
Randomized Testing in PLT Redex

Casey Klein
University of Chicago

clklein@cs.uchicago.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Abstract
This paper presents new support for randomized testing in PLT
Redex, a domain-specific language for formalizing operational se-
mantics. In keeping with the overall spirit of Redex, the testing
support is as lightweight as possible—Redex programmers simply
write down predicates that correspond to facts about their calcu-
lus and the tool randomly generates program expressions in an at-
tempt to falsify the predicates. Redex’s automatic test case genera-
tion begins with simple expressions, but as time passes, it broadens
its search to include increasingly complex expressions. To improve
test coverage, test generation exploits the structure of the model’s
metafunction and reduction relation definitions.

The paper also reports on a case-study applying Redex’s testing
support to the latest revision of the Scheme standard. Despite a
community review period, as well as a comprehensive, manually-
constructed test suite, Redex’s random test case generation was able
to identify several bugs in the semantics.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—assertions, invariants, mechanical verification;
D.2.4 [Software Engineering]: Software / Program Verification—
assertion checkers; D.3.1 [Programming Languages]: Formal
Definitions and Theory

General Terms Languages, Design

Keywords Randomized test case generation, lightweight formal
models, operational semantics

1. Introduction
Much like software engineers have to cope with maintaining a pro-
gram over time with changing requirements, semantics engineers
have to maintain formal systems as they evolve over time. In order
to help maintain such formal systems, a number of tools that focus
on providing support for either proving or checking proofs of such
systems have been built (Hol [13], Isabelle [15], Twelf [16], and
Coq [22] being some of the most prominent).

In this same spirit, we have built PLT Redex [8, 12]. Unlike
other tools, however, Redex’s goal is to be as lightweight as possi-
ble. In particular, our goal is that Redex programmers should write
down little more than they would write in a formal model of their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

system in a paper and to still provide them with a suite of tools
for working with their semantics. Specifically, Redex programmers
write down the language, reduction rules, and any relevant meta-
functions for their calculi, and Redex provides a stepper, hand-
written unit test suite support, automatic typesetting support, and
a number of other tools.

To date, Redex has been used with dozens of small, paper-size
models and a few large models, the most notable of which is the
formal semantics in the current standard of Scheme [21]. Redex is
also the subject of a book on operational semantics [7].

Inspired by QuickCheck [5], we recently added a random test
case generator to Redex and this paper reports on our experience
with it. The test case generator has found bugs in every model
we have tested with it, even the most well-tested and widely used
models (as discussed in section 4).

The rest of the paper is organized as follows. Section 2 intro-
duces Redex by presenting the formalization of a toy programming
language. Section 3 demonstrates the application of Redex’s ran-
domized testing facilities. Section 4 presents our experience apply-
ing randomized testing to a formal model of R6RS Scheme. Sec-
tion 5 describes the general process and specific tricks that Redex
uses to generate random terms. Finally, section 6 discusses related
work, and section 7 concludes.

2. Redex by Example
Redex is a domain-specific language, embedded in PLT Scheme. It
inherits the syntactic and lexical structure from PLT Scheme and al-
lows Redex programmers to embed full-fledged Scheme code into
a model, where appropriate. It also inherits DrScheme, the program
development environment, as well as a large standard library. This
section introduces Redex and context-sensitive reduction semantics
through a series of examples, and makes only minimal assump-
tions about the reader’s knowledge of operational semantics. In an
attempt to give a feel for how programming in Redex works, this
section is peppered with code fragments; each of these expressions
runs exactly as given (assuming that earlier definitions have been
evaluated) and the results of evaluation are also as shown (although
we are using a printer that uses a notation that matches the input
notation for values, instead of the standard Scheme printer).

Our goal with this section is to turn the formal model specified
in figure 1 into a running Redex program; in section 3, we will test
the model. The language in the figure 1 is expression-based, con-
taining application expressions (to invoke functions), conditional
expressions, values (i.e., fully simplified expressions), and vari-
ables. Values include functions, the plus operator, and numbers.

The eval function gives the meaning of each program (either
a number or the special token proc), and it is defined via a binary
relation −→ on the syntax of programs. This relation, commonly
referred to as a standard reduction, gives the behavior of programs
in a machine-like way, showing the ways in which an expression
can fruitfully take a step towards a value.

1

Language

e ::= (e e · · ·) | (if0 e e e) | v | x
v ::= λ(x · · ·). e | + |N
E ::= [] | (v · · · E e · · ·) | (if0 E e e)

Evaluator
eval : e→N∪ {proc}
eval(e) = n, if e −→∗ dne for some n ∈N

eval(e) = proc, if
{

e −→∗ λ(x · · ·). e
′
, or

e −→∗ +

Reduction relation
E[(if0 d0e e1 e2)] −→ E[e1]
E[(if0 v e1 e2)] −→ E[e2] v 6= d0e
E[((λ(x · · ·). e) v · · ·)] −→ E[e{x ← v, · · ·}]
E[(+ dne · · ·)] −→ E[d∑(n · · ·)e]

Figure 1. Mathematical Model of Core Scheme

The non-terminal E defines evaluation contexts. It gives the
order in which expressions are evaluated by providing a rule for
decomposing a program into a context—an expression containing
a “hole”—and the sub-expression to reduce. The context’s hole,
written [], may appear either inside an application expression, when
all the expressions to the left are already values, or inside the test
position of an if0 expression.

The first two reduction rules dictate that an if0 expression can
be reduced to either its “then” or its “else” subexpression, based on
the value of the test. The third rule says that function applications
can be simplified by substitution, and the final rule says that fully
simplified addition expressions can be replaced with their sums.

We use various features of Redex (as below) to illuminate the
behavior of the model as it is translated to Redex, but just to
give a feel for the calculus, here is a sample reduction sequence
illustrating how the rules and the evaluation contexts work together.

(+ (if0 0 1 2) (if0 2 1 0))
−→ (+ 1 (if0 2 1 0))
−→ (+ 1 0)
−→ 1

Consider the step between the first and second term. Both of the
if0 expressions are candidates for reduction, but the evaluation
contexts only allow the first to be reduced. Since the rules for if0
expressions are written with E[] outside of the if0 expression, the
expression must decompose into some E with the if0 expression in
the place where the hole appears. This decomposition is what fails
when attempting to reduce the second if0 expression. Specifically,
the case for application expressions requires values to the left of the
hole, but this is not the case for the second if0 expression.

Like a Scheme program, a Redex program consists of a series
of definitions. Redex programmers have all of the ordinary Scheme
definition forms (variable, function, structure, etc.) available, as
well as a few new definition forms that are specific to operational
semantics. For clarity, when we show code fragments, we italicize
Redex keywords, to make clear where Redex extends Scheme.

