
���������	�
	�������

����

PC: Amal Ahmed SC: Matthias Felleisen
Robby Findler (chair) Cormac Flanagan
Fritz Henglein Nate Nystrom
Gavin Bierman Jan Vitek
Gilad Bracha Philip Wadler
Jeff Foster Tobias Wrigstad
Peter Thiemann
Sam Tobin-Hochstadt

Organizers: Tobias Wrigstad and Jan Vitek

Schedule
Schedule . 3

8:30 am – 10:30 am:
Invited Talk: Scripting in a Concurrent World 5

Language with a Pluggable Type System and Optional
Runtime Monitoring of Type Errors 7

Position Paper: Dynamically Inferred Types for Dynamic
Languages . 19

10:30 am – 11:00 am: Coffee break

11:00 am – 12:30 pm:
Gradual Information Flow Typing . 21

Type Inference with Run-time Logs 33

The Ciao Approach to the Dynamic vs. Static Language
Dilemma . 47

12:30 am – 2:00 pm: Lunch

Invited Talk: Scripting in a Concurrent World

John Field

IBM Research

As scripting languages are used to build increasingly complex systems, they must even-
tually confront concurrency. Concurrency typically arises from two distinct needs: han-
dling “naturally” concurrent external (human- or software-generated) events, and en-
hancing application performance. Concurrent applications are difficult to program in
general; these difficulties are multiplied in a distributed setting, where partial failures
are common and where resources cannot be centrally managed. The distributed sys-
tems community has made enormous progress over the past few decades designing
specialized systems that scale to handle millions of users and petabytes of data. How-
ever, combining individual systems into composite applications that are scalable—not
to mention reliable, secure, and easy to develop maintain—remains an enormous chal-
lenge. This is where programming languages should be able to help: good languages
are designed to facilitate composing large applications from smaller components and
for reasoning about the behavior of applications modularly. In this talk, I will discuss
some of the challenges inherent in building distributed and concurrent applications, and
discuss how scripting languages could evolve to address these challenges. I will illus-
trate some of the ideas using examples from the Thorn programming language, which
is being developed jointly by IBM and Purdue University.

The work on Thorn is joint with B. Bloom, B. Burg, J. Dolby, N. Nystrom, J. Östlund,
G. Richards, R. Strnisa, E. Torlak, J. Vitek, and T. Wrigstad.

Bio: John Field is a Research Staff Member at IBM’s T.J. Watson Research Center and
manager of the Advanced Programming Tools Group. He received a Ph.D. from Cornell
University in 1991, where he was a member of the team that built the Synthesizer Gen-
erator, a multi-lingual IDE that was subsequently developed into a suite of programming
productivity tools by Grammatech, Inc. At IBM, his research has centered on the design
of tools and programming models for large software systems, with the aim of increasing
programmer productivity and software quality. Most recently, his work has focused on
tools and programming models for distributed and concurrent applications. Tools and
techniques developed by the Advanced Programming Tools Group have been incorpo-
rated into a number of IBM application development products, including the VisualAge
Cobol suite, the VisualAge Y2K Analysis and Remediation Toolkit (which received an
Outstanding Technical Achievement Award from IBM), IBM DB2’s Database Migra-
tion Toolkit, and IBM Rational’s AppScan DE web security tool.

5

Language with a Pluggable Type System and Optional
Runtime Monitoring of Type Errors

Jukka Lehtosalo and David J. Greaves

University of Cambridge Computer Laboratory
firstname.lastname@cl.cam.ac.uk

Abstract. Adding a static type system to a dynamically-typed language can be
an invasive change that requires coordinated modification of existing programs,
virtual machines and development tools. Optional pluggable type systems do not
affect runtime semantics of programs, and thus they can be added to a language
without affecting existing code and tools. However, in programs mixing dynamic
and static types, pluggable type systems do not allow reporting runtime type er-
rors precisely. We present optional runtime monitoring of type errors for tracking
these errors without affecting execution semantics. Our Python-like target lan-
guage Alore has a nominal optional type system with bindable interfaces that can
be bound to existing classes by clients to help the safe evolution of programs and
scripts to static typing.

