
An operational semantics for R5RS Scheme

Jacob Matthews
University of Chicago

jacobm@cs.uchicago.edu

Robert Bruce Findler
University of Chicago

robby@cs.uchicago.edu

Abstract
This paper presents an operational semantics for the core of
Scheme. Our specification improves over the existing R5RS de-
notational specification in four ways. First, it is more complete,
since it containseval, quote, anddynamic-wind. Second, it models
multiple values in a way that does not require changes to unrelated
parts of the language. Third, it provides a more faithful model of
Scheme’s undefined order of evaluation. Finally, it is executable,
because it is encoded as a program in PLT Redex, a domain-specific
language for writing operational semantics. The executable spec-
ification allows others to experiment with our specification and
allows us to build a specification test suite, which improves our
confidence that our system is a faithful model of Scheme.

In addition to contributing a specification of Scheme, this paper
presents several novel modeling techniques for Felleisen Hieb-style
rewriting semantics that we discovered while developing our R5RS
Scheme semantics. All are applicable to a wider range of problems
than the specific uses we have for them, and the fact that they
combine seamlessly in our full R5RS model shows that they scale
to real languages.

1. Introduction
The Revised5 Report on the Algorithmic Language Scheme [15],
R5RS, provides an informal, English specification of Scheme and
a denotational model of a core Scheme language. The denota-
tional specification is more precise than the informal specification,
but is also incomplete with respect to it. For instance, the formal
specification does not present the top-level mentioned throughout
the informal specification, and is missing key procedures such as
dynamic-windand eval whose inclusion could have a significant
impact on the formalism. While that is not necessarily a problem
— the measure of a model is not its completeness but its ability to
clearly and accurately explain its subject — Gasbichler et al’s re-
cent explanation of the difficulties involving dynamic contexts and
threads [12], for instance, demonstrate that the formal model is in-
sufficient for some important questions.

In this paper we give a new treatment of the R5RS formal se-
mantics that models more of the language described in the informal
semantics section than the formal semantics section in the R5RS
Scheme document does. Rather than extending the denotational se-
mantics with extra constructs, we present an alternate specification
as a small-step operational semantics. We do this for two major rea-
sons. First, to make the semantics natively executable: operational
semantics are much more amenable to direct execution than deno-
tational semantics. Second, to allow for nondeterminism and non-
confluence: small-step operational semantics are particularly well-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming. September 25, 2005,
Tallinn, Estonia.
Copyright c© 2005 Jacob Matthews and Robert Bruce Findler.

suited for modeling programming languages with nondeterministic
and nonconfluent behavior. We make important use of nondeter-
minism in our model, as we will explain in section 2.

As a side benefit of using a small-step operational encoding, we
can use PLT Redex [17], a domain-specific language for context-
sensitive term-rewriting systems, to give a directly executable op-
erational encoding for our model. PLT Redex provides a graphical
browser for exploring reduction graphs and allows us to maintain
a large test suite of terms and their expected normal forms that we
can run whenever we change any reduction rules. This test suite in-
creases our confidence that our model is a faithful representation of
Scheme.

While writing our model, we developed new techniques for
modeling some of Scheme’s features. In the rest of our paper we
first introduce those techniques in isolation to explain our models
for particular Scheme features, and then combine them into a sin-
gle unified model. In section 2 we show how to use nondeterminism
to model Scheme’s unspecified application order; in section 3 we
show a novel technique for modeling multiple return values; in sec-
tion 4 we give a model forquoteandeval; and in section 5 we give
a model forcall/cc in the presence ofdynamic-wind. Finally in sec-
tion 6 we combine all those models along with several other more
straightforward features:if , consand cons-cell mutation, variable-
arity procedures,apply, and an object-identity-sensitive notion of
eqv?equality.

We will assume the reader has a basic familiarity with context-
sensitive reduction semantics. Readers unfamiliar with this system
may wish to consult Felleisen and Flatt’s monograph [5] or Wright
and Felleisen [24] for a thorough introduction or our previous work
with Flatt and Felleisen [17] for a somewhat lighter one. We should
also emphasize before we proceed that this semantics still leaves
out many important Scheme features — among them the numeric
tower, the top-level environment, and macros — but that it models
more features than the Report’s formal semantics does and is more
suitable for extension.

2. Unspecified application order
In evaluating a procedure call, the R5RS document deliberately
leaves unspecified the order in which arguments are evaluated, but
section 4.1.3 specifies that

the effect of any concurrent evaluation of the operator and
operand expressions is constrained to be consistent with
somesequential order of evaluation. The order of evalua-
tion may be chosen differently for each procedure call.

In the formal semantics section, the authors explain how they model
this ambiguity:

[w]e mimic [the order of evaluation] by applying arbitrary
permutationspermuteandunpermute. . . to the arguments
in a call before and after they are evaluated. This is not quite

p ::= (store ((x v) · · ·) e)
e ::= (e e· · ·) | (set!x e) | (begine e· · ·) | v
v ::= (lambda (x · · ·) e) | n

C ::= (v · · · C e· · ·) | (set!x C) | (beginC e e· · ·) | []
x ::= identifiers, store locations for mutable bindings
n ::= numbers

(store ((x1 v1) · · ·) C[((lambda (x2 · · ·) e) v2 · · ·)]) → (store ((x1 v1) · · · (x′2 v2) · · ·) C[e[x′2 · · · / x2 · · ·]]) (MA PP)
(#x2 = #v2, eachx′2 fresh)

(store ((x1 v1) · · ·) C[((lambda (x2 · · ·) e) v2 · · ·)]) → error: wrong number of arguments (MAPPERR)
(#x2 6= #v2)

(store ((x1 v1) · · · (x v) (x2 v2) · · ·) C[(set!x v′)]) → (store ((x1 v1) · · · (x v′) (x2 v2)· · ·) C[0]) (MSET)
(store ((x1 v1) · · · (x v) (x2 v2) · · ·) C[x]) → (store ((x1 v1) · · · (x v) (x2 v2) · · ·) C[v]) (ML OOKUP)
(store ((x v) · · ·) C[(beginv e1 e2 · · ·)]) → (store ((x v) · · ·) C[(begine1 e2 · · ·)]) (MSEQ)
(store ((x v) · · ·) C[(begine)]) → (store ((x v) · · ·) C[e]) (MT RIVSEQ)
(store ((x v) · · ·) C[(− dne)]) → (store ((x v) · · ·) C[d-ne]) (MN EG)

Figure 1. Core Scheme with mutation

right since it suggests, incorrectly, that the order of evalua-
tion is constant throughout a program. . .. [section 7.2]

In this section we present an operational technique that captures
the intended semantics more faithfully. We begin by considering
a core Scheme with arbitrary arity procedures,set!, numbers, and
negation, but with a fixed left-to-right order of evaluation for ap-
plications, as shown in figure 1. It is a minor variation of Felleisen
and Hieb’sΛS [6]. A program consists of a store that associates
variable names to values and an expression, where expressions are
built up of numbers, arbitrary-arity lambda terms and applications,
set!, andbeginexpressions, and a built-in negation operator. MAPP
gives the rule for application of a procedure to fully-evaluated ar-
guments: make one fresh identifierx′i for each formal parameterxi,
introduce a new binding in the store for eachx′i associating it with
the corresponding argumentvi in the application, and then rewrite
the application as the procedure’s body with each occurrence of an
xi rewritten into the correspondingx′i (in this figure as in all fig-
ures in this paper, we will use vertically-centered ellipses· · · to
indicate any number of occurences, including zero, of the preced-
ing element). MAPPERR gives the rule for procedures applied to
the wrong number of arguments: rewrite the term in its entirety to
an error message, which halts the program immediately because
it abandons the application’s original context. MSET rewrites to
the constant 0 but also replaces the value associated with the given
identifier in the store with the given replacement. (We choose to
haveset! return the constant 0 in this semantics as a “quick and
dirty” unique value; in the examples that follow 0 never appears in
any program term except as the result of assignment.) MLOOKUP
replaces an identifier with its associated value in the store when
that value becomes necessary (i.e., when it appears as a redex in an
evaluation context). MSEQ drops the first subexpression in abe-
gin when there are more expressions to evaluate, and MTRIVSEQ
drops thebeginwhen there is only one expression to evaluate. The
last rule, MNEG, simply negates its argument (the notationdne indi-
cates the syntactic representation corresponding to the mathemati-
cal numbern).