Redex’s first definition form is define-language . It uses a
parenthesized version of BNF notation to define a tree grammar,1
consisting of non-terminals and their productions. The following

1 See Tree Automata Techniques and Applications [6] for an excellent sum-
mary of the properties of tree grammars.

defines the same grammar as in figure 1, binding it to the Scheme-
level variable L.
(define-language L

(e (e e ...)
(if0 e e e)
v
x)

(v +
n
(λ (x ...) e))

(E hole
(v ... E e ...)
(if0 E e e))

(n number)
(x variable-not-otherwise-mentioned))

In addition to the non-terminals e, v, and E from the figure, this
grammar also provides definitions for numbers n and variables x.
Unlike the traditional notation for BNF grammars, Redex encloses
a non-terminal and its productions in a pair of parentheses and does
not use vertical bars to separate productions, simply juxtaposing
them instead.

Following the mathematical model, the first non-terminal in
L is e, and it has four productions: application expressions, if0
expressions, values, and variables. The ellipsis is a form of Kleene-
star; i.e., it admits repetitions of the pattern preceding it (possibly
zero). In this case, this means that application expressions must
have at least one sub-expression, corresponding to the function
position of the application, but may have arbitrarily many more,
corresponding to the function’s arguments.

The v non-terminal specifies the language’s values; it has three
productions—one each for the addition operator, numeric literals,
and functions. As with application expressions, function parameter
lists use an ellipsis, this time indicating that a function can have
zero or more parameters.

The E non-terminal defines the contexts in which evaluation can
occur. The hole production gives a place where evaluation can
occur, in this case, the top-level of the term. The second production
allows evaluation to occur anywhere in an application expression,
as long as all of the terms to the left of the have been fully evaluated.
In other words, this indicates a left-to-right order of evaluation. The
third production dictates that evaluation is allowed only in the test
position of an if0 expression.

The n non-terminal generates numbers using the built-in Redex
pattern number . Redex exploits Scheme’s underlying support for
numbers, allowing arbitrary Scheme numbers to be embedded in
Redex terms.

Finally, the x generates all variables except λ, +, and if0, using
variable-not-otherwise-mentioned . In general, the pattern
variable-not-otherwise-mentioned matches all variables
except those that are used as literals elsewhere in the grammar.

Once a grammar has been defined, a Redex programmer can use
redex-match to test whether a term matches a given pattern. It ac-
cepts three arguments—a language, a pattern, and an expression—
and returns #f (Scheme’s false), if the pattern does not match, or
bindings for the pattern variables, if the term does match. For ex-
ample, consider the following interaction:
> (redex-match L e (term (if0 (+ 1 2) 0)))
#f

This expression tests whether (if0 (+ 1 2) 0) is an expression
according to L. It is not, because if0 must have three subexpres-
sions.

When redex-match succeeds, it returns a list of match struc-
tures, as in this example.
> (redex-match

2

L
(if0 v e 1 e 2)
(term (if0 3 0 (λ (x) x))))

(list (make-match
(list (make-bind ’v 3)

(make-bind ’e 1 0)
(make-bind ’e 2 (term (λ (x) x))))))

Each element in the list corresponds to a distinct way to match the
pattern against the expression. In this case, there is only one way to
match it, and so there is only one element in the list. Each match
structure gives the bindings for the pattern’s variables. In this case,
v matched 3, e 1 matched 0, and e 2 matched (λ (x) x). The
term constructor is absent from the v and e 1 matches because
numbers are simultaneously Redex terms and ordinary Scheme
values (and this will come in handy when we define the reduction
relation for this language).

Of course, since Redex patterns can be ambiguous, there might
be multiple ways for the pattern to match the expression. This can
arise in two ways: an ambiguous grammar, or repeated ellipses.
Consider the following use of repeated ellipses.

> (redex-match L
(n 1 ... n 2 n 3 ...)
(term (1 2 3)))

(list (make-match
(list (make-bind ’n 1 (list))

(make-bind ’n 2 1)
(make-bind ’n 3 (list 2 3))))

(make-match
(list (make-bind ’n 1 (list 1))

(make-bind ’n 2 2)
(make-bind ’n 3 (list 3))))

(make-match
(list (make-bind ’n 1 (list 1 2))

(make-bind ’n 2 3)
(make-bind ’n 3 (list)))))

The pattern matches any sequence of numbers that has at least a
single element, and it matches such sequences as many times as
there are elements in the sequence, each time binding n 2 to a
distinct element of the sequence.

Now that we have defined a language, we can define the reduc-
tion relation for that language. The reduction-relation form
accepts a language and a series of rules that define the relation case-
wise. For example, here is a reduction relation for L. In preparation
for Redex’s automatic test case generation, we have intentionally
introduced a few errors into this definition. The explanatory text
does not contain any errors;2 it simply avoids mention of the mis-
takes.

(define eval-step
(reduction-relation
L
(--> (in-hole E (if0 0 e 1 e 2))

(in-hole E e 1)
"if0 true")

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
"if0 false")

(--> (in-hole E ((λ (x ...) e) v ...))
(in-hole E (subst (x v) ... e))
"beta value")

(--> (in-hole E (+ n 1 n 2))
(in-hole E ,(+ (term n 1) (term n 2)))
"+")))

2 We hope.

Each case begins with the arrow --> and includes a pattern, a term
template, and a name for the case. The pattern indicates when the
rule will fire and the term indicates what it should be replaced with.

Each rule begins with an in-hole pattern that decomposes
a term into an evaluation context E and some instruction. For
example, consider the first rule. We can use redex-match to test
its pattern against a sample expression.

> (redex-match L
(in-hole E (if0 0 e 1 e 2))
(term (+ 1 (if0 0 2 3))))

(list (make-match
(list (make-bind ’E (term (+ 1 hole)))

(make-bind ’e 1 2)
(make-bind ’e 2 3))))

Since the match succeeded, the rule applies to the term, with the
substitutions for the pattern variables shown. Thus, this term will
reduce to (+ 1 2), since the rule replaces the if0 expression with
e 1, the “then” branch, inside the context (+ 1 hole). Similarly,
the second reduction rule replaces an if0 expression with its “else”
branch.

The third rule defines function application in terms of a meta-
function subst that performs capture-avoiding substitution; its def-
inition is not shown, but standard.

The relation’s final rule is for addition. It exploits Redex’s em-
bedding in Scheme to use the Scheme-level + operator to perform
the Redex-level addition. Specifically, the comma operator is an
escape to Scheme and its result is replaced into the term at the ap-
propriate point. The term constructor does the reverse, going from
Scheme back to a Redex term. In this case, we use it to pick up the
bindings for the pattern variables n 1 and n 2.

This “escape” from the object language that we are modeling
in Redex to the meta-language (Scheme) mirrors a subtle detail
from the mathematical model in figure 1, specifically the use of
the d · e operator. In the model that operator translates a number
into its textual representation. Consider its use in the addition rule;
it defers the definition of addition to the summation operator, much
like we defer the definition to Scheme’s + operator.

Once a Redex programmer has defined a reduction relation, Re-
dex can build reduction graphs, via traces. The traces function
takes a reduction relation and a term and opens a GUI window
showing the reduction graph rooted at the given term. Figure 2
shows such a graph, generated from eval-step and an if0 ex-
pression. As the screenshot shows, the traces window also lets
the user adjust the font size and connects to dot [9] to lay out the
graphs. Redex can also detect cycles in the reduction graph, for
example when running an infinite loop, as shown in figure 3.