1 Introduction

Dynamic typing enables high productivity for scripting, but it does not scale well to
large-scale software development. Adding an optional static type system that allows
gradually evolving a dynamically-typed program to a statically-typed one has been pro-
posed as a solution to this problem [15–18].

Several factors make adding static type checking to a mature dynamically-typed
language such as Python challenging. Adding the type system is an invasive change
that affects the language in fundamental ways. All the tooling from virtual machines,
compilers, debuggers to integrated debugging environments needs to be updated to be
aware of the static type system.

This objection can be dealt with, in part, by using an optional pluggable type sys-
tem that does not affect the runtime semantics of the language: existing tooling that is
not aware of the type system can still be used, although with potentially limited effec-
tiveness. Thus there is a migration path to static typing that does not require drastic
changes to the infrastructure. This is analogous to GJ [5] and Java generics, which aug-
mented the Java type system while retaining runtime semantics that are compatible with
previous Java and JVM versions.

Gradual types [15, 16, 19] and contracts [7] enable type errors and blame to be
tracked in the boundary between static and dynamic typing, but since an error causes the
program to be terminated, this affects program semantics. A common objection against
previous pluggable type systems [3, 4] was that they do not define how to detect these
kinds of errors. We propose using optional runtime monitoring of type errors to find

7

runtime type violations automatically, without having to modify the language seman-
tics. A runtime debugger detects and reports type errors, but it allows continuing the
program execution after runtime type errors.

Python is a complex language and has extensive dynamic features such as eval
that make it difficult to retrofit it with static typing. As a result, either the type system
will fail to properly support some language functionality or the type system has to be
very sophisticated to deal with the language complexity. A complicated type system
increases the effort of updating and maintaining all the tooling, and acts as a barrier of
entry for existing programmers.

As a step towards solving the above objection, we have decided to use as our vehicle
for exploration a language that is semantically easier to deal with than Python, but
which shares many interesting properties with Python. Although in many ways similar
to Python, our target language Alore also diverges from it in several ways to enable
designing a simple but useful type system. An implemention of the dynamically-typed
subset of Alore with extensive documentation is available for download1.

Finally, existing libraries and frameworks for a mature language are often difficult
to retrofit with static typing, due to heavy reliance on dynamic language features. We
have also implemented a core standard library for our language, inspired by the Python
standard library, to enable experimenting with realistic programs. In contrast to Python,
a relatively simple type system is sufficient for adding static types to the library.

In Section 2, we formalise the core language FJ? that is semantically equivalent to a
subset of Alore, our target language. It is very similar to Featherweight Java (FJ) [10],
but it supports mixing dynamically-typed and statically-typed code. The formalisation
includes a very simple pluggable type system.

Section 3 describes optional runtime monitoring for reporting runtime type errors
in FJ? programs and discusses its properties. Section 4 indicates how the type system
and runtime monitoring system for the core calculus can be extended to support Alore.

Alore includes many features of Python while supporting optional static typing. In
Section 5 we compare our language with Python, focusing on features that affect the
type system. Finally, section 6 discusses related work, and Section 7 presents conclu-
sions and directions for future work.

2 Core Language

A program in our core language FJ? consists of a sequence of mutually recursive class
definitions L and a single expression e.2 It supports classes with fields (f or g), a con-
structor (K) and methods (M), recursion through the this object, casts, inheritance and
method overriding. Figure 1 defines the syntax of FJ?. The use of Java-like syntax
throughout this paper highlights the similarity to FJ. All FJ? programs can be trivially
translated to the Alore syntax.

C and D range over class names, and a type (T, S or U) is either a class name or the dy-
namic type ‘?’. The set of variables (x) also includes this. The class Object is the top

1 http://www.alorelang.org/
2 The name FJ? was also used by Ina and Igarashi [11] for FJ extended with gradual typing. Our

approach is similar to theirs, but it uses semantics-preserving tracking of runtime type errors.