The order of evaluation is determined by the grammar for eval-
uation contexts (C). The first production of the grammar specifies
that evaluation of a sub-expression of an application only takes
place when all of the sub-expressions to its left are values (or have
been reduced to values). If we replace that first production with this
one:

C ::= (e · · · C v · · ·) | . . .

the semantics would specify a right-to-left order instead.
Either of these choices results in a system with unique decom-

position. That is, each term can only be split into an evaluation con-
text and a reducible sub-expression in one way (unless it is stuck

or an answer). Accordingly, there is at most one way to reduce any
expression.

To model a language with unspecified order of operations in-
stead, we can use a reduction system with non-unique decomposi-
tion to model the choice. We might be tempted to use this definition
of evaluation contexts:

C ::= (e · · · C e· · ·) | . . .

Since this definition allows the hole to appear in any subexpression
of an application, this simple program that negates 1, negates 2, and
then applies a trivial procedure to the results

((lambda (x y) y) (− 1) (− 2))

can be split into an evaluation context with either (− 1) or (− 2) as
the reducible expression.

At first glance, this appears to be a faithful model of R5RS
Scheme. It is not. Consider this application of twoset!expressions
in a store bindingx to 1.

(store ((x 1))
((set!x (− x))
(set!x (− x))))

In Scheme, this program should always reduce to the application
of zero to zero withx set to1 in the store (and then get stuck).
According to R5RS, no matter which of the application’s subterms
is reduced first, the result should be thatx is negated twice. If
we just modify evaluation contexts as above, however, we allow
other interleavings. The problem is that that definition of evaluation
contexts would allow a different argument of the same application
to take one step of computation every step of the way, which may
produce an outcome that could not be reached by any sequential
ordering.

We discovered this problem while experimenting with that re-
duction system in PLT Redex. We encoded the erroneous reduction
system in PLT Redex and automatically generated the reduction
sequence for the above term, shown in figure 2. The first term is
shown on the left. The top-most and the bottom-most paths corre-
spond to the two sequential orderings and result in the proper store.
In the middle section, the two assignments are interleaved, resulting
in −1 being left in the store.

With that in mind, we can design a more sophisticated strat-
egy that captures unspecified evaluation order but only allows se-
quential orderings. Figure 3 shows the necessary revisions to core
Scheme to support R5RS-style procedure applications (each re-
places the appropriate rule from figure 1 — the other rules in that
figure are unchanged). The basic idea is to use non-deterministic
choice to pick a sub-expression to reduce only when we have not al-
ready committed to reducing some other subexpression. To achieve

(store ((x 1))

 ((set! x (- x))

 (set! x (- x))))

(store ((x 1))

 ((set! x (- x))

 (set! x (- 1))))

(store ((x 1))

 ((set! x (- 1))

 (set! x (- x))))

(store ((x 1))

 ((set! x (- 1))

 (set! x (- 1))))

(store ((x 1))

 ((set! x (- x))

 (set! x -1)))

(store ((x 1))

 ((set! x -1)

 (set! x (- x))))

(store ((x 1))

 ((set! x (- 1))

 (set! x -1)))

(store ((x 1))

 ((set! x -1)

 (set! x (- 1))))

(store ((x -1))

 ((set! x (- x))

 0))

(store ((x -1))

 (0

 (set! x (- x))))

(store ((x -1))

 ((set! x (- 1))

 0))

(store ((x 1))

 ((set! x -1)

 (set! x -1)))

(store ((x -1))

 (0

 (set! x (- 1))))

(store ((x -1))

 ((set! x (- -1))

 0))

(store ((x -1))

 (0

 (set! x (- -1))))

(store ((x -1))

 ((set! x -1)

 0))

(store ((x -1))

 (0

 (set! x -1)))

(store ((x -1))

 ((set! x 1)

 0))

(store ((x -1))

 (0

 (set! x 1)))

(store ((x -1))

 (0

 0))

(store ((x 1))

 (0

 0))

Figure 2. Interleavings possible with an erroneous unspecified-application-order model

inert ::= v◦ | e
C ::= (inert · · · C◦ inert · · ·) | . . .

(store (· · ·) C[(inert · · · e inert · · ·)]) → (store (· · ·) C[(inert · · · e◦ inert · · ·)]) (UM ARK)
(store (· · ·) C[((lambda (x · · ·) e)◦ v◦ · · ·)]) → (store (· · · (x′ v) · · ·) C[e[x′ · · · / x · · ·]]) (UA PP)

(#x = #v, eachx′ fresh)
(store (· · ·) C[(−◦ dne◦)]) → (store (· · ·) C[d-ne]) (UNEG)

Figure 3. Revisions to core Scheme to support unspecified application order

that effect, we introduce the non-terminalinert and the notion of a
marked expression, denoted with the◦ superscript. (These marks
are not an extension to the general term-rewriting framework —
e◦ andC◦ are just alternate typesettings of (mark e) and (mark
C).) Marks identify chosen expressions: only marked expressions
may be reduced, and only one reducible marked expression may
appear in any application at one time. Theinert production stands
for terms in which evaluation may not occur,i.e., unmarked ex-
pressions (those expressions we have not tried to evaluate yet) and
marked values (those expressions we have already finished reduc-
ing). We add the UMARK reduction rule that marks an arbitrary
unmarked expression in an application on the condition that every
other expression is inert, and we modify the MAPP and MNEG
rules rules to apply only to fully-marked applications, becoming
the UAPPand UNEG rules.

Figure 4 (also generated by PLT Redex) shows how our new
system evaluates the term from figure 2. The initial term appears
in the center on the left. That term is an application, so the first
reduction either marks the first sub-expression or the second. If
the first subexpression is marked, evaluation continues down to the
bottom of the figure, over to the right and back up to the middle. If
the second is marked, evaluation proceeds up, over, and back to the
middle. In both paths there are a few other application expressions
to evaluate, leading to smaller separations. Eventually, all of the
terms join back together and the final result in the store is1, as
shown in the center on the right.

One should not take that example to mean that this language has
any kind of confluence property, however. Consider this program:

((lambda (choice)
((lambda (x y) choice)
(set!choice 1)
(set!choice 2)))

0)

It will either will return either1 or 2, depending on the order of
evaluation. This is the way we want it; the model’s nonconfluence
reflects the underspecification of R5RS Scheme rather than a tech-
nical bug in our model. It does, however, always make progress.
We formalize this with the following theorem statement:

THEOREM 2.1. For any closed programp in the language of fig-
ure 3, eitherp → p′, wherep′ is also closed,p → e wheree is
some error indicator, orp is of the form (store ((x v) · · ·) v).

Proof is contained in the first author’s master’s thesis [16].
This technique has other uses besides giving semantics for un-

specified application evaluation orders. In general, it is useful for
modeling any kind of delimited nondeterminism, where evaluation
may proceed arbitrarily but only at certain points in a program. This
is useful for modeling unspecified behaviors and for complex non-
deterministic features such as threads.

3. Multiple return values

R5RS Scheme provides a facility for expressions to evaluate to
multiple or no values rather than just a single value. The procedure
valuesbuilds multiple values andcall-with-valuesaccepts multiple
values. Unlike tuples in SML and Haskell, multiple values are not
themselves values. For example, this program

(define(f x) (values(+ x x) (∗ x x)))
(define(g x y) y)
(g (f 3))

produces an error, since procedure application expects each of its
arguments to be a single value (and the result off is two values).
Instead, the programmer must usecall-with-valuesto catch multi-
ple values. It expects a thunk as its first argument, applies the thunk,
catches any number of values that thunk produces, and applies them

(store ((x 1))
 ((set! x (- x))
 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (- x))
�

))

(store ((x 1))
 ((set! x (- x))
�

 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (- x
�

))
�

))

(store ((x 1))
 ((set! x (- x))
 (set! x (-
�

 x))
�

))

(store ((x 1))
 ((set! x (- x
�

))
�

 (set! x (- x))))

(store ((x 1))
 ((set! x (-
�

 x))
�

 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (- 1
�

))
�

))

(store ((x 1))
 ((set! x (- x))
 (set! x (-
�

 x
�

))
�

))

(store ((x 1))
 ((set! x (- 1
�

))
�

 (set! x (- x))))

(store ((x 1))
 ((set! x (-
�

 x
�

))
�

 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x (-
�

 1
�

))
�

))

(store ((x 1))
 ((set! x (-
�

 1
�

))
�

 (set! x (- x))))

(store ((x 1))
 ((set! x (- x))
 (set! x -1)
�

))

(store ((x 1))
 ((set! x -1)
�

 (set! x (- x))))

(store ((x -1))
 ((set! x (- x))
 0
�

))

(store ((x -1))
 (0
�

 (set! x (- x))))

(store ((x -1))
 ((set! x (- x))
�

 0
�

))