In addition to traces, Redex provides a lower-level interface
to the reduction semantics via the apply-reduction-relation
function. It accepts a reduction relation and a term and returns a list
of the next states, as in the following example.

> (apply-reduction-relation eval-step
(term (if0 1 2 3)))

(list 3)

For the eval-step reduction relation, this should always be a
singleton list but, in general, multiple rules may apply to the same
term, or a single rule may even apply in multiple different ways.

3. Random Testing in Redex
If we intend eval-step to model the deterministic evaluation of
expressions in our toy language, we might expect eval-step to
define exactly one reduction for any expression that is not already
a value. This is certainly the case for the expressions in figures 2
and 3.

3

Figure 2. A reduction graph with four expressions

Figure 3. A reduction graph with an infinite loop

To test this, we first formulate a Scheme function that checks
this property on one example. It accepts a term and returns true
when the term is a value, or when the term reduces just one way,
using redex-match and apply-reduction-relation .

;; value-or-unique-step? : term → boolean
(define (value-or-unique-step? e)

(or (redex-match L v e)
(= 1 (length (apply-reduction-relation

eval-step e)))))

Once we have a predicate that should hold for every term, we
can supply it to redex-check , Redex’s random test case gener-
ation tool. It accepts a language, in this case L, a pattern to gen-
erate terms from, in this case just e, and a boolean expression, in
this case, an invocation of the value-or-unique-step? function
with the randomly generated term.

> (redex-check
L e
(value-or-unique-step? (term e)))

counterexample found after 1 attempt:
q

Immediately, we see that the property does not hold for open terms.
Of course, this means that the property does not even hold for our
mathematical model! Often, such terms are referred to as “stuck”
states and are ruled out by either a type-checker (in a typed lan-
guage) or are left implicit by the designer of the model. In this case,
however, since we want to uncover all of the mistakes in the model,

we instead choose to add explicit error transitions, following how
most Scheme implementations actually behave. These rules gen-
erally reduces to something of the form (error description).
For unbound variables, this is the rule:
(--> (in-hole E x)

(error "unbound-id"))

It says that when the next term to reduce is a variable (i.e., the term
in the hole of the evaluation context is x), then instead reduce to an
error. Note that on the right-hand side of the rule, the evaluation
context E is omitted. This means that the entire context of the
term is simply erased and (error "unbound-id") becomes the
complete state of the computation, thus aborting the computation.

With the improved relation in hand, we can try again to uncover
bugs in the definition.
> (redex-check

L e
(value-or-unique-step? (term e)))

counterexample found after 6 attempts:
(+)

This result represents a true bug. While the language’s grammar
allows addition expressions to have an arbitrary number of argu-
ments, our reduction rule only covers the case of two arguments.
Redex reports this failure via the simplest expression possible: an
application of the plus operator to no arguments at all.

There are several ways to fix this rule. We could add a few rules
that would reduce n-ary addition expressions to binary ones and
then add special cases for unary and zero-ary addition expressions.
Alternatively, we can exploit the fact that Redex is embedded in
Scheme to make a rule that is very close in spirit to the rule given
in figure 1.
(--> (in-hole E (+ n ...))

(in-hole E ,(apply + (term (n ...))))
"+")

But there still may be errors to discover, and so with this fix in
place, we return to redex-check .
> (redex-check L

e
(value-or-unique-step? (term e)))

checking ((λ (i) 0)) raises an exception
syntax: incompatible ellipsis match counts
for template in: ...

This time, redex-check is not reporting a failure of the predicate
but instead that the input example ((λ (i) 0)) causes the model
to raise a Scheme-level runtime error. The precise text of this error
is a bit inscrutable, but it also comes with source location high-
lighting that pinpoints the relation’s application case. Translated
into English, the error message says that the this rule is ill-defined
in the case when the number of formal and actual parameters do not
match. The ellipsis in the error message indicates that it is the ellip-
sis operator on the right-hand side of the rule that is signaling the
error, since it does not know how to construct a term unless there
are the same number of xs and vs.

To fix this rule, we can add subscripts to the ellipses in the
application rule
(--> (in-hole E ((λ (x ... 1) e) v ... 1))

(in-hole E (subst (x v) ... e))
"beta value")

Duplicating the subscript on the ellipses indicates to Redex that it
must match the corresponding sequences with the same length.

Again with the fix in hand, we return to redex-check :
> (redex-check L

e

4

(value-or-unique-step? (term e)))
counterexample found after 196 attempts:
(if0 0 m +)

This time, Redex reports that the expression (if0 0 m +)
fails, but we clearly have a rule for that case, namely the first if0
rule. To see what is happening, we apply eval-step to the term
directly, using apply-reduction-relation , which shows that
the term reduces two different ways.

> (apply-reduction-relation eval-step
(term (if0 0 m +)))

(list (term +)
(term m))

Of course, we should only expect the second result, not the first.
A closer look reveals that, unlike the definition in figure 1, the
second eval-step rule applies regardless of the particular v in the
conditional. We fix this oversight by adding a side-condition
clause to the earlier definition.

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
(side-condition (not (equal? (term v) 0)))
"if0 false")

Side-conditions are written as ordinary Scheme code, following the
keyword side-condition , as a new clause in the rule’s definition.
If the side-condition expression evaluates to #f, then the rule is
considered not to match.

At this point, redex-check fails to discover any new errors in
the semantics. The complete, corrected reduction relation is shown
in figure 4.

In general, after this process fails to uncover (additional) coun-
terexamples, the task becomes assessing redex-check ’s success
in generating well-distributed test cases. Redex has some intro-
spective facilities, including the ability to count the number of
reductions that fire. With this reduction system, we discover that
nearly 60% of the time, the random term exercises the free vari-
able rule. To get better coverage, Redex can take into account
the structure of the reduction relation. Specifically, providing the
#:source keyword tells Redex to use the left-hand sides of the
rules in eval-step as sources of expressions.

> (redex-check L
e
(value-or-unique-step? (term e))
#:source eval-step)

With this invocation, Redex distributes its effort across the rela-
tion’s rules by first generating terms matching the first rule’s left-
hand side, then terms matching the second term’s left-hand side,
etc. Note that this also gives Redex a bit more information; namely
that all of the left-hand sides of the eval-step relation should
match the non-terminal e, and thus Redex also reports such viola-
tions. In this case, however, Redex discovers no new errors, but it
does get an even distribution of the uses of the various rewriting
rules.

4. Case Study: R6RS Formal Semantics
The most recent revision of the specification for the Scheme pro-
gramming language (R6RS) [21] includes a formal, operational se-
mantics defined in PLT Redex. The semantics was vetted by the
editors of the R6RS and was available for review by the Scheme
community at large for several months before it was finalized.

