
Cycles without pollution: a gradual typing poem

Sam Tobin-Hochstadt1 and Robert Bruce Findler2

1 Northeastern University
2 Northwestern University

Abstract. It is fairly intuitive that adding dynamic typing to a statically typed
language can add some convenience to a developer, at the price of weakening the
guarantees of the type system. Surprisingly, the reverse is also true. This paper
presents a programming poem à la Dan Friedman illustrating that temporarily
circumventing the type system via a gradual typing cast can actually strengthen
the guarantees of the type system overall.

The paper first presents a challenge to write a small but interesting program. It
proceeds by exploring how it could be written in Haskell and in SML (show-
ing and discussing runnable code). It then gives the Typed Scheme version in a
slower, more tutorial style, since the reader is assumed to be more familiar with
Haskell and SML than Typed Scheme. Along the way, the paper shows how the
Typed Scheme version overcomes weaknesses in the earlier versions. The key
insight is that gradual typing enables us to view a data structure with two differ-
ent types, one during the creation and one during use. The type during creation
allows more operations that are needed to build an element of the data structure,
and the type during use exposes more invariants of the data structure that can then
be used to guarantee properties of the clients (termination, in this case).

1 The challenge

a

b c

d e

(a (b b c)
(c (d d d)

(e e c)))

Write a function that accepts the specification of an infinite
regular tree as a series of equations (à la Courcelle [1])
and turn it into a direct representation of the regular tree.
Specifications consist of either a triple that names an inte-
rior node and a pair of specifications for the left and right
children, or a label that refers to an earlier node. For ex-
ample, the box to the right contains a tree and its matching
specification. The regular tree is shown with backwards ar-
rows beginning with open circles to indicate the repeated
structure. Node labels must not be duplicated in a specifi-
cation, and each label must refer to some node.

Also, design a function that, given one of these trees,
determines how many steps there are along the shortest
non-trivial path through the tree to a subtree that is iso-
morphic to the given tree, if any. For example, the b subtree is one step away from an
isomorphic tree, and there is no tree isomorphic to the tree starting at a. Since node la-
bels are not duplicated in the specification, checking label equality is sufficent to detect
isomorphism. The second function must always terminate.



2 A (nearly) perfect Haskell program

Writing this program in Haskell is natural. We represent tree specifications using the
type STree and trees using the type ITree.

data STree = STree String STree STree | Link String
data ITree = ITree String ITree ITree

The function link converts tree specifications into regular trees and uses two mutu-
ally recursive helper functions, conv and find. The first just processes the tree, turning
STree constructors into ITree constructors, until it hits a link label, at which point it
calls find, which searches in the original tree for the corresponding node, and then
returns it (after using conv to convert it, naturally).

link :: STree -> ITree
link main = conv main
where conv :: STree -> ITree

conv (STree str tl tr) =
ITree str (conv tl) (conv tr)

conv (Link str) =
find main str []

find :: STree -> String -> [STree] -> ITree
find (STree str2 tl tr) str pending

| str2==str = conv (STree str2 tl tr)
| otherwise = find tl str (tr:pending)

find (Link str1) str2 (p:ps) = find p str2 ps

The period function uses breath-first search to find the nearest occurrence of the
same name in the tree, if one exists.

period :: ITree -> Maybe Int
period (ITree str tl tr) = bfs [(tl,1),(tr,1)] []
where bfs :: [(ITree,Int)] -> [String] -> Maybe Int

bfs [] visited = Nothing
bfs ((ITree str2 tl tr,i) : rest) visited
| str2==str = Just i
| elem str2 visited = bfs rest visited
| otherwise = bfs (rest ++ [(tl,i+1),(tr,i+1)])

(str2:visited)

There are two flaws in this program. First, the type system does not reflect the
constraint that the specification of the tree is well-formed (i.e., labels on nodes are
unique and references to nodes are all defined). Second, the period function does not
always terminate. Indeed, it may not even terminate on a tree returned by link, since
link may be given an infinite (non-repeating) specification tree. This latter issue is
simply because we are programming in Haskell, and seems unavoidable there. So, let
us turn to SML where the specification trees cannot be infinitely large.