(store ((x -1))
 (0
�

 (set! x (- x))
�

))

(store ((x -1))
 ((set! x (- x
�

))
�

 0
�

))

(store ((x -1))
 ((set! x (-
�

 x))
�

 0
�

))

(store ((x -1))
 (0
�

 (set! x (- x
�

))
�

))

(store ((x -1))
 (0
�

 (set! x (-
�

 x))
�

))

(store ((x -1))
 ((set! x (- -1
�

))
�

 0
�

))

(store ((x -1))
 ((set! x (-
�

 x
�

))
�

 0
�

))

(store ((x -1))
 (0
�

 (set! x (- -1
�

))
�

))

(store ((x -1))
 (0
�

 (set! x (-
�

 x
�

))
�

))

(store ((x -1))
 ((set! x (-
�

 -1
�

))
�

 0
�

))

(store ((x -1))
 (0
�

 (set! x (-
�

 -1
�

))
�

))

(store ((x -1))
 ((set! x 1)
�

 0
�

))

(store ((x -1))
 (0
�

 (set! x 1)
�

))

(store ((x 1))
 (0
�

 0
�

))

Figure 4. Evaluation in the unspecified-application-order model

to its second argument. So, a programmer could supplyf ’s results
to g like this:

(call-with-values(lambda () (f 3)) g)

In addition, there is no difference betweenvaluesapplied to a single
argument and that argument by itself, so (g (values 6) (values 9)) is
the same as (g 6 9).

To model multiple values, R5RS Scheme’s formal semantics
models continuations as functions from an arbitrary number of val-
ues to a final answer. The informal semantics says that “except for
continuations created with thecall-with-valuesprocedure, all con-
tinuations take exactly one value” [15, section 6.4]. The formal se-
mantics reflects this by checking the opposite property: in every
context that expects a single value, it uses a helper function,single,
to ensure that only a single value appears. This indirect checking
impacts the entire semantics: it requires every continuation to ac-
cept any number of arguments initially and requires a call tosingle
at every point where a continuation would be restricted.

Our semantic model captures the difference between contexts
that accept multiple values and contexts that reject multiple values

directly. Our strategy is distilled in figure 5. That figure contains
a pure core Scheme extended withvalues, and apply-values, a
syntactic form that has as its operands an expression that must
evaluate to a procedure and another expression that may evaluate
to any number of values, and calls the procedure with those values
as arguments. We useapply-valuesin this section rather thancall-
with-valuesbecause the resulting model is clearer and bothapply-
valuesandcall-with-valuescan be defined simply in terms of each
other in R5RS Scheme:

(define(call-with-values thunk f)
(apply-valuesf (thunk)))

(define-syntax apply-values
(syntax-rules()

[(f vs-expr)
(call-with-values(lambda () vs-expr) f)]))

Our model uses a modest addition to the standard reduction-
semantics formalism. We extend the notation so that holes have
names (written as subscripts) but otherwise behave as unnamed

e ::= (e e· · ·) | x | v | (apply-valuese e)
v ::= (lambda (x · · ·) e) | values
C ::= []∗◦ | (v · · · C◦ e · · ·) | (apply-valuesC◦ e) | (apply-valuesv C∗)
C◦ ::= []◦ | C
C∗ ::= []∗ | C

C◦[((lambda (x · · ·) e) v · · ·)]∗◦ → C◦[e[x · · · /v · · ·]] (VA PP)
(#v = #x)

C◦[((lambda (x · · ·) e) v · · ·)]∗◦ → error: wrong number of arguments (VAPPERR)
(#v 6= #x)

C◦[(apply-valuesv1 (values v2 · · ·))]∗◦ → C◦[(v1 v2 · · ·)] (VA PPVALS)

C◦[v]∗ → C◦[(values v)] (VPROMOTE)

C◦[(values v)]◦ → C◦[v] (VD EMOTE)
C◦[(values v· · ·)]◦ → error: expected a single value (VDEMOTEERR)

(#v 6= 1)

Figure 5. Pure core Scheme with multiple values

holes do. The context-matching syntax is now annotated with
names as well, restricting legal decompositions to those where the
hole has the same name.

In figure 5 we use this feature to give three distinct names to
holes, indicated with subscripts.[]◦ indicates a hole in which any
expression should reduce to an element ofv, []∗ indicates a hole
in which any expression should reduce to (values v· · ·), and[]∗◦
indicates a hole in which either result is acceptable. There are three
parallel context nonterminals. The contextC◦ produces an element
of v, C∗ produces (values v· · ·), andC might produce either.

Since each subexpression of an application is expected to pro-
duce a single value, the evaluation context inside an application is
C◦. For the same reason, the evaluation context for the first subex-
pression ofapply-valuesis C◦. The evaluation context for the sec-
ond subexpression, however, isC∗ because it is expected to produce
multiple values.

Since procedure applications (defined by the VAPPand VAPP-
ERR reductions) andapply-values uses (defined by the VAPP-
VALS reduction) may produce a single value or (values v· · ·), they
take place in[]∗◦ holes. VPROMOTE, promotes a single valuev to
(values v). Because of the subscript * on the hole, it applies only
when multiple values are expected. VDEMOTE demotes a single
value insidevaluesto just the value, and VDEMOTEERR signals an
error if valuesdoes not return exactly one value. These two rules
apply only when avaluesexpression appears where a single value
is expected. All reductions take place inC◦ to ensure that the final
result of any program is a single value. If we wanted to allow any
number of values as the final result of a program we could replace
C◦ with C∗ in all rules.

To get a sense of how evaluation proceeds, consider this reduc-
tion sequence:

((lambda (y) y)
(apply-values(lambda (x) (values x)) 1))

→ ((lambda (y) y)
(apply-values(lambda (x) (values x))

(values 1))) (VPROMOTE)

→ ((lambda (y) y)
((lambda (x) (values x)) (values 1))) (VA PPVALS)

→ ((lambda (y) y)
((lambda (x) (values x)) 1)) (VDEMOTE)

→ ((lambda (y) y) (values 1)) (VA PP)

→ ((lambda (y) y) 1) (VDEMOTE)

→ 1 (VA PP)

First, the VPROMOTE applies and promotes 1 into (values 1)
because it appears as the second argument of anapply-values
expression. Then VAPPVALS applies, followed by VAPP. Then
the term (values 1) is used as an argument to a procedure, so
VDEMOTE applies and converts it to the single value1. Finally
VA PPapplies and the result is1.

The erroneous expression from the beginning of this section
signals an error due to the VDEMOTEERR rule.

(g (f 3))
→ · · ·
→ (g (values 3 9))
→ error: expected a single value

The evaluation contexts and the three promotion and demotion
rules are all that we need to add multiple values to the language.
Furthermore, the extension of adding names to holes does not
significantly complicate proof of progress for the system, and so we
can prove the following theorem reasonably straightforwardly [16]:

THEOREM 3.1. For any closed programp in the language of fig-
ure 5, eitherp → p′, wherep′ is also closed,p → e wheree is an
error indicator, orp is of the form (store ((x v) · · ·) v).

Proof is contained in the first author’s master’s thesis [16].
The strategy described in this section can be used whenever the

notion of a fully-evaluated subterm is different in different parts
of a program. For instance, it can be used to model embedded
sublanguages such as regular-expressions, format strings, and SQL
commands, which could help develop theoretical underpinnings
for work like Herman and Meunier’s static analysis of embedded
languages [14].