In an attempt to avoid errors in the semantics, it came with
a hand-crafted test suite of 333 test expressions. Together these
tests explore 6,930 distinct program states; the largest test case ex-
plores 307 states. The semantics is non-deterministic in order to

(define complete-eval-step
(reduction-relation
L

;; corrected rules
(--> (in-hole E (if0 0 e 1 e 2))

(in-hole E e 1)
"if0 true")

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
(side-condition (not (equal? (term v) 0)))
"if0 false")

(--> (in-hole E ((λ (x ... 1) e) v ... 1))
(in-hole E (subst (x v) ... e))
"beta value")

(--> (in-hole E (+ n ...))
(in-hole E ,(apply + (term (n ...))))
"+")

;; error rules
(--> (in-hole E x)

(error "unbound-id"))
(--> (in-hole E ((λ (x ...) e) v ...))

(error "arity")
(side-condition
(not (= (length (term (x ...)))

(length (term (v ...)))))))
(--> (in-hole E (+ n ... v 1 v 2 ...))

(error "+")
(side-condition (not (number? (term v 1)))))

(--> (in-hole E (v 1 v 2 ...))
(error "app")
(side-condition
(and (not (redex-match L + (term v 1)))

(not (redex-match L
(λ (x ...) e)
(term v 1))))))))

Figure 4. The complete, corrected reduction relation

avoid over-constraining implementations. That is, an implementa-
tion conforms to the semantics if it produces any one of the possible
results given by the semantics. Accordingly the test suite contains
terms that explore multiple reduction sequence paths. There are 58
test cases that contain at least some non-determinism and, the test
case with the most non-determinism visits 17 states that each have
multiple subsequent states.

Despite all of the careful scrutiny, Redex’s randomized testing
found four errors in the semantics, described below. The remain-
der of this section introduces the semantics itself (section 4.1), de-
scribes our experience applying Redex’s randomized testing frame-
work to the semantics (sections 4.2 and 4.3), discusses the current
state of the fixes to the semantics (section 4.4), and quantifies the
size of the bug search space (section 4.5).

4.1 The R6RS Formal Semantics
In addition to the features modeled in Section 2, the formal se-
mantics includes: mutable variables, mutable and immutable pairs,
variable-arity functions, object identity-based equivalence, quoted
expressions, multiple return values, exceptions, mutually recursive
bindings, first-class continuations, and dynamic-wind. The formal
semantics’s grammar has 41 non-terminals, with a total of 144 pro-
ductions, and its reduction relation has 105 rules.

The core of the formal semantics is a relation on program states
that, in a manner similar to eval-step in Section 2, gives the

5

behavior of a Scheme abstract machine. For example, here are two
of the key rules that govern function application.
(--> (in-hole P 1 ((λ (x 1 x 2 ... 1) e 1 e 2 ...)

v 1 v 2 ... 1))
(in-hole P 1 ((r6rs-subst-one

(x 1 v 1
(λ (x 2 ...) e 1 e 2 ...)))

v 2 ...))
"6appN"
(side-condition

(not (term (Var-set!d?
(x 1
(λ (x 2 ...) e 1 e 2 ...)))))))

(--> (in-hole P 1 ((λ () e 1 e 2 ...)))
(in-hole P 1 (begin e 1 e 2 ...))
"6app0")

These rules apply only to applications that appear in an evaluation
context P 1. The first rule turns the application of an n-ary function
into the application of an n− 1-ary function by substituting the first
actual argument for the first formal parameter, using the metafunc-
tion r6rs-subst-one. The side-condition ensures that this rule
does not apply when the function’s body uses the primitive set!
to mutate the first parameter’s binding; instead, another rule (not
shown) handles such applications by allocating a fresh location in
the store and replacing each occurrence of the parameter with a
reference to the fresh location. Once the first rule has substituted
all of the actual parameters for the formal parameters, we are left
with a nullary function in an empty application, which is covered
by the second rule above. This rule removes both the function and
the application, leaving behind the body of the function in a begin
expression.

The R6RS does not fully specify many aspects of evaluation.
For example, the order of evaluation of function application ex-
pressions is left up to the implementation, as long as the arguments
are evaluated in a manner that is consistent with some sequential
ordering (i.e., evaluating one argument halfway and then switching
to another argument is disallowed). To cope with this in the formal
semantics, the evaluation contexts for application expressions are
not like those in section 2, which force left to right evaluation, nor
do they have the form (e 1 ... E e 2 ...), which would al-
low non-sequential evaluation; instead, the contexts that extend into
application expressions take the form (v 1 ... E v 2 ...) and
thus only allow evaluation when there is exactly one argument ex-
pression to evaluate. To allow evaluation in other application con-
texts, the reduction relation includes the following rule.
(--> (in-hole P 1 (e 1 ... e i e i+1 ...))

(in-hole P 1
((λ (x) (e 1 ... x e i+1 ...)) e i))

"6mark"
(fresh x)
(side-condition (not (v? (term e i))))
(side-condition
(ormap (λ (e) (not (v? e)))

(term (e 1 ... e i+1 ...)))))

This rule non-deterministically lifts one subexpression out of the
application, placing it in an evaluation context where it will be im-
mediately evaluated then substituted back into the original expres-
sion, by the rule "6appN". The fresh clause binds x such that
it does not capture any of the free variables in the original appli-
cation. The first side-condition ensures that the lifted term is not
yet a value, and the second ensures that there is at least one other
non-value in the application expression (otherwise the evaluation
contexts could just allow evaluation there, without any lifting).

As an example, consider this expression:

(+ (+ 1 2)
(+ 3 4))

It contains two nested addition expressions. The "6mark" rule
applies to both of them, generating two lifted expressions, which
then reduce in parallel and eventually merge, as shown in this
reduction graph (generated and rendered by Redex).

(+ (+ 1 2) (+ 3 4))

((lambda (lifted)

 (+ lifted (+ 3 4)))

 (+ 1 2))

((lambda (lifted)

 (+ (+ 1 2) lifted))

 (+ 3 4))

((lambda (lifted)

 (+ lifted (+ 3 4)))

 3)

((lambda (lifted)

 (+ (+ 1 2) lifted))

 7)

((lambda () (+ 3 (+ 3 4))))((lambda () (+ (+ 1 2) 7)))

(begin (+ 3 (+ 3 4)))(begin (+ (+ 1 2) 7))

(+ 3 (+ 3 4))(+ (+ 1 2) 7)

(+ 3 7)

10

4.2 Testing the Formal Semantics, a First Attempt
In general, a reduction relation like → satisfies the following two
properties, commonly known as progress and preservation:

progress If p is a closed program state, consisting of a store and a
program expression, then either p is either a final result (i.e., a
value or an uncaught exception) or p reduces (i.e., there exists
a p′ such that p→ p′).

preservation If p is a closed program state and p→ p′, then p′ is
also a closed program state.

Together these properties ensure that the semantics covers all of
the cases and thus an implementation that matches the semantics
always produces a result (for every terminating program).