3 An SML port of the Haskell version

One fairly simple way to port this program to a strict language is to add a few thunks to
judiciously delay evaluation. This section explores how to do that for SML, using these
data types for the specification and the trees.

datatype stree=STree of string * stree * stree | Link of string
datatype itree=ITree of string * (unit->itree) * (unit->itree)

The code that builds the tree looks very similar to the Haskell variant in the previous
section, but with a few thunks and applications in the appropriate places.

(* link : stree -> itree *)
fun link main = let
fun conv (STree (str,tl,tr)) =

ITree (str,fn () => conv tl,fn () => conv tr)
| conv (Link str) = find main str []

and find (STree (str2,tl,tr)) str pending =
if (str2=str)
then conv (STree (str2,tl,tr))
else find tl str (tr::pending)

| find (Link str1) str2 (p::ps) = find p str2 ps
in conv main end

The period function is also very similar to its Haskell counterpart, but with a few extra
thunk applications.

(* period : ITree -> int option *)
fun period (ITree (str,tl,tr)) = let
fun elem n l = exists (fn x => (n = x)) l
fun bfs [] visited = NONE
| bfs ((ITree (str2,tl,tr),i) :: rest) visited =
if (str2=str) then SOME i else
if (elem str2 visited) then bfs rest visited
else bfs (rest @ [(tl(),i+1),(tr(),i+1)]) (str2::visited)

in bfs [(tl(),1),(tr(),1)] [] end

This version improves on the Haskell version because the period function termi-
nates for all itrees produced by link. But it does not terminate for all values with
type itree, since there are members of itree that are completely misbehaved. For
example, the labels on change_up’s children change over time.

val change_up = let
val r = ref 0
fun f () = (r := !r+1; ITree (toString (!r),f,f))

in ITree("a",f,f) end

As this example also shows, using an abstract type to represent itree does not
suffice, since the client would have no knowledge of how the type is implemented,
always leaving the possibility of trees like change_up. With that in mind, we turn to
another possibile concrete type.



4 Another imperfect SML version

One way to ensure that the graph is just a simple datastructure, and thus does not have
changing children, is to use reference cells to build a cyclic data structure, using this
datatype.

datatype itree = ITree of string *
MaybeItree ref *
MaybeItree ref

and MaybeItree = I of itree | S of string

This version of link first sets up a ref cell with an empty list as a mutable memory
and then, using the conv function constructs a finite tree with references that, using the
MaybeItree type, contain either an itree in the case of proper children, or a string
in the case of a Link in the specification. At each step, the corresponding nodes and
strings are saved in the memory.

Once the conv function is finished, the tree is re-traversed, mutating each string
reference to the correct itree by looking it up in the memory, thus creating the appro-
priate cycles.

(* link : stree -> itree *)
fun link main = let
val memory = ref []

fun conv (STree (str,tl,tr)) = let
val t = I (ITree (str,ref (conv tl),ref (conv tr)))
in memory := ((str,t) :: !memory);

t
end

| conv (Link str) = S str

fun lookup s = case (find (fn (s’,_) => s=s’) (!memory))
of SOME (_,t) => t

fun help (ITree (str,tl,tr)) =
((case !tl of

I it => help it
| S str => tl := lookup str);

(case !tr of
I it => help it

| S str => tr := lookup str))
in

case conv main of
I i => (help i; i)

end

The implementation of period for this version is quite similar to the earlier ver-
sions; the only differences are minor changes to reflect the different data structure.



(* period : ITree -> int option *)
fun period (ITree (str,ref (I tl),ref (I tr))) = let
fun bfs [] visited = NONE
| bfs ((ITree (str2,ref (I tl),ref (I tr)),i) :: rest)

visited =
if (str2=str) then SOME i else
if (elem str2 visited) then bfs rest visited
else bfs (rest @ [(tl,i+1),(tr,i+1)]) (str2::visited)

in
bfs [(tl,1),(tr,1)] []

end

This version improves on all of the previous version in that the type system now ensures
that elements of the itree type are all structures and thus the period function for this
variant is guaranteed to terminate for any well-typed input.

Unfortunately, in order to use a data structure-based representation for itree (and
thus, in order to guarantee that period terminates) the type system must also expose
the fact that the data structure is built with refs and therefore allow clients to mutate
the graphs (which is arguably worse than allowing non-termination). Additionally, the
representation exposes the MaybeItree type used in the construction of the tree, even
though a finished tree will never have any children that are S string.3 Because of
this, there are numerous locations in both the link and period code with incomplete
matches since we, the programmers, know better than the type system what is possible.