8

L ::= class C extends C { T f; K M; }
K ::= C(T f) { super(f); this.f=f; }
M ::= T m(T x) { return e; }
e ::= x | e.f | e.m(e) | new C(e) | (T)e

Fig. 1. Syntax of FJ?.

of the inheritance hierarchy. Several notational conventions simplify the presentation. x
stands for the sequence x1, . . . , xn. The comma operator is also used for sequence con-
catenation. C f is shorthand for C1 f1; . . . ; Cn fn. Similarly, we use this.f=f to mean
this.f1=f1; . . . ; this.fn=fn. Note that we omit several basic consistency assump-
tions in the rules for simplicity (fields cannot be overridden, inheritance hierarchies
must not form cycles, all class and variables names must be bound, method and field
names must be distinct, etc.). Any type declarations can be omitted, and these types
are implicitly defined as ‘?’. The formalisation, however, assumes that all types are
explicitly given.

Subtyping is based on inheritance. Like Siek and Taha [15] in their gradual type sys-
tem, we use a consistency relation to determine the compatibility of types in addition to
ordinary subtyping. The consistency relation ∼ is used for defining type compatibility.
The ? type is consistent with every other type. The . relation models consistency or
subtyping. Rules for subtyping (<:), consistency (∼) and consistent-or-subtype (.) are
given below:

T<: T
S<: T T<: U

S<: U
class C extends D { . . . }

C<: D

T∼ T T∼? ?∼ T
S<: T
S. T

S∼ T

S. T

The auxiliary function fields(C) = T f gives the field names and their types of class
C. mtype(m,C) = T→ T gives the signature of method m of class C. mbody(m,C) = x .e
gives the body e and arguments x of a method. We omit the definitions of these func-
tions; they are identical to FJ.

The type system is nominal, class-based with single inheritance. It is similar to
Java in the hope of making it easy to adopt by programmers familiar with Java. Un-
like Python, the language has cast expressions. The type ? enables statically-typed and
dynamically-typed code to be mixed.

Figure 2 defines the evaluation rules for the language. These are equivalent to Feath-
erweight Java except for the rule DYCAST. It causes dynamic casts to be ignored during
evaluation – they only affect type checking. It is notable that the evaluation rules never
refer to the statically declared types of fields or methods.

Figure 3 presents selected typing rules of the core language that differ from FJ. All
operations are permitted on values of type ?. As result, every valid FJ? program type-
checks even when it is type-erased by replacing all declared types with the ? type. Fully
typed FJ? programs with no ? types inherit the type safety property of FJ [10].

Like FJ, the T-METHOD rule requires the signature of a method that overrides a
superclass method to be equal to the superclass method signature. We could relax this

9

fields(C) = T f

new C(e).fi −→ ei
(R-FIELD)

mbody(m,C) = x .e0

new C(e).m(d)−→ [d/x,C(e)/this]e0
(R-INVK)

C<: T
(T)new C(e)−→ new C(e)

(R-CAST) (?)new C(e)−→ new C(e) (R-DYCAST)

e0 −→ e′0
e0.f−→ e′0.f

(RC-FIELD)
e0 −→ e′0

e0.m(e)−→ e′0.m(e)
(RC-INVK-RECV)

ei −→ e′i
e0.m(. . . ,ei, . . .)−→ e0.m(. . . ,e

′
i, . . .)

(RC-INVK-ARG)

ei −→ e′i
new C(. . . ,ei, . . .)−→ new C(. . . ,e′i, . . .)

(RC-NEW-ARG)
e0 −→ e′0

(T)e0 −→ (T)e′0
(RC-CAST)

Fig. 2. Reduction rules for FJ?.

Expression typing:
Γ ` e : ?

Γ ` e.f : ?
(T-DYFIELD)

Γ ` e : ? Γ ` e : T
Γ ` e.m(e) : ?