4.2.1 Progress
These properties can be formulated directly as predicates on terms.
Progress is a simple boolean combination of a result? predi-
cate (defined via a redex-match that determines if a term is a
final result), an open? predicate, and a test to make sure that
apply-reduction-relation finds at least one possible step.
The open? predicate uses a free-vars function (not shown, but
29 lines of Redex code) that computes the free variables of an R6RS
expression.
;; progress? : program → boolean
(define (progress? p)

(or (open? p)
(result? p)
(not (= 0 (length

(apply-reduction-relation

6

reductions
p))))))

;; open? : program → boolean
(define (open? p)

(not (= 0 (length (free-vars p)))))

Given that predicate, we can use redex-check to test it on the
R6RS semantics, using the top-level non-terminal (p∗).
(redex-check r6rs p∗ (progress? (term p∗)))

Bug one This test reveals one bug, a problem in the interaction
between letrec∗ and set!. Here is a small example that illus-
trates the bug.

(store ()
(letrec∗ ([y 1]

[x (set! y 1)])
y))

All R6RS terms begin with a store. In general, the store binds vari-
able to values representing the current mutable state in a program.
In this example, however, the store is empty, and so () follows the
keyword store.

After the store is an expression. In this case, it is a letrec∗
expression that binds y to 1 then binds x to the result of the assign-
ment expression (set! y 1). The informal report does not spec-
ify the value produced by an assignment expression, and the formal
semantics models this under-specification by rewriting these ex-
pressions to an explicit unspecified term, intended to represent
any Scheme value. The bug in the formal semantics is that it ne-
glects to provide a rule that covers the case where an unspecified
value is used as the initial value of a letrec∗ binding.

Although the above expression triggers the bug, it does so only
after taking several reduction steps. The progress? property, how-
ever, checks only for a first reduction step, and so Redex can only
report a program state like the following, which uses some internal
constructs in the R6RS semantics.

(store ((lx-x bh))
(l! lx-x unspecified))

Here (and in the presentation of subsequent bugs) the actual pro-
gram state that Redex identifies is typically somewhat larger than
the example we show. Manual simplification to simpler states is
straightforward, albeit tedious.

4.2.2 Preservation
The preservation? property is a bit more complex. It holds if the
expression has free variables or if each each expression it reduces
to is both well-formed according to the grammar of the R6RS
programs and has no free variables.

;; preservation? : program → boolean
(define (preservation? p)

(or (open? p)
(andmap (λ (q)

(and (well-formed? q)
(not (open? q))))

(apply-reduction-relation
reductions p))))

(redex-check r6rs p∗ (preservation? (term p∗)))
Running this test fails to discover any bugs, even after tens of thou-
sands of random tests. Manual inspection of just a few random pro-
gram states reveals why: with high probability, a random program
state has a free variable and therefore satisfies the property vacu-
ously.

4.3 Testing the Formal Semantics, Take 2
A closer look at the semantics reveals that we can usually perform
at least one evaluation step on an open term, since a free variable
is only a problem when the reduction system immediately requires
its value. This observation suggests testing the following property,
which subsumes both progress and preservation: for any program
state, either

• it is a final result (either a value or an uncaught exception),
• it does not reduce and it is open, or
• it does reduce, all of the terms it reduces to have the same (or

fewer) free variables, and the terms it reduces to are also well-
formed R6RS expressions.

The Scheme translation mirrors the English text, using the
helper functions result? and well-formed?, both defined using
redex-match and the corresponding non-terminal in the R6RS
grammar, and subset?, a simple Scheme function that compares
two lists to see if the elements of the first list are all in the second.
(define (safety? p)

(define fvs (free-vars p))
(define nexts (apply-reduction-relation

reductions p))
(or (result? p)

(and (= 0 (length nexts))
(open? p))

(and (not (= 0 (length nexts)))
(andmap (λ (p2)

(and (well-formed? p2)
(subset? (free-vars p2)

fvs)))
nexts))))

(redex-check r6rs p∗ (safety? (term p∗)))
The remainder of this subsection details our use of the safety?

predicate to uncover three additional bugs in the semantics, all
failures of the preservation property.

Bug two The second bug is an omission in the formal grammar
that leads to a bad interaction with substitution. Specifically, the
keyword make-cond was allowed to be a variable. This, by it-
self, would not lead directly to a violation of our safety property,
but it causes an error in combination with a special property of
make-cond—namely that make-cond is the only construct in the
model that uses strings. It is used to construct values that repre-
sent error conditions. Its argument is a string describing the error
condition.

Here is an example term that illustrates the bug.
(store () ((λ (make-cond) (make-cond ""))

null)))

According to the grammar of R6RS, this is a legal expression
because the make-cond in the parameter list of the λ expression
is treated as a variable, but the make-cond in the body of the
λ expression is treated as the keyword, and thus the string is in
an illegal position. After a single step, however, we are left with
this term (store () (null "")) and now the string no longer
follows make-cond, which is illegal.

The fix is simply to disallow make-cond as a variable, making
the original expression illegal.

Bug three The next bug triggers a Scheme-level error when using
the substitution metafunction. When a substitution encounters a λ
expression with a repeated parameter, it fails. For example, supply-
ing this expression
(store () ((λ (x) (λ (x x) x))

7

store

lambda

make-cond

make-cond

""

null

p*

(store (sf ...) es)

 p*

sf ...

(es es ...)

 es

(lambda f es es ...)

 es

es es ...

 es ...

(x ...)

 f

nonproc

 es es ...

x x ...

 x ...

(make-cond string)

 nonproc

make-cond

 x x ...

""

 string

nonproc

 es es ...

null

 nonproc

Figure 5. Smallest example of bug two, as a binary tree (left) and
as an R6RS expression (right)

1))

to the safety? predicate results in this error:
r6rs-subst-one: clause 3 matched
(r6rs-subst-one (x 1 (lambda (x x) x)))
2 different ways

The error indicates that the metafunction r6rs-subst-one, one
of the substitution helper functions from the semantics, is not well-
defined for this input.

According to the grammar given in the informal portion of the
R6RS, this program state is not well-formed, since the names bound
by the inner λ expression are not distinct. Thus, the fix is not to the
metafunction, but to the grammar of the language, restricting the
parameter lists of λ expressions to variables that are all distinct.

One could also find this bug by testing the metafunction
r6rs-subst-one directly. Specifically, testing that the metafunc-
tion is well-defined on its input domain also reveals this bug.

Bug four The final bug actually is an error in the definition of the
substitution function. The expression
(store () ((λ (x) (letrec ([x 1]) 1))

1))

reduces to this (bogus) expression:
(store () ((λ () (letrec ((3 1)) 2))))

That is, the substitution function replaced the x in the binding posi-
tion of the letrec as if the letrec-binder was actually a reference
to the variable. Ultimately the problem is that r6rs-subst-one
lacked the cases that handle substitution into letrec and letrec∗
expressions.

Redex did not discover this bug until we supplied the #:source
keyword, which prompted it to generate many expressions match-
ing the left-hand side of the "6appN" rule described in section 4.1,
on page 6.