5 Gradual typing to the rescue

Using Typed Scheme [2] and contract checking, we can build a version of the code that,

– rejects ill-formed inputs to link with proper blame assignment,
– allows the type system to encode the knowledge that the elements of the type are

simple structures (and thus help guarantee period terminates),
– without giving clients the ability to mutate the structure or exposing irrelevant de-

tails of the construction.

The plan is to use code like the second SML version, but improve it via contract
checking and a gradual typing-style cast. Specifically, the itree type is much like
the SML type, but the link function is exported with a type that refines its input to
only accept well-formed graph specifications, and refines its output so that it hides
the mutable nature of the itree type. Even better, the gradual type cast can hide the
superfluous union type (the MaybeItree type in the SML version) from clients of link
and period.

3 In Caml, one can construct a cyclic tree directly which helps avoid the extra union, e.g.:
type itree = { name : string; mutable l : itree; mutable r : itree }

let rec t = { name="a"; l=t; r=t } in t end



5.1 Tree Construction

Type Scheme programs consist of a set of closed, first-order modules that encapsulate
different parts of the program and act as the principals for blame assignment. Each mod-
ule begins with a #lang line indicating the language of the module, in this case #lang
typed-scheme indicates Typed Scheme. Next comes a type declaration for maybe-
itree, saying that it can either be a Symbol or an itree.

(define-type-alias maybe-itree (U itree Symbol))

The itree type is introduced by a structure declaration whose fields are name,
left, and right and have types String, maybe-itree, and maybe-itree respec-
tively. The type maybe-itree is a union which is either a Symbol or an actual itree.
This takes the place of the SML type MaybeItree. Finally, the #:mutable keyword
indicates that the fields can be mutated.
(define-struct: itree ([name : Symbol]

[left : maybe-itree]
[right : maybe-itree])

#:mutable)

In addition to introducing the type itree the define-struct: declaration in-
troduces the constructor function make-itree for making new nodes, the selectors
itree-name, itree-left and itree-right for extracting the value of the fields and
set-itree-left! and set-itree-right! for changing the contents of the left and
right children.

In contrast to the SML and Haskell code, there is no need for a new datatype with
explicit injection and projections for the specification trees. Instead, we simply describe
the type STree as either a Symbol or a list containing a Symbol and two STrees.

(define-type-alias STree
(Rec ST (U Symbol (List Symbol ST ST))))

Next, the function all-valid-links? gives the precise specification for valid in-
puts to link, written in terms of all-nodes and all-links that return all of names
of the nodes and all of the names that refer to other nodes, respectively.

(: all-valid-links? (STree -> Any))
(define (all-valid-links? s)

(: all-nodes (STree -> (Listof Symbol)))
(define (all-nodes s)
(match s
[(list s tl tr)
(cons s

(append
(all-nodes tl)
(all-nodes tr)))]

[s ’()]))



(: all-links (STree -> (Listof Symbol)))
(define (all-links s)
(match s
[(list s tl tr) (append (all-nodes tl) (all-nodes tr))]
[(? symbol? s) (list s)]))

(andmap (λ: ([e : Symbol]) (memq e (all-nodes s)))
(all-links s)))

The type of link exploits all-valid-links? predicate to build a refinement type [3],
in this case refining STree, the input type for the all-valid-links? predicate.

(: link ((Refinement all-valid-links?) -> itree))

The implementation of link is very similar to the SML version earlier. The only
significant change is the use of a mutable hash table instead of the list ref as in the
SML code (simply because this is the idiomatic choice in PLT Scheme code). Hash-
tables in PLT Scheme are constructed with make-hash, updated with hash-set! and
accessed with hash-ref.