4. Quote and Eval
Scheme inherits the meta-programming facilitieseval and quote
from Lisp [22]. Thequote operator turns a program into data and
the eval procedure turns that data back into a program. When
quoted, a program is represented as a list of lists and symbols,
where lists represent parenthesized sequences and symbols repre-
sent identifiers. For example, (quote (lambda(x) x)) is a three el-

e ::= (e e· · ·) | v | x
E ::= [] | (v · · · E e· · ·)
v ::= (lambda (x · · ·) e)| (quotesy)

| p | null | n | prim | #t | #f

prim ::= eval| cons| car | cdr | eqv?
p ::= pointers
x ::= program variables

(members ofsyexceptlambda, quote, ccons)

s ::= (s · · ·) | n | sy
| (s · · · dot sy) | (s · · · dot n)

S ::= [] | (e · · · S s· · ·)
| (lambda (x · · ·) S)
| (cconsv S) | (cconsS s)

n ::= numbers
sf ::= (p (cons v v))
sy ::= names of symbols

(identifiers exceptdot)

(store (sf1 · · ·) E[(cons v1 v2)]) → (store (sf1 · · · (p (cons v1 v2))) E[p]) (ECONS)
(p fresh)

(store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[(car p)]) → (store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[va]) (ECAR)
(store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[(cdr p)]) → (store (sf1 · · · (p (cons va vd)) sf2 · · ·) E[vd]) (ECDR)
(store (sf1 · · ·) E[(eqv? p p)]) → (store (sf1 · · ·) E[#t]) (EEQV1)
(store (sf1 · · ·) E[(eqv? p1 p2)]) → (store (sf1 · · ·) E[#f]) (EEQV2)

(p1 6= p2)
(store (sf · · ·) E[((lambda (x · · ·) e) v · · ·)]) → (store (sf · · ·) E[e[x · · · / v · · ·]]) (EA PP)

(#x = #v)

(store (sf · · ·) S[(quotesexp1 sexp2 · · ·)] → (store (sf · · ·) S[(cconssexp1 (quotesexp2)]) (EQUOTESEQ)
(store (sf · · ·) S[(quote ())] → (store (sf · · ·) S[null]) (EQUOTENULL)
(store (sf · · ·) S[(quoten)] → (store (sf · · ·) S[n]) (EQUOTENUM)
(store (sf · · ·) S[(cconsv1 v2]) → (store (sf · · · (p (cons v1 v2))) S[p]) (EQUOTEPAIR)

(p fresh)

(store (sf · · ·) E[(eval v)]) → (store (sf · · ·) E[R J (sf · · ·), v K]) (EEVAL)

R : (p 7→ (cons v v)) × v→ s
R J S, null K = ()
R J S, n K = n
R J S, #t K = #t
R J S, #f K = #f
R J S, (quotesy) K = sy
R J S, p K = C J R J va K, R J vd K K

whereSbindsp to (cons va vd)

C : s× s→ s
C J sexp1, (sexp2 · · ·) K = (sexp1 sexp2 · · ·)
C J sexp1, n K = (sexp1 dot n)
C J sexp1, syK = (sexp1 dot sy)
C J sexp1, #t K = (sexp1 dot #t)
C J sexp1, #f K = (sexp1 dot #f)

Figure 6. Core Scheme, extended with eval and quote

ement list whose first and third elements are symbols and whose
second element is a list of one element:

(cons(quote lambda)
(cons(cons(quotex) null)

(cons(quotex) null)))

R5RS suggests (but does not require) that quoted data be al-
located only once, before the program runs. In systems with that
behavior (including all Scheme implementations we tested), this
program returns#t:

((lambda (f) (eqv?(f) (f)))
(lambda () (quote (x))))

since the thunk passed asf returns the same result each time it is
called.

Our core Scheme calculus for modelingevalandquote is shown
in figure 6. (Note that this model simplifies R5RS Scheme’seval
procedure in that it does not accept an environment argument.) To
ensure that a datum behind aquote is inserted into the store only
once, the rewriting system is structured in two tiers roughly corre-
sponding to “compile-time” and “run-time.” Initially, programs are
just viewed as uncompiled s-expressions (elements of thes non-
terminal; note that we write dotted pairs withdot rather than a
period to avoid meta-circular confusion in our PLT Redex imple-
mentation), which in particular include programs with quoted lists.
Reduction rules that apply to these uncompiled expressions do not
evaluate them, but instead compile them into program expressions
that do not contain quoted lists (elements of thee nonterminal).

Evaluation reductions only apply to a program after it has been
completely compiled.

Each program consists of a store and an expression. Program
expressions (e) can be applications, values, or identifiers. Evalua-
tion contexts (E) dictate that evaluation takes place in a left to right
order inside application expressions. The values (v) are procedures,
quoted symbols, pointers (to cons cells), null, numbers, primitive
operations, and booleans.

The first group of evaluation rules (from ECONS to EAPP)
correspond to the language’s runtime semantics, and show how the
list primitives and procedure application behave. ECONS models
the application ofcons to arguments by allocating a new pair
in the store; andcar and cdr select the first and second values
in a pair by rules ECAR and ECDR. EEQV1 and EEQV2 give
eqv?’s semantics; it compares pointers for literal syntactic equality
(and, for this language, operates only on pairs). As in the previous
systems we have presented, procedure application is modeled by
rule EAPP as substitution. Since each reduction takes place in an
evaluation(rather thancompilation) context, they will only apply
to programs that are completely compiled.

The second group of rules (from EQUOTESEQ to EQUOTEPAIR)
apply at compile-time and show how to compile a program by
rewriting quoted constants into locations in the store. If those rules
used theE context and quoted s-expressions were legal expressions,
quote would merely be a short-hand notation for building lists at
run-time and the above program would return#f, which would not
capture our intended semantics.

p ::= (store ((x v) · · ·) (dw (dws· · ·) e))
e ::= . . . | (push (x e e)) | (pop)
v ::= . . . | dynamic-wind| call/cc
dws ::= (x e e)

PC ::= (store ((x v) · · ·) DC)
DC ::= (dw ((dws· · ·) C))
C ::= (as in figure 1)

PC[(dynamic-wind(lambda () e1)
(lambda () e2)
(lambda () e3))]

→ PC[(begine1
(push (x1 e1 e3))
((lambda (x2)

(begin (pop) e3 x2))
e2))]

(DWWIND)

(x1, x2 fresh)
PC[(dw (dws· · ·) C[(pushx2 e1 e2)])] → PC[(dw (dws· · · (x2 e1 e2)) C[0])] (DWPUSH)
PC[(dw (dws1 · · · dwsn) C[(pop)])] → PC[(dw (dws1 · · ·) C[0])] (DWPOP)
PC[(dw (dws1 · · ·) C[(call/cc v1)])] → PC[(dw (dws1 · · ·)

C[(v1 (lambda (x)
(throw (dws1 · · ·) C[x])))])]

(DWCALLCC)

(x fresh)
PC[(dw (dws1 · · ·) C[(throw (dws2 · · ·) e1)])] → PC[(dw (dws2 · · ·)

C[(beginT J (dws2 · · ·), (dws1 · · ·) K
e1)]))

(DWTHROW)

T J ((x1 e1 e2) dws1 · · ·), ((x1 e3 e4) dws2 · · ·) K = T J (dws1 · · ·), (dws2 · · ·) K
T J ((x1 e1 e2) · · ·), ((x2 e3 e4) · · ·) K = (begine2 · · ·r e3 · · ·)

(x1 6= x2)

Figure 7. Additions to figure 1 to support call/cc and dynamic-wind

Instead, the second group of rewriting rules eliminatequote,
turning s-expressions into Scheme programs. Though we have pre-
sented them second, these rules will actually come first in reduction
sequences, making reduction sequences follow a two-phase pattern
where the EQUOTE rules apply in the first phase and the evaluation
rules apply in the second phase. Intuitively, programs in this first
phase are arbitrary s-expressions and values are Scheme programs,
whereas second-phase programs are Scheme expressions and val-
ues are Scheme values. This parallelism can be seen particularly
clearly in the definition of the evaluation contexts for application
expressions. InS, a rewrite may occur once all of the s-expressions
to the left have become Scheme programs. InE, a rewrite may oc-
cur once all of the expressions to the left have become values. So,
for the program above, the only rewriting rules that apply are those
that rewrite the thunk’s body. Once it contains only a pointer to a
store value, the outer application can proceed.

To modeleval, we use a technique similar to Muller’sreify [18].
TheR metafunction accepts a value and turns it back into a pro-
gram (theC function is used byR; it is just the syntactic analogue
of cons). OnceR completes, evaluation continues as usual. Of
course, reification may produce an s-expression containingquote.
In that case, the quote rules apply and put quoted date into the store
before evaluation continues.1

1 Most Scheme systems share quoted data even across calls to eval. For
example, our semantics produces#f for the following program, but most
Schemes produce#t.

((lambda (f)
(eqv?(f)

(eval(cons’quote(cons(f) ’())))))
(lambda () ’(x)))

We can adapt the definition ofR to handle this by special handling of
quoted forms during reification:

R J S, p1 K = v if Smapsp1 to (cons(quotequote) p2) and mapsp2

to (cons v’()).

which causes our semantics to produce#t for the above example, but this
technique does not scale to a full Scheme that includes macros.

As mentioned above, theevalwe present here and in section 6
is not as full-featured as theevalof the R5RS informal description
because it does not accept an environment argument. Modeling
an eval that took an environment argument would be somewhat
more involved but would essentially require only runningevaled
programs in an alternate store.

The technique used in this section applies generally to lan-
guages in which computation of a term proceeds in multiple phases
that must be considered together — it is not sufficient in our case to
write a preprocessor that moves quoted data in a program into the
store because that program could calleval at runtime. Scheme’s
macros are similar in this respect, so the technique shown here
could be used as a basis for modeling them. Staged and partial eval-
uation could also be modeled using this technique.