4.4 Status of fixes
The version of the R6RS semantics used in this exploration does
not match the official version at http://www.r6rs.org, due to
version skew of Redex. Specifically, the semantics was written for
an older version of Redex and redex-check was not present in

Uniform, R6RS R6RS R6RS
S-expression one var, one var, keywords

B
ug

#

grammar no dups with dups as vars

1 D1(6) > 228
p∗(3) > 211

2 D0(9) > 2211
p∗k(6) ≈ 2556

3 D1(11) > 2213
p∗d(8) > 22,969

mf (5) > 2501

4 D1(12) > 2214
p∗(5) > 2110

Figure 6. Exhaustive search space sizes for the four bugs

that version. Thus, in order to test the model, we first ported it to
the latest version of Redex. We have verified that all four of the
bugs are present in the original model, and we used redex-check
to be sure that every concrete term in the ported model is also in
the original model (the reverse is not true; see the discussion of bug
three).

Finally, the R6RS is going to appear as book published by
Cambridge Press [20] and the fixes listed here will be included.

4.5 Search space sizes
Although all four of the bugs in section 4.3 can be discovered with
fairly small examples, the search space corresponding to the bug
can still be fairly large. In this section we attempt to quantify the
size of that search space.

The simplest way to measure the search space is to consider
the terms as if they were drawn from an uniform, s-expression
representation, i.e., each term is either a pair of terms or a symbol,
using repeated pairs to form lists. As an example, consider the
left-hand side of figure 5. It shows the parse tree for the smallest
expression that discovers bug two, where the dots with children are
the pair nodes and the dots without children are the list terminators.

The Dx function computes the number of such trees at a given
depth (or smaller), where there are x variables in the expression.

Dx(0) = 61 + 1 + x
Dx(n) = 61 + 1 + x + Dx(n− 1)2

The 61 in the definition is the number of keywords in the R6RS
grammar, which just count as leaf nodes for this function; the 1
accounts for the list terminator. For example, the parse tree for bug
two has depth 9, and there are more than 2211

other trees with that
depth (or smaller).

Of course, using that grammar can lead to a much larger state
space than necessary, since it contains nonsense expressions like
((λ) (λ) (λ)). To do a more accurate count, we should deter-
mine the depth of each of these terms when viewed by the actual
R6RS grammar. The right-hand side of figure 5 shows the parse
tree for bug two, but where the internal nodes represent expansions
of the non-terminals from the R6RS semantics’s grammar. In this
case, each arrow is labeled with the non-terminal being expanded,
the contents of the nodes show what the non-terminal was expanded
into, and the dot nodes correspond to expansions of ellipses that ter-
minate the sequence being expanded.

We have computed the size of the search space needed for each
of the bugs, as shown in figure 6. The first column shows the size of
the search space under the uniform grammar. The second column
shows the search space for the first and fourth bugs, using a variant
of the R6RS grammar that contains only a single variable and does
not allow duplicate variables, i.e., it assumes that bug three has
already been fixed, which makes the search space smaller. Still,
the search space is fairly large and the function governing its size
is complex, just like the R6RS grammar itself. The function is
shown in figure 7, along with the helper functions it uses. Each

8

http://www.r6rs.org

function computes the size of the search space for one of the non-
terminals in the grammar. Because p∗ is the top-level non-terminal,
the function p∗ computes the total size.

Of course it does not make sense to use that grammar to measure
the search space for bug three, since it required duplicate variables.
Accordingly we used a slightly different grammar to account for it,
as shown in the third column in figure 6. The size function we used,
p∗d, has a subscript d to indicate that it allows duplicate variables and
otherwise has a similar structure to the one given in figure 7.

Bug three is also possible to discover by testing the metafunc-
tion directly, as discussed in section 4.3. In that case, the search
space is given by the mf function which computes the size of the
patterns used for r6rs-subst-one’s domain. Under that metric,
the height of the smallest example that exposes the bug is 5. This
corresponds to testing a different property, but would still find the
bug, in a much smaller search space.

Finally, our approximation to the search space size for bug two
is shown in the rightmost column. The k subscript indicates that
variables are drawn from the entire set of keywords. Counting this
space precisely is more complex than the other functions, because
of the restriction that variables appearing in a parameter list must
be distinct. Indeed, our p∗k function over-counts the number of terms
in that search space for that reason.3

5. Effective Random Term Generation
At a high level, Redex’s procedure for generating a random term
matching a given pattern is simple: for each non-terminal in the
pattern, choose one of its productions and proceed recursively on
that pattern. Of course, picking naively has a number of obvious
shortcomings. This sections describes how we made the random-
ized test generation effective in practice.

5.1 Choosing Productions
As sketched above, this procedure has a serious limitation: with
non-negligible probability, it produces enormous terms for many
inductively defined non-terminals. For example, consider the fol-
lowing language of binary trees:

(define-language binary-trees
(t nil

(t t)))

Each failure to choose the production nil expands the problem
to the production of two binary trees. If productions are chosen
uniformly at random, this procedure will easily construct a tree
that exhausts available memory. Accordingly, we impose a size
bound on the trees as we generate them. Each time Redex chooses
a production that requires further expansion of non-terminals, it
decrements the bound. When the bound reaches zero, Redex’s
restricts its choice to those productions that generate minimum
height expressions.

For example, consider generating a term from the e non-
terminal in the grammar L from section 2, on page 2. If the bound is
non-zero, Redex freely chooses from all of the productions. Once
it reaches zero, Redex no longer chooses the first two productions
because those require further expansion of the e non-terminal; in-
stead it chooses between the v and x productions. It is easy to see
why x is okay; it only generates variables. The v non-terminal is
also okay, however, because it contains the atomic production +.

In general, Redex classifies each production of each non-
terminal with a number indicating the minimum number of non-
terminal expansion required to generate an expression from the

3 Amusingly, if we had not found bug three, this would have been an
accurate count.

p∗(0) = 1 p∗(n + 1) = (es(n) ∗ sfs(n)) + v(n) + 1
ês(0) = 1 ês(n + 1) = (ês(n) ∗ es(n)) + 1
λ̂(0) = 1 λ̂(n + 1) = (λ̂(n) ∗ λ(n)) + 1

Qs(0) = 1 Qs(n + 1) = (Qs(n) ∗ s(n)) + 1
ê(0) = 1 ê(n + 1) = (ê(n) ∗ e(n)) + 1
v̂(0) = 1 v̂(n + 1) = (v̂(n) ∗ v(n)) + 1
E(0) = 1 E(n + 1) = (E(n) ∗ E∗(n))

+ (E(n) ∗ Fo(n)) + 1
E∗(0) = 0 E∗(n + 1) = λ̂(n) + (e(n)2 ∗ x (n)) + F ∗(n)
F ∗(0) = 0 F ∗(n + 1) = ê(n) + (ê(n) ∗ v̂(n))

+ (ê(n) ∗ v(n)) + (ê(n) ∗ e(n) ∗ 2)
Fo(0) = 0 Fo(n + 1) = (x (n) ∗ 2) + v̂(n)2 + e(n)2

b(0) = 1 b(n + 1) = v(n) + 1
e(0) = 1 e(n + 1) = (λ̂(n) ∗ e(n))