(define (link main)
(: memory (HashTable Symbol itree))
(define memory (make-hash))

(: conv (STree -> maybe-itree))
(define (conv s)
(match s
[(list str tl tr)
(let ([t (make-itree str (conv tl) (conv tr))])
(hash-set! memory str t) t)]

[(? symbol? str) str]))

(: ans maybe-itree)
(define ans (conv main))

(: help (itree -> Void))
(define (help t)
(match t
[(struct itree (_ tl tr))
(if (symbol? tl)

(set-itree-left! t (hash-ref memory tl))
(help tl))

(if (symbol? tr)
(set-itree-right! t (hash-ref memory tr))
(help tr))]))

(if (itree? ans)
(begin (help ans) ans)
(error ’link "link as parent")))



We then provide the identifiers from the module that we want other modules to be
able to use. Notably, we do not provide the mutator functions for the itree structure.

(provide (except-out (all-defined-out)
set-itree-name!
set-itree-left!
set-itree-right!))

5.2 Tree Use

In a second module, also written in Typed Scheme, we begin by importing the structure
type from the implementation module.

(require-typed-struct itree ([name : Symbol]
[left : itree]
[right : itree])

"itree.ss")

This specifies that we wish to require all of the relevant identifiers from the
"itree.ss" module, with the appropriate types. The Typed Scheme implementation
automatically inserts gradual typing casts to ensure that these types are upheld by both
parties. Note that the specification of the types excludes the possibility that either the
left or right field of an itree might be a Symbol. Therefore, code in the new module
does not have to deal with this possibility, localizing the implementation details.

Next we refer to the just-imported itree type to require the link function.

(require/typed "itree.ss" [link (STree -> itree)])

This specifies that the link function consumes an STree and produces an itree ac-
cording to the specifications described in the previous require.

We can now define the period function.

(: period (itree -> (U Number #f)))
(define (period it)

(: bfs ((Listof (Pair itree Number)) (Listof Symbol)
-> (U Number #f)))

(define (bfs stack visited)
(match stack
[’() #f]
[(cons (cons (struct itree (str2 tl tr)) i) rest)
(cond
[(eq? str2 (itree-name it)) i]
[(memq str2 visited) (bfs rest visited)]
[else (bfs (append rest

(list (cons tl (add1 i))
(cons tr (add1 i))))

(cons str2 visited))])]))
(bfs (list (cons (itree-left it) 1) (cons (itree-right it) 1))

’()))



This definition never considers the case that an itree might have a Symbol as one
of its children. It is otherwise a simple translation of the SML code, but one that is
guaranteed not to fail at runtime.

We can now use the link function to construct an regular tree from our original
s-expression specification.

(define at (link ’(a (b b c)
(c (d d d)

(e e c)))))

Then the period function determines that the root of the original tree has no path
back to itself, the left subtree has itself as a direct child, and the right subtree’s grand-
child is itself again.

> (list (period at)
(period (itree-left at))
(period (itree-right at)))

(#f 1 2)

If we had incorrectly implemented the link function, the contract checker would
have caught the mistake and properly signaled blame. For example, leaving out the call
to help in the body of link results in this message:

(interface for itree-left) broke the contract

(-> itree? itree?) on itree-left;

expected <itree?>, given: b

This error correctly blames the interface for the import of the itree-rest selector.

6 Conclusion

The use of contracts to mediate between typed and untyped code holds great promise
for enabling migration from scripts to programs. But it also can be used in contexts
where types are already present, and strengthen the guarantees provided by the type
system.

In this paper, we have described a simple problem involving the construction and
processing of regular trees, and implemented solutions in three languages: Haskell,
SML and Typed Scheme. In the Typed Scheme solution, we are able to avoid the infi-
nite trees of the Haskell and lazy SML versions, and avoid the unnecessary wrapping
of both the SML data definitions. We are left with a simple data definition for clients,
with the complexity of construction hidden behind the module boundary and enforced
by Typed Scheme in conjunction with the PLT Scheme contract system.

Acknowledgments

Many thanks to Matthias Felleisen, Jesse Tov, Fritz Henglein, Felix Klock, and the
STOP 2009 anonymous reviews for their feedback on this paper.



References

1. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25(2)
(March 1983) 95–169

2. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to programs. In:
OOPSLA ’06: Companion to the 21st ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, Languages, and Applications, New York, NY, USA, ACM Press (2006)
964–974

3. Freeman, T., Pfenning, F.: Refinement types for ml. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation. (1991) 268–277


	Cycles without pollution: a gradual typing poem
	Sam Tobin-Hochstadt and Robert Bruce Findler