(T-DYINVK)

Γ ` e : C mtype(m,C) = S→ T Γ ` e : T T. S

Γ ` e.m(e) : T
(T-INVK)

fields(C) = S f Γ ` e : T T. S

Γ ` new C(e) : C
(T-CREAT)

Γ ` e : T
Γ ` (?)e : ?

(T-DYCAST)

Γ ` e : ?
Γ ` (C)e : C

(T-DYCAST2)

Method typing:
x : T,this : C ` e0 : S0 S0 . T0 class C extends D { . . . }

if mtype(m,D) = U→ U0, then T= U and T0 = U0

T0 m(T x) { return e0; } OK IN C
(T-METHOD)

Fig. 3. Selected typing judgments for FJ?.

requirement to only require consistency, but we have declined to do so to let us use a
very straightforward implementation of runtime monitoring of type errors in the next
section.

The full Alore language supports assignment, if, while and for statements, excep-
tions and other features, but FJ? highlights important aspects of the Alore type system.

3 Optional Runtime Monitoring

When a dynamically-typed value is bound to a statically-typed variable, which we call
crossing the dynamic-static boundary, we would like to verify that the dynamic type

10

matches the static type at runtime. However, the semantics of FJ? do not generally allow
this, and type errors may be silently ignored or discovered only later in the program
execution, making debugging difficult.

We propose adding an optional runtime-type-error monitoring system that tracks
these kinds of type violations by adding type guards (described later in this section),
wrapper functions or wrapper objects when necessary to track type errors that may
happen when or after crossing the dynamic-static boundary (similar in spirit to gradual
typing [15] and contracts [7]). Unlike previous work, the monitoring is independent of
the runtime semantics of the programming language.

In particular, the monitoring system logs detected type errors (to a file or to a ter-
minal, for example), but the program execution is unaffected by them (unless the type
error was also caught by the runtime semantics). It is important that the program can-
not respond to the logged type errors, at least without examining the file system or the
environment in a non-portable fashion. As an important implementation detail, the log
size must be capped – otherwise the log file of a long-running program may fill the file
system, making the monitoring system not quite semantics-preserving!

A pluggable type system does not enforce any particular method for tracking run-
time type errors that are not caught by the runtime semantics. Different virtual ma-
chines can support different mechanisms. Even the context might be relevant: type er-
rors within or between certain modules could be suppressed at the will of the program-
mer, if some modules have not been yet fully adapted to the type system, for example.

A monitoring system We present a simple runtime monitoring system for FJ? below.
It is based on a guard insertion transformation Γ ` e e′ : T, which translates FJ?

expressions to FJ?
G, which is FJ? augmented with guarded expressions 〈C〉e and guarded

method invocations 〈e.m(e)〉T. Guards resemble casts, but they only log any detected
type errors (or report them as warnings) and allow the program execution to always
continue.

If the base type of a method invocation is known during type checking, we insert
runtime guards 〈·〉 for arguments using a 〈〈T⇐ S〉〉 form, but to limit the number of
guards, only when we cannot statically check the compatibility of the types:

Γ ` e : C mtype(m,C) = S→ S Γ ` e : T T. S

Γ ` e.m(e) e.m(〈〈S1⇐ T1〉〉e1, . . .) : S

The 〈〈. . .〉〉 form is just a notational convenience and can be simplified away or
replaced with a guard during the transformation. We use =⇒ to represent this transfor-
mation (note that T may be ? in G-INSERT):

D<: C
〈〈C⇐ D〉〉e=⇒ e

(G-IGNORE1)
T≮: C

〈〈C⇐ T〉〉e=⇒ 〈C〉e (G-INSERT)

〈〈?⇐ T〉〉e=⇒ e (G-IGNORE2)

A few interesting new evaluation rules are needed for the guards. A successful guard
is ignored, while a failed guard causes an error to be logged. However, unlike a failed
cast, a failed guard does not terminate the evaluation of the program:

C<: D
〈D〉new C(e)−→ new C(e)

C≮: D log error

〈D〉new C(e)−→ new C(e)

11

Inserting guards to method invocations with base type ? is postponed until eval-
uation, as shown below. Note that a guarded method invocation 〈e.m(e)〉T is distinct
from guarded expressions and has a different evaluation rule. We omit the transforma-
tion rules for new expressions and method bodies; these are straightforward. Here is the
transformation rule for guarded method invocations:

Γ ` e : ? Γ ` e : T
Γ ` e.m(e) 〈e.m(e)〉T : ?