5. Call/cc and dynamic-wind
Scheme’sdynamic-windfeature for annotating the dynamic extent
of a procedure call with entry and exit code that run whenever the
program flows into or out of that extent, either through normal pro-
gram evaluation or through the invocation of continuation objects
made bycall/cc (the latter situation being the more interesting one,
of course). Unfortunately, thoughdynamic-windhas a large impact
on the meaning of continuation objectscall/ccproduces, the R5RS
formal semantics does not include any mention of it and models
call/ccwithout respect to it. Here we will show how it works in the
context of the core Scheme with mutation presented in section 2.
Our strategy for modeling these new features is based heavily on
earlier treatments [4, 10, 12].

The language in figure 7 consists of the core Scheme with
mutation as shown in figure 1 augmented withcall/ccanddynamic-
wind. The basic strategy we take is to maintain a stack of all
dynamic-windcalls entered but not yet exited, which we call the
dynamic-wind stack. When we capture a continuation, we record
the current dynamic-wind stack. When we throw to a continuation
object, we use the difference between the current dynamic-wind
stack and that recorded dynamic-wind stack to determine which
preandpostthunks need to be called.

p ::= (store ((ptr sv) · · ·) (dw (dws· · ·) e))
e ::= (e e· · ·) | (if e e e) | (if e e) | (set!x e) | (begine e· · ·)

| (throw x dws· · · EC[e]) | (push (x e e) e) | (pop e)
| lam | mulam | v | x

lam ::= (lambda (x · · ·) e e· · ·)
mulam ::= (lambda (x · · · dot x) e e· · ·)
v ::= fun | nonfun
fun ::= cp | mp | #%cons | #%null? | #%pair?

| #%car | #%cdr | #%set−car! | #%set−cdr! | #%list
| #%+ | #%− | #%/ | #%∗ | #%call/cc
| #%dynamic−wind | #%values| #%call−with−values
| #%eqv?| #%apply | #%eval

nonfun ::= pp | number | #%null | #t | #f
| (quotesymbol) | unspecified

PC ::= (store ((ptr sv) · · ·) DC)
DC ::= (dw (dws· · ·) EC◦)
EC ::= [] | (inert · · · EC◦◦ inert · · ·)

| (if EC◦ e e) | (if EC◦ e) | (set!x EC◦)
| (beginECe e· · ·)
| (#%call−with−values◦ (cwv-markEC∗) v◦)

EC◦ ::= []◦ | EC
EC∗ ::= []∗ | EC
inert ::= e | v◦

dws ::= (x cp cp)
sv ::= v | (#%cons v v) | lam | mulam
s ::= (s · · ·) | (s · · · dot nss) | nss
nss ::= number | #t | #f | [variable exceptdot]
SC ::= [] | (e · · · SCs · · ·)

| (if SCs s) | (if eSCs) | (if e eSC)
| (if SCs) | (if eSC)
| (set!x SC)
| (beginSCs · · ·) | (begine e· · · SCs · · ·)
| (throw x dws· · · SC) | (push (x SCs) s)
| (push (x eSC)s) | (push (x e e) SC) | (pop SC)
| (lambda (x · · ·) SCs · · ·)
| (lambda (x · · ·) e e· · · SCs · · ·)
| (lambda (x · · · dot x) SCs · · ·)
| (lambda (x · · · dot x) e e· · · SCs · · ·)
| (cconsSCs) | (cconsv SC)

var ::= [variable exceptdot and keywords]
x ::= [variable names]
pp ::= [pair pointers]
cp ::= [closure pointers]
mp ::= [µ closure pointers]
ptr ::= x | pp | cp | mp

Figure 8. Grammar for full Scheme semantics

That strategy is formally encoded in three parts. First, we add
a dynamic-wind stack to each program context. It contains one
dynamic context frame (dws) for each annotated dynamic extent
in which the current evaluation is taking place. A dynamic context
frame is a triple consisting of a unique identifier and thepre and
post thunks of the correspondingdynamic-windcall. The unique
identifier allows us to disambiguate multiple dynamic evaluations
of the same syntactic appearance of adynamic-windexpression.
Second, we add the primitive procedure valuedynamic-windto
the set of values, which expects each of its three arguments to
evaluate to a thunk. Then using the DWWIND rule it invokes its
pre thunk, pushes a dynamic context frame onto the stack with a
fresh identifier and its ownpreandpostthunks, evaluates its second
thunk, pops its dynamic context frame off the stack, evaluates its
postthunk, and finally returns the value its second thunk evaluated
to. To allow the program to manipulate the stack, we introduce the
pushandpop forms and their associated reduction rules DWPUSH
and DWPOP. The former pushes a new dynamic context frame onto
the end of the stack, and the latter pops the last context frame off
the stack (and then evaluates to the trivial value0, which is never
used). These two forms are intended to be used only bydynamic-
wind, never by the programmer directly.

The third piece iscall/cc. When call/cc is called, the DW-
CALLCC rule builds a continuation object that consists of a pro-
cedure of one argument, a fresh identifier we will callx. That pro-
cedure’s body is athrow form that consists of the current dynamic
stack and the expression formed by pluggingx into the hole of the
evaluation context where the application ofcall/cc itself was found.
A throw form is itself evaluated using the DWTHROW rule by dis-
carding the evaluation context in which it was found, replacing the
dynamic stack with its own stored dynamic stack, and replacing the
entire program body with a specially-constructedbeginexpression
built by theT metafunction (where T stands for “trim,” because
it trims away the common context frames leaving only the suffixes
whose pre- or post-thunks need to be executed). That function com-
pares its first argument, the dynamic-wind stack of the dynamic
context being exited, with its second argument, the dynamic-wind
stack of the context being entered. The first rule in its definition

simply discards any common prefix the two stacks may have, which
correspond to dynamic extents that were never left or entered dur-
ing the transitions from the time the continuation object was created
and the time it was invoked. Then, once the two stacks have been
trimmed to the point where they have distinct heads, the metafunc-
tion produces abegin expression consisting of applications of all
thepostthunks fromT ’s first argument, invoked in order, followed
by all thepre thunks fromT ’s second argument, invoked in reverse
order (which we indicate with the special notation· · ·r, indicating
a sequence being expanded out backwards).

6. Operational semantics for R5RS Scheme
This section combines the techniques from sections 2 through 5
with other known techniques for modeling programming languages
to build a model of R5RS Scheme that includes all the features from
those sections along withif and booleans, mathematical operations
(but not the numeric tower), list constructors, selectors, mutators
and predicates,µ-lambda procedures2, apply, and object identity-
based equivalence. Although this section appears large and com-
plex at first, it is mostly just a simple combination of the previous
four sections.

This specification is executable, and the figures presented in
this section were automatically generated from the source code
that implements the specification. Since an executable specification
was an explicit goal of our work, we have made some modeling
choices that may not be obvious at first. For example, there are
many expressions whose return values are explicitly unspecified in
the R5RS Scheme document, such as the result of aset!expression.
A non-executable specification might model the evaluation of those
expressions using the rule schema

∀ v. PC[unspecified] → PC[v]

2 Procedures declared with an improper list of formal arguments described
in section 4.1.4 of the Report that accept an arbitrary number of arguments
beyond a certain minimum. The name dates back at least to Indiana Univer-
sity’s Scheme 84 system whereMULAMBDA was a keyword used to declare
procedures that accepted any number of arguments and collected them in a
list [11].

meaning that an unspecified term reduces to any value. Instead, we
model unspecified results with a special valueunspecifiedthat has
no associated reduction rules and will cause programs that inspect it
to get stuck. We also chose to ignore out-of-memory errors. These
would be easy to add at the expense of a additional clutter when
visualizing traces: reductions from each allocation site to the out-
of-memory error would suffice.

6.1 Grammar

The grammar for R5RS Scheme programs is given in figure 8. In
that figure, a program (given by thep nonterminal) consists of a
store, a dynamic-wind stack, and an expression. Thee nontermi-
nal gives expressions, which in addition to standard Scheme core
forms can bethrow , push andpop, as in section 5. Values (v) are
either procedures or non-procedure values, but notice that syntactic
lambda terms are not values themselves. Instead, procedure val-
ues (fun) can be references to procedures in the store (cp andmp)
or the built-in procedures, while thelambda form, as we will see,
places new procedure values into the store when evaluated. Non-
procedure values (nonfun) include pair pointers, numbers,null,
booleans, symbols, and the unspecified value.