+ (ê(n) ∗ e(n) ∗ lb(n) ∗ 2)
+ (ê(n) ∗ e(n) ∗ 3) + (e(n) ∗ x (n) ∗ 2)
+ (e(n)3 ∗ x (n)) + (x (n) ∗ 2) + e(n)3

+ nonλ(n) + λ(n) + 1
es(0) = 2 es(n + 1) = (ês(n) ∗ es(n) ∗ f (n))

+ (λ̂(n) ∗ e(n))
+ (ês(n) ∗ es(n) ∗ lbs(n) ∗ 2)
+ (ês(n) ∗ es(n) ∗ 3)
+ (es(n) ∗ x (n) ∗ 2) + (E(n) ∗ x (n)2)
+ (e(n)3 ∗ x (n)) + (x (n) ∗ 2) + es(n)3

+ nonλ(n) + pλ(n) + seq(n) + sqv(n)
+ 2

f (0) = 1 f (n + 1) = (x (n) ∗ 2) + 1
lb(0) = 1 lb(n + 1) = (e(n) ∗ x (n)) + 1

lbs(0) = 1 lbs(n + 1) = (es(n) ∗ x (n)) + 1
nonλ(0) = 2 nonλ(n + 1) = pp(n) + sqv(n) + x (n) + 2

pp(0) = 0 pp(n + 1) = x (n) ∗ 2
pλ(0) = 4 pλ(n + 1) = proc1(n) + 15
λ(0) = 0 λ(n + 1) = (ê(n) ∗ e(n) ∗ f (n))

+ (E(n) ∗ x (n)2) + pλ(n)
proc1(0) = 7 proc1(n + 1) = 9

s(0) = 1 s(n + 1) = seq(n) + sqv(n) + x (n) + 1
seq(0) = 0 seq(n + 1) = (Qs(n) ∗ s(n) ∗ sqv(n))

+ (Qs(n) ∗ s(n) ∗ x (n))
+ (Qs(n) ∗ s(n))

sf (0) = 0 sf (n + 1) = (b(n) ∗ x (n)) + (v(n)2 ∗ pp(n))
sfs(0) = 1 sfs(n + 1) = sf (n) + 1
sqv(0) = 2 sqv(n + 1) = 3

v(0) = 0 v(n + 1) = nonλ(n) + λ(n)
x (0) = 0 x (n + 1) = 1

Figure 7. Size of the search space for R6RS expressions

production. Then, when the bound reaches zero, it chooses from
one of the productions that have the smallest such number.

Although this generation technique does limit the expressions
Redex generates to be at most a constant taller than the bound, it
also results in a poor distribution of the leaf nodes. Specifically,
when Redex hits the size bound for the e non-terminal, it will
never generate a number, preferring to generate + from v. Although
Redex will generate some expressions that contain numbers, the
vast majority of leaf nodes will be either + or a variable.

In general, the factoring of the grammar’s productions into non-
terminals can have a tremendous effect on the distribution of ran-
domly generated terms because the collection of several produc-
tions behind a new non-terminal focuses probability on the origi-
nal non-terminal’s other productions. We have not, however, been
able to detect a case where Redex’s poor distribution of leaf nodes
impedes its ability to find bugs, despite several attempts. Neverthe-
less, such situations probably do exist, and so we are investigating
a technique that produces better distributed leaves.

9

5.2 Non-linear patterns
Redex supports patterns that only match when two parts of the term
are syntactically identical. For example, this revision of the binary
tree grammar only matches complete binary trees
(define-language complete-binary-trees

(t nil
(t 1 t 1)))

because the subscripts in the second production insists that the two
sub-trees are identical. Additionally, Redex allows subscripts on
the ellipses (as we used in section 3 on page 4) indicating that the
length of the matches must be the same.

These two features can interact in subtle ways that affect term
generation. For example, consider the following pattern:
(x 1 ... y ... 2 x 1 ... 2)

This matches a sequence of xs, followed by a sequence of ys
followed by a second sequence of xs. The 1 subscripts dictate that
the xs must be the same (when viewed as a complete sequence—
the individual members of each sequence may be distinct) and the
2 subscripts dictate that the number of ys must be the same as the

number of xs. Taken together, this means that the length of the first
sequence of x’s must be the same as the length of the sequence of
ys, but an left-to-right generation of the term will not discover this
constraint until after it has already finished generating the ys.

Even worse, Redex supports subscripts with exclamation marks
which insist same-named subscripts match different terms; e.g.
(x ! 1 x ! 1) matches sequences of length two where the ele-
ments are different.

To support this in the random test case generator, Redex prepro-
cesses the term to normalize the underscores. In the pattern above,
Redex rewrites the pattern to this one
(x 1 ... 2 y ... 2 x 1 ... 2)

simply changing the first ellipsis to ... 2.

5.3 Generation Heuristics
Typically, random test case generators can produce very large test
inputs for bugs that could also have been discovered with small
inputs.4 To help mitigate this problem, the term generator employs
several heuristics to gradually increase the size and complexity of
the terms it produces (this is why the generator generally found
small examples for the bugs in section 3).

• The term-height bound increases with the logarithm of the
number of terms generated.

• The generator chooses the lengths of ellipsis-produced se-
quences and the lengths of variable names using a geometric
distribution, increasing the distribution’s expected value with
the logarithm of the number of attempts.

• The alphabet from which the generator constructs variable
names gradually grows from the English alphabet to the ASCII
set and then to the entire unicode character set. Eventually the
generator explicitly considers choosing the names of the lan-
guage’s terminals as variables, in hopes of catching rules which
confuse the two. The R6RS semantics makes such a mistake, as
discussed in section 4.3 (page 4.3), but discovering it is difficult
with this heuristic.

• When generating a number, the generator chooses first from the
naturals, then from the integers, the reals, and finally the com-
plex numbers, while also increasing the expected magnitude of
the chosen number. The complex numbers tend to be especially

4 Indeed, for this reason, QuickCheck supports a form of automatic test case
simplification that tries to shrink a failing test case.

interesting because comparison operators such as <= are not de-
fined on complex numbers.

• Eventually, the generator biases its production choices by ran-
domly selecting a preferred production for each non-terminal.
Once the generator decides to bias itself towards a particular
production, it generates terms with more deeply nested version
of that production, in hope of catching a bug with deeply nested
occurrences of some construct.

6. Related Work
Our work was inspired by QuickCheck [5], a tool for doing ran-
dom test case generation in Haskell. Unlike QuickCheck, how-
ever, Redex’s test case generation goes to some pains to gener-
ate tests automatically, rather than asking the user to specify test
case generators. This choice reduces the overhead in using Re-
dex’s test case generation, but generators for tests cases with a
particular property (e.g., closed expressions) still requires user in-
tervention. QuickCheck also supports automatic test case simpli-
fication, a feature not yet provided in Redex. Our work is not
the only follow-up to QuickCheck; there are several systems in
Haskell [3, 19], Clean [11], and even one for the ACL2 integration
with PLT Scheme [14].

