; sv;)---) —  (store((ptr; sv;) - -- (pp1 (#%cons y vs)))
(dw (dws, - --) (dw (dws - - )
EC1[SC;[(cconsvi vo)]]) EC1[SCi[pp1]])
(pp1 fresh

Figure 21. Quote and eval

of checking that the two values supplied have identical syntactic mantics [23], but we know of no formal correspondence between
structure (which we indicate here, as PLT Redex does, by repeatinghis program and the denotational semantics itself.

the same subscript for both arguments to ¢ge? procedure to
indicate that the two subterms must be identical). 8. Conclusion
6.9 Quote and eval We have presented a semantics fORS Scheme using context-
sensitive reduction semantics developed using PLT Redex. To the
best of our knowledge, it formalizes more of the language than
any other semantics for the language. In addition it shows how

to model RRS Scheme-style multiple return values in an small-
step operational semantics setting for the first time, and gives a
new model for unspecified sequential evaluation orders that uses
d nondeterministic choice. In the process, we have introduced several
new techniques for modeling programming language features with
term rewriting.

PLT Redex and the source code for all the models presented in

this paper, including our executable model iz Scheme, are
7. Related Work available for download at
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languages many times and in many different ways. Felleisen’s dis-

sertation [3], which introduced context-sensitive reduction seman-
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