As in section 4, we write dotted pairs (as in the parameter list
of aµ-lambda) withdot rather than a period to avoid meta-circular
confusion in our PLT Redex implementation.

Section 6 of the R5RS Scheme specification indicates that prim-
itive procedures are bound to names in the initial environment, but
that those names can be mutated during the course of a program.
To model that, we use special names with#% prefixes to indicate
the actual built-in procedures, and we bind those values to their
#%-less names in the initial store:

(store ((list #%list) (cons #%cons) (car #%car) (cdr #%cdr)
(pair? #%pair?) (null #%null) (null? #%null?)
(set-car! #%set−car!) (set-cdr! #%set−cdr!)
(+ #%+) (− #%−) (/ #%/) (∗ #%∗)
(call/cc #%call/cc) (dynamic-wind #%dynamic−wind)
(values #%values) (call-with-values #%call−with−values)
(eqv? #%eqv?) (apply #%apply) (eval #%eval)) · · ·)

There are three different contexts we will make use of: program
evaluation contexts, dynamic-wind contexts, and expression con-
texts. Each program evaluation context (PC) contains a store, and
a dynamic-wind context. Each dynamic-wind context (DC) con-
tains a dynamic-wind stack and an expression context. Expression
contexts (EC) are the contexts in which program evaluation takes
place; they allow evaluation in marked sub-expressions of an ap-
plication (as in section 2), the test positions ofif expressions, in
set!expressions and in the first position in abegin (as long as there
are at least two expressions in thebegin). The evaluation context
for #%call−with−valuesis explained in section 6.7. The EC◦ and
EC∗ evaluation contexts andinert work like C◦ andC∗ and inert
from section 3.

The dws non-terminal corresponds to one frame of dynamic-
wind context information and its use is explained in section 5. The
svnon-terminal generates values that appear in the store.

S-expressions (s andnss) and s-expression contexts (SC) cor-
respond to s-expressions and s-expression contexts from section 4.
There are more possible s-expression contexts in the full language
because there are more possible syntactic forms.

Finally, thex nonterminal represents both program variables and
binding locations, and thepp, cp, andmp nonterminals represent
pointers to pairs, fixed-arity procedures, and variable-arity proce-
dures, respectively. Theptr non-terminal is a short-hand for terms
that index into the store. One subtle point here is that thev pro-
duction producespp, cp, andmpbut notx. Those variables are not
included because free variables are not values and bound variables

have to be dereferenced before use, so neither qualifies as an irre-
ducible value.

6.2 Relations

In the remaining figures, we will make heavy use of various reduc-
tion relation symbols. The basic reduction relation we will use is
→, which indicates that the program term on the left reduces in
one step to the term on the right. We also use two other relations to
aid in the system’s readability, defined in terms of the→ relation:

• (e1 · · · en) 7→◦ e′ iff PC[(e◦1 · · · e◦n)] → PC[e′]
The application on the left reduces to the term on the right in
a program context, assuming that all of the expressions in the
application are marked.

• e→e error: s iff PC[e] → error: s
The term on the left signals an error, halting the program imme-
diately.

6.3 Basic syntactic forms

Figure 9 shows rules for the basic syntactic forms. For theif form,
if the test position evaluates to anything other than#f, the term
rewrites to its “then” subexpression. If the test position evaluates
to #f, it rewrites to its “else” subexpression, if present,unspecified
otherwise. For thebegin form, the evaluation contexts defined in
figure 8 ensure that the first term of abegin expression containing
at least two expressions is evaluated fully; then these rules cause
begin expression that consists of a fully-evaluated value followed
by one or more expressions to rewrite to a newbegin expression
with the initial value dropped. These rules also specify that abegin
form with only a single expression reduces immediately to that
expression, even if that expression is not yet a value.

Because our model does not take into account R5RS Scheme’s
numeric tower, we model its numeric operations in terms of true
mathematical functions. We assume that we can identify the true
number represented by each numeric term and model each numeric
procedure by performing the appropriate mathematical operation
on those true numbers:+ is modeled by summation on the repre-
sented numbers,∗ is modeled by multiplication, and so on.

6.4 Cons and cons-cell mutation

The rules for constructing newconscells are given in figure 10.
Since all cons cells are mutable and therefore can be distinguished
even when they hold identical values, we cannot allow (#%cons v v)
to be a value itself. Instead, the#%consrule introduces a new pair
into the store and reduces to a pointer to that new pair. The (#%list
v1 · · ·) rule rewrites to ((lambda x x) v1 · · ·), taking advantage of
theµ-lambda application rules described in the next subsection.

Figure 11 gives rules forcar andcdr. Application of either pro-
cedure to a pair pointer rewrites to the contents of the appropriate
field in the pair being pointed to. If either selector is applied to a
non-pair value, the term rewrites to an error message.

The predicates in figure 12 are similarly simple. The#%pair?
procedure reduces to#t if its argument is identifiable as a pair
pointer and#f otherwise. The#%null? procedure reduces to#t if
and only if it is supplied with the built-in null value.

Figure 13 gives rules forset-car! and set-cdr!, for cons-cell
mutation. The#%set−car! and#%set−cdr! rules are the same as
thecar andcdr rules, respectively, except that instead of reducing
to the current value of appropriate component of the pair being
pointed to, they replace that component with the given replacement
then rewrite to an unspecified value.

6.5 Procedures and assignable variables

The rules in figure 14 handle variable lookup and variable assign-
ment: a binding pointer is replaced with its value in the store when

PC[(if v1 e1 e2)] → PC[e1]
(v1 6= #f)

PC[(if #f e1 e2)] → PC[e2]

PC[(if v1 e1)] → PC[e1]
(v1 6= #f)

PC[(if #f e1)] → PC[unspecified]

PC[(beginv e1 e2 · · ·)] → PC[(begine1 e2 · · ·)]
PC[(begine1)] → PC[e1]

(+ dne · · ·) 7→◦ dΣ n · · ·e
(− dn1

e dn2
e · · ·) 7→◦ dn1 − (Σ n2 · · ·)e

(− dne) 7→◦ d-ne

(∗ dne · · ·) 7→◦ dΠ n · · ·e
(/ dn1

e dn2
e · · ·) 7→◦ dn1 / (Π n2 · · ·)e

(/ dn1
e) 7→◦ d1 / n1e

Figure 9. Basic syntactic forms

(store ((ptr1 sv1) · · ·)
DC[(#%cons◦ vcar

◦ vcdr
◦)])

→ (store ((ptr1 sv1) · · · (pi (#%cons vcar vcdr)))
DC[pi])

(pi fresh)

PC[(#%list◦ v1◦ · · ·)] → PC[((lambda (dot l) l)◦ v1◦ · · ·)]

Figure 10. List constructors

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%car◦ ppi
◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[vcar])

(#%car◦ vi
◦) →e error: can’t take car of non-pair

(vi 6∈ pp)

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%cdr◦ ppi
◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[vcdr])

(#%cdr◦ vi
◦) →e error: can’t take cdr of non-pair

(vi 6∈ pp)

(#%null? #%null) 7→◦ #t

(#%null? vi) 7→◦ #f
(vi 6= #%null)

(#%pair? pp) 7→◦ #t

(#%pair? vi) 7→◦ #f
(vi 6∈ pp)

Figure 11. List accessors Figure 12. List predicates

dereferenced, and mutation of a binding pointer is represented by
replacing the value pointed to by the update.lambda is the only
binding form in this semantics, so the rules for procedure calls are
the only ones that introduce new bindings. Procedure calls are mod-
eled by two features: closure introduction and procedure applica-
tion.

The rules in figure 15 govern the introduction of closure val-
ues into the store. Like cons cells, procedures are not values, but
pointers to them are; procedures are modeled this way so that we
can modeleqv?more accurately. The allocation rule for fixed-arity
procedures is straightforward. The allocation forµ-lambda proce-
dures always puts two procedures into the store: a stubµ-lambda
procedure whose body contains a call to an ordinary procedure, and
an ordinary procedure that contains the originalµ-lambda’s body
expressions.

The reason for arranging the system this way is so that when a
µ-lambda procedure is applied, we can rewrite it into a correspond-
ing call to the fixed-arity code pointer and thereby use the same re-
duction for both kinds of applications. The rules in figure 16 show
this and the rest of the rules for application in detail. The first rule
shows how marks are placed in applications, which is just as in
section 2. Application of a procedure pointer to arguments is mod-

eled by creating one new binding pointer in the store per formal
argument where the value being pointed to by each pointer is the
argument supplied in the appropriate position, and rewriting to the
procedure’s body with these new bound-variable pointers substi-
tuted for occurrences of the formal arguments.