There are a number of other tools that test formal semantics.
Berghofer and Nipkow [1] have applied random testing to seman-
tics written in Isabelle, with the goal of discovering shallow errors
in the language’s semantics before embarking on a time-consuming
proof attempt. αProlog [2] and Twelf [16] both support Prolog-
like search for counterexamples to claims. Most recently, Rober-
son et al. [17] developed a series of techniques to shrink the search
space when searching for counterexamples to type soundness re-
sults, with impressive results. Rosu et al. [18] use a rewriting logic
semantics for C to test memory safety of individual programs.

There is an ongoing debate in the testing community as to the
relative merits of randomized testing and bounded exhaustive test-
ing, with the a priori conclusion that randomized testing requires
less work to apply, but that bounded exhaustive testing is otherwise
superior. Indeed, while most papers on bounded exhaustive test-
ing include a nominal section on the relative merits of randomized
testing (typically showing it to be far inferior), there are also few,
more careful, studies that do show the virtues of randomized test-
ing. Visser et al. [23] conducted a case study that concludes (among
other things) that randomized testing generally does well, but falls
down when testing complex data structures like Fibonacci heaps.
Randomized testing in Redex mitigates this somewhat, due to the
way programs are written in Redex. Specifically, if such heaps were
coded up in Redex, there would be one rule for each different con-
figuration of the heap, enabling Redex to easily generate test cases
that would cover all of the interesting configurations. Of course,
this does not work in general, due to side-conditions on rules. For
example, we were unable to automatically generate many tests for
the rule [6applyce]5 in the R6RS formal semantics, due to its side-
condition. Ciupa et al. [4] conducted another study that finds ran-
domized testing to be reasonably effective, and Groce et al. [10]
conducted a study finding that random test case generation is espe-
cially effective early in the software’s lifecycle.

7. Conclusion and Future Work
Randomized test generation has proven to be a cheap and effective
way to improve models of programming languages in Redex. With
only a 13-line predicate (plus a 29-line free variables function), we
were able to find bugs in one of the biggest, most well-tested (even

5 The is the third rule in figure 11: http://www.r6rs.org/final/html/
r6rs/r6rs-Z-H-15.html#node_sec_A.9

10

http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-15.html#node_sec_A.9
http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-15.html#node_sec_A.9

community-reviewed), mechanized models of a programming lan-
guage in existence.

Still, we realize that there are some models for which these sim-
ple techniques are insufficient, so we don’t expect this to be the last
word on testing such models. We have begun work to extend Re-
dex’s testing support to allow the user to have enough control over
the generation of random expressions to ensure minimal properties,
e.g. the absence of free variables.

Our plan is to continue to explore how to generate programs
that have interesting structural properties, especially well-typed
programs. Generating well-typed programs that have interesting
distributions is particularly challenging. While it is not too difficult
to generate well-typed terms, generating interesting sets of well-
typed terms is tricky since there is a lot of freedom in the choice
of the generation of types for intermediate program variables, and
using those variables in interesting ways is non-trivial.

Acknowledgments Thanks to Matthias Felleisen for his com-
ments on an earlier draft of this paper and to Sam Tobin-Hochstadt
for feedback on redex-check .

References
[1] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In

Proceedings of the International Conference on Software Engineering
and Formal Methods, pages 230–239, 2004.

[2] J. Cheney and A. Momigliano. Mechanized metatheory model-
checking. In Proceedings of the ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming,
pages 75–86, 2007.

[3] J. Christiansen and S. Fischer. Easycheck – test data for free. In
Proceedings of the International Symposium on Functional and Logic
Programming, pages 322–336, 2008.

[4] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental
assessment of random testing for object-oriented software. In
Proceedings of the International Symposium on Software Testing
and Analysis, pages 84–94, 2007.

[5] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming,
pages 268–279, 2000.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and
applications. Available on: http://www.grappa.univ-lille3.
fr/tata, 2007. Release October, 12th 2007.

[7] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[8] R. B. Findler. Redex: Debugging operational semantics. Reference
Manual PLT-TR2009-redex-v4.2, PLT Scheme Inc., June 2009.
http://plt-scheme.org/techreports/.

[9] E. R. Gansner and S. C. North. An open graph visualization system
and its applications. Software Practice and Experience, 30:1203–
1233, 1999.

[10] A. Groce, G. Holzmann, and R. Joshi. Randomized differential testing
as a prelude to formal verification. In Proceedings of the ACM/IEEE
International Conference on Software Engineering, pages 621–631,
2007.

[11] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast:
Generic automated software testing. In Proceedings of the Interna-
tional Workshop on the Implementation of Functional Languages,
pages 84–100, 2003.

[12] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual envi-
ronment for developing context-sensitive term rewriting systems. In
International Conference on Rewriting Techniques and Applications,
pages 301–312, 2004.

[13] M. Norrish and K. Slind. Hol4, 2007. http://hol.sourceforge.
net/.

[14] R. Page, C. Eastlund, and M. Felleisen. Functional programming
and theorem proving for undergraduates: a progress report. In
Proceedings of the International Workshop on Functional and
Declarative Programming in Education, pages 21–30, 2008.

[15] L. C. Paulson and T. Nipkow. Isabelle. http://isabelle.in.
tum.de/, 2005.

[16] F. Pfenning and C. Schürmann. Twelf user’s guide. Technical Report
CMU-CS-98-173, Carnegie Mellon University, 1998.

[17] M. Roberson, M. Harries, P. T. Darga, and C. Boyapati. Efficient
software model checking of soundness of type systems. In
Proceedings of the ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications, pages 493–504,
2008.

[18] G. Rosu, W. Schulte, and T. F. Serbanuta. Runtime verification of
c memory safety. In Proceedings of the International Workshop on
Runtime Verification, 2009. to appear.

[19] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy
smallcheck: automatic exhaustive testing for small values. In
Proceedings of the ACM SIGPLAN Symposium on Haskell, pages
37–48, 2008.

[20] M. Sperber, editor. Revised6 report on the algorithmic language
Scheme. Cambridge University Press, 2009. to appear.

[21] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten (editors).
The Revised6 Report on the Algorithmic Language Scheme.
http://www.r6rs.org/, 2007.

[22] The Coq Development Team. The Coq proof assistant reference
manual, version 8.0. http://coq.inria.fr/, 2004–2006.

[23] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek. Test input generation
for java containers using state matching. In Proceedings of the
International Symposium on Software Testing and Analysis, pages
37–48, 2006.

11

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://plt-scheme.org/techreports/
http://hol.sourceforge.net/
http://hol.sourceforge.net/
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/
http://www.r6rs.org/
http://coq.inria.fr/

	Introduction
	Redex by Example
	Random Testing in Redex
	Case Study: R6RS Formal Semantics
	The R6RS Formal Semantics
	Testing the Formal Semantics, a First Attempt
	Progress
	Preservation

	Testing the Formal Semantics, Take 2
	Status of fixes
	Search space sizes

	Effective Random Term Generation
	Choosing Productions
	Non-linear patterns
	Generation Heuristics

	Related Work
	Conclusion and Future Work