Application of aµ-lambda allocates a list for its extra argu-
ments, applies the initial portion of the arguments as usual, and
applies the extra arguments into the last argument of the procedure
that actually contains the body expressions. The functionL used
here is a metafunction that builds the syntax of acons-list from its
arguments:

L J x y · · · K = (#%cons xL J y · · · K)
L J K = #%null

The last rules specify the behavior of Scheme’sapplyprocedure
which accepts a procedure and an arbitrary number of arguments,
the last of which must be a list. It calls the procedure with the
arguments and the contents of the list as subsequent arguments. To
model it, the first two#%applyrules flatten out the argument list
and, when the list is exhausted, reduce to a normal application.

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%set−car!◦ ppi
◦ vnew

◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vnew vcdr))
(ptri+1 svi+1) · · ·)

DC[unspecified])

(#%set−car!◦ v1◦ v◦) →e error: can’t set-car! on a non-pair
(v1 6∈ pp)

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%set−cdr!◦ ppi
◦ vnew

◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vnew))
(ptri+1 svi+1) · · ·)

DC[unspecified])

(#%set−cdr!◦ v1◦ v◦) →e error: can’t set-cdr! on a non-pair
(v1 6∈ pp)

(store ((ptr1 sv1) · · ·
(xi svi)
(ptri+1 svi+1) · · ·)

DC[xi])

→ (store ((ptr1 sv1) · · ·
(xi svi)
(ptri+1 svi+1) · · ·)

DC[svi])

(store ((ptr1 sv1) · · ·
(xi svi)
(ptri+1 svi+1) · · ·)

DC[(set!xi vnew)])

→ (store ((ptr1 sv1) · · ·
(xi vnew)
(ptri+1 svi+1) · · ·)

DC[unspecified])

Figure 13. Cons cell mutation Figure 14. Variable mutation and lookup

(store ((ptr1 sv1) · · ·)
DC[lami])

→ (store ((ptr1 sv1) · · · (cpi lami))
DC[cpi])

(cpi fresh)

(store ((ptr1 sv1) · · ·)
DC[(lambda (x1 · · · dot xr) e1 e2 · · ·)])

→ (store ((ptr1 sv1) · · ·
(mpi (lambda (x1 · · · dot xr) (cpi x1 · · · xr)))
(cpi (lambda (x1 · · · xr) e1 e2 · · ·)))

(mpi , cpi fresh)

Figure 15. Procedure introduction

PC[(inert1 · · · ei inerti+1 · · ·)] → PC[(inert1 · · · ei
◦ inerti+1 · · ·)]

(store ((ptr1 sv1) · · ·
(cpi (lambda (x1 · · ·) ebody1 ebody2 · · ·))
(ptri+1 svi+1) · · ·)

DC[(cpi◦ varg1
◦ · · ·)])

→ (store ((ptr1 sv1) · · ·
(cpi (lambda (x1 · · ·) ebody1 ebody2 · · ·))
(ptri+1 svi+1) · · ·
(xarg2 varg1) · · ·)

DC[(beginebody1 ebody2 · · ·)[x1 · · · /xarg2 · · ·])])
(#xarg = #varg , xarg2 · · · fresh)

(store ((ptr sv) · · ·
(cpi (lambda (x1 · · ·) e e· · ·))
(ptr sv) · · ·)

DC[(cpi◦ varg1
◦ · · ·)])

→ error: arity mismatch
(#xarg 6= #varg)

(store ((ptr1 sv1) · · ·
(mpi (lambda (x1 · · · dot y) (cpt x1 · · · y)))
(ptri+1 svi+1) · · ·)

DC[(mpi vn1
◦ · · · vR

◦ · · ·)])

→ (store ((ptr1 sv1) · · ·
(mpi (lambda (x1 · · · dot y) (cpt x1 · · · y)))
(ptri+1 svi+1) · · ·)

DC[(cpt vn1
◦ · · · L J vR

◦ · · · K)])
(#x= #vn)

(store ((ptr sv) · · ·
(mpi (lambda (x1 · · · dot x) (cp x· · ·)))
(ptr sv) · · ·)

DC[(mpi◦ varg1
◦ · · ·)])

→ error: too few arguments
(#xarg < #varg)

(nonfun◦ v◦ · · ·) →e error: can’t apply non-function

(store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%apply◦ vf
◦ varg1

◦ · · · ppi
◦)])

→ (store ((ptr1 sv1) · · ·
(ppi (#%cons vcar vcdr))
(ptri+1 svi+1) · · ·)

DC[(#%apply◦ vf
◦ varg1

◦ · · · vcar
◦ vcdr

◦)])

(#%apply vf varg1 · · · #%null) 7→◦ (vf varg1 · · ·)

(#%apply◦ vf
◦ varg1

◦ · · · vlast
◦) →e error: apply must take a list as its last argument

(vlast 6∈ pp∪ {#%null})

Figure 16. Procedure application

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(#%call/cc◦ v1◦)]))
→ (store ((ptrs svs) · · ·)

(dw (dws1 · · ·)
EC1[(v1 (lambda (dot args)

(throw xk dws1 · · ·
EC1[(beginxk (#%apply #%values args))])))]))

(x, xk fresh)

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(#%dynamic−wind◦ cp1◦ cp2◦ cp3◦)]))
→ (store ((ptrs svs) · · ·)

(dw (dws1 · · ·)
EC1[(begin (cp1)

(push (x1 cp1 cp3)
((lambda (x2) (pop (begin (cp3) x2)))

(cp2))))]))
(x1, x2 fresh)

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(pushdws2 enext)]))
→ (store ((ptrs svs) · · ·)

(dw (dws2 dws1 · · ·)
EC1[enext]))

(store ((ptrs svs) · · ·)
(dw (dws1 dws2 · · ·)

EC1[(pop enext)]))
→ (store ((ptrs svs) · · ·)

(dw (dws2 · · ·)
EC1[enext]))

(store ((ptrs svs) · · ·)
(dw (dws1 · · ·)

EC1[(throw xk dws2 · · · EC2[e2])]))
→ (store ((ptrs svs) · · ·)

(dw (dws2 · · ·)
(beginT J(dws2 · · ·), (dws1 · · ·) K

EC2[e2]))

Figure 17. Call/cc and dynamic-wind Figure 18. Call/cc and dynamic-wind support

PC[v1]∗ → PC[(#%values◦ v1◦)]

PC[(#%values◦ v1◦)]◦ → PC[v1]

PC[(#%values◦ v1◦ · · ·)]◦ → error: wrong number of values
(#v1 6= 1)

(#%call−with−values vvals vfun) 7→◦ (#%call−with−values◦

(cwv-mark(vvals))
vfun

◦)

PC[(#%call−with−values◦

(cwv-mark(#%values◦ varg
◦ · · ·))

vfun
◦)]

→ PC[(vfun
◦ varg

◦ · · ·)]

(#%call−with−values◦ vi
◦ · · ·) →e error: arity mismatch

(#vi 6= 2)

(#%eqv? ppi ppi) 7→◦ #t

(#%eqv? cpi cpi) 7→◦ #t

(#%eqv? number1 number1) 7→◦ #t

(#%eqv? v1 v1) 7→◦ #t

PC[(#%eqv?◦ v1◦ v2◦)] → PC[#f]
(v1 6= v2)

(#%eqv?◦ v1◦ · · ·) →e error: arity mismatch
(#v1 6= 2)

Figure 19. Multiple values and call-with-values Figure 20. Eqv and equivalence

6.6 Call/cc

Our technique for modelingcall/cc anddynamic-wind, shown in
figures 17 and 18, is essentially the technique from section 5.
Apart from the change of using procedure pointers rather than the
literal source text of procedures as required to model equality (see
section 6.8), the only substantial change is that the continuation
procedures in this model accept any number of arguments. The
trimming metafunctionT is the same function defined in section 5.

6.7 Multiple values and call-with-values

Multiple values in the full language are nearly identical to multi-
ple values in section 3, and in particular the context arrangement
and promotion and demotion rules are the same. Furthermore, even
though the present system is much larger than the system presented
in section 3, the rules for multiple values are still completely or-
thogonal to the rules that implement the other features.

There is one twist, though, since rather than theapply-values
primitive given in section 3, R5RS Scheme providescall-with-
values, so we model it directly. To do so, we have to use the mech-
anisms described in section 3, along with a new context containing
cwv-mark. A term of the form (#%call−with−values thunk f) re-
duces to (#%call−with−values(cwv-mark(thunk)) f); that is, it
places a special mark around the application of the thunk to no
arguments. At that point the evaluation contexts defined in fig-
ure 8 will apply and reduce the applied thunk in a multi-value con-
text. When that reduction sequence yields a result (which will be a
multiple-values expression), the entirecall-with-valuesexpression
reduces to the application of the second procedure to those pro-
duced values.

6.8 Eqv? and equivalence

Figure 20 shows the rules foreqv?. Since all mutable values (and
procedures) are allocated in the store,eqv? is a simple matter

(store ((ptr1 sv1) · · ·)
DC[(#%eval◦ v1◦)])

→ (store ((ptr1 sv1) · · ·)
DC[R J((ptr1 sv1) · · ·), v1K])

(store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(quote (s1 s2 · · ·))]]))

→ (store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(ccons(quotes1) (quote (s2 · · ·)))]]))
(store ((ptr1 sv1) · · ·)

(dw (dws1 · · ·)
EC1[SC1[(quote ())]]))

→ (store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[#%null]]))

(store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(quotenumber1)]]))

→ (store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[number1]]))

(store ((ptr1 sv1) · · ·)
(dw (dws1 · · ·)

EC1[SC1[(cconsv1 v2)]]))

→ (store ((ptr1 sv1) · · · (pp1 (#%cons v1 v2)))
(dw (dws1 · · ·)

EC1[SC1[pp1]]))
(pp1 fresh)

Figure 21. Quote and eval

of checking that the two values supplied have identical syntactic
structure (which we indicate here, as PLT Redex does, by repeating
the same subscript for both arguments to theeqv?procedure to
indicate that the two subterms must be identical).

6.9 Quote and eval

The rules for#%evalandquote in figure 21 are essentially the same
as the rules forevalandquote in section 4. The main difference is
that the rewriting rules for replacing quote are nested an SC context
inside an EC context. This only matters when using#%eval. In
particular, if the call to#%eval is in some marked context, SC
will not match properly, due to the marks. In the smaller calculus,
we could get away with just using SC, since it also encompassed
evaluation contexts, but here we must be explicit. The reify function
(R) used here is as defined in section 4.

7. Related Work
Reduction semantics has been used to model large programming
languages many times and in many different ways. Felleisen’s dis-
sertation [3], which introduced context-sensitive reduction seman-
tics, gives a formulation of a substantially smaller language than
the one we present here that he calls “idealized Scheme,” and
Felleisen extends that model into theλ-v-CS calculus in later
work [4]. Since then, reduction semantics have been used to model
the cores of many languages including Emacs Lisp [19], MultiL-
isp [7], Java [9], ML [13, 24] and Concurrent ML [21] among many
others. Harper and Stone present a formal semantics for Standard
ML that includes a dynamic semantics encoded using a variation
on Wright and Felleisen’s notation; it is the largest example of a
programming language semantics given in a variant of reduction
semantics we have found in the literature (with the possible excep-
tion of our own semantics for R5RS Scheme).

There has also been extensive work on the semantics of Scheme.
Clinger presented an operational semantics for a core Scheme in
the development of the notion of space efficiency [2]. Gasbichler,
Knauel, Sperber, and Kelsey have presented operational and de-
notational semantics fordynamic-wind[12]. Ramsdell presented a
structural operational semantics for Scheme aimed at fixing the un-
specified order of argument evaluation problem we discuss in sub-
section 2 [20]. His model is less complete than ours (for instance,
it does not include multiple return values) and is tied much more
closely to the R5RS Scheme formal semantics. Van Straaten has
written an interpreter based on the R5RS Scheme denotational se-

mantics [23], but we know of no formal correspondence between
his program and the denotational semantics itself.

8. Conclusion
We have presented a semantics for R5RS Scheme using context-
sensitive reduction semantics developed using PLT Redex. To the
best of our knowledge, it formalizes more of the language than
any other semantics for the language. In addition it shows how
to model R5RS Scheme-style multiple return values in an small-
step operational semantics setting for the first time, and gives a
new model for unspecified sequential evaluation orders that uses
nondeterministic choice. In the process, we have introduced several
new techniques for modeling programming language features with
term rewriting.

PLT Redex and the source code for all the models presented in
this paper, including our executable model of R5RS Scheme, are
available for download at

http://www.cs.uchicago.edu/˜jacobm/r5rs/

Acknowledgments
Thanks to Kent Dybvig and Matthew Flatt for helpful discussions
of the technical details presented here and the inner workings of
Chez Scheme [1] and MzScheme [8]. Thanks also to John Reppy
and Dave MacQueen and the anonymous reviewers for their helpful
suggestions.

References
[1] Cadence Research Systems.ChezScheme Reference Manual, 1994.
[2] William D Clinger. Proper tail recursion and space efficiency.

In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 174–185, June 1998.

[3] Matthias Felleisen.The Calculi of Lambda-v-CS Conversion: A
Syntactic Theory of Control and State In Imperative Higher-Order
Programming Languages. PhD thesis, Indiana University, 1987.

[4] Matthias Felleisen. Lambda-v-CS: and extended lambda-calculus for
Scheme. InProceedings of the Conference on LISP and Functional
Programming, 1988.

[5] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi. Available online: http://www.cs.utah.edu/plt/

publications/pllc.pdf, 2003.
[6] Matthias Felleisen and Robert Hieb. The revised report on the

syntactic theories of sequential control and state.Theoretical

Computer Science, 102:235–271, 1992. Original version in: Technical
Report 89-100, Rice University, June 1989.

[7] Cormac Flanagan and Matthias Felleisen. The semantics of future
and an application.Journal of Functional Programming, 9:1–31,
1999.

[8] Matthew Flatt. PLT MzScheme: Language manual. Techni-
cal Report TR97-280, Rice University, 1997. http://www.plt-
scheme.org/software/mzscheme/.

[9] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A
programmer’s reduction semantics for classes and mixins.Formal
Syntax and Semantics of Java, 1523:241–269, 1999. Preliminary
version appeared in proceedings ofPrinciples of Programming
Languages, 1998. Revised version is Rice University technical report
TR 97-293, June 1999.

[10] Daniel P. Friedman and Christopher T. Haynes. Constraining control.
In Proceedings of the ACM Conference Principles of Programming
Languages, 1985.

[11] Daniel P. Friedman, Christopher T. Haynes, Eugene Kohlbecker, and
Mitchell Wand. Scheme 84 interim reference manual. Technical
Report 153, Indiana University Computer Science, 1985.

[12] Martin Gasbichler, Eric Knauel, Michael Sperber, and Richard A.
Kelsey. How to add threads to a sequential language without getting
tangled up. InProceedings of the 2003 Scheme Workshop, 2003.

[13] Robert Harper and Mark Lillibridge. Explicit polymorphism and
CPS conversion. InProceedings of the ACM Conference Principles
of Programming Languages, 1993.

[14] David Herman and Philippe Meunier. Improving the static analysis of
embedded languages via partial evaluation. InProceedings of ACM
SIGPLAN International Conference on Functional Programming,
pages 16–27, New York, NY, USA, 2004. ACM Press.

[15] Rickard Kelsey, William Clinger, and Jonathan Rees (Editors).
Revised5 report of the algorithmic language Scheme.ACM SIGPLAN
Notices, 33(9):26–76, 1998.

[16] Jacob Matthews. Operational semantics for Scheme via term
rewriting. Technical Report TR-2005-02, University of Chicago,
2005.

[17] Jacob Matthews, Robert Bruce Finder, Matthew Flatt, and Matthias
Felleisen. A visual environment for developing context-sensitive term
rewriting systems. InProceedings of the International Conference on
Rewriting Techniques and Applications (RTA), 2004.

[18] Robert Muller. M-LISP: A representation-independent dialect of
LISP with reduction semantics.ACM Transactions on Programming
Languages and Systems, 14(4), 1992.

[19] Matthias Neubauer and Michael Sperber. Down with Emacs
Lisp: Dynamic scope analysis. InProceedings of ACM SIGPLAN
International Conference on Functional Programming, 2001.

[20] John D. Ramsdell. An operational semantics for Scheme.Lisp
Pointers, volume 2, April–June 1992.

[21] John Reppy.Concurrent Programming in ML. Cambridge University
Press, 1999.

[22] Gerald Jay Sussman and Jr Guy Lewis Steele. Scheme: An interpreter
for extended lambda calculus. Technical Report AI Lab Memo AIM-
349, MIT AI Lab, 1975.

[23] Anton van Straaten. An executable denotational semantics for
Scheme. http://www.appsolutions.com/SchemeDS/.

[24] Andrew Wright and Matthias Felleisen. A syntactic approach to type
soundness.Information and Computation, pages 38–94, 1994. First
appeared as Technical Report TR160, Rice University, 1991.