The evaluation rule for guarded method invocation looks up the method signature
based on the runtime type and inserts necessary guards for the arguments:

mtype(m,C) = S→ S

〈new C(e).m(e)〉T −→ new C(e).m(〈〈S1⇐ T1〉〉e1, . . .)

The system outlined above reports a runtime error for all programs that bind an
instance of an incompatible type to a typed variable at runtime. After reporting the first
runtime type error, the declared types do not always hold any more: a variable may have
a reference to a value of an invalid type. In order to avoid getting multiple reports from
a single error, we only verify type errors in the dynamic-static boundary. Thus some
subsequent but related type errors within a statically-typed section of a program may be
suppressed.

We can alter the system slightly to catch all runtime type errors, at the cost of intro-
ducing a potentially large number of additional type guards (and reported type errors),
by replacing the rules G-INSERT1 and G-IGNORE with this new rule:

〈〈C⇐ T〉〉e=⇒ 〈C〉e (G-INSERT’)

Alternatively, we could start using guards inserted by the rule G-INSERT’ only after
encountering the first runtime type error. This would catch exactly the same errors as al-
ways using G-INSERT’, but we would need to have two representations of the program
and the ability to switch between them during program execution.

Discussion This approach has a number of benefits. As monitoring is optional, we still
enable a simple, purely dynamically-typed implementation to run all programs. Thus
also the type system can be purely optional. Of course, a dynamically-typed implemen-
tation will not report all runtime type errors, or error messages may show up far away
from the actual source of the error. Many scripting languages have multiple indepen-
dent implementations. For example, Python has C, JVM and .NET implementations
(and more). Not all of the implementation maintainers have to spend the effort of im-
plementing runtime type monitoring, which can be considerable for a more complex
language and type system.

Runtime monitoring enables reporting type errors in the boundary of statically-
typed and dynamically-typed code, similar to gradual typing. Multiple configurable
and pluggable monitoring implementations may be available, since they all retain the
dynamically-typed semantics (modulo the details of error logging).

Novice or casual programmers do not have to learn the type system to use statically-
typed code; they can safely strip away or ignore all type annotations in statically-typable

12

code and incorporate it in their dynamically-typed programs. If a type system is manda-
tory, it is also almost essential for programmers to understand it, or they may have dif-
ficulty interacting with statically-typed code, including library code that is statically
typed.

More complex type systems than our FJ? require adding potentially long-lived ob-
ject or function wrappers to track runtime type errors precisely as values are passed
across the static-dynamic boundary. These may impose a significant performance over-
head for certain implementations. High-performance Alore implementations do not
have to support runtime monitoring of type errors, or the support may be limited. During
development, a less efficient implementation with better error reporting can be used.

Practical experience with using the monitoring system is needed to evaluate the dif-
ferent guard insertion strategies outlined above, and how they affect the implementation
of virtual machines and compilers.

4 Extending the Type System

The core type system presented above does not model many interesting aspects of
Alore. In this section we informally describe additional features that we feel are impor-
tant additions for a Python-like language. These features are based on insights gained
from implementing a pluggable type system for Alore that uses static analysis for infer-
ring types. The complexity and poor scaling behaviour of global type inference directed
us to adopt our current approach with explicit type annotations.

Bindable interfaces Alore supports explicit named interfaces. Alore classes can be
extended with new interface mappings by clients, outside the class definition. This gives
us some benefits of structural subtyping in a nominal type system. We call this feature
bindable interfaces.

Dynamically-typed code often takes advantage of implicit, ad-hoc interfaces (“duck
typing”), that were not envisaged by the implementers of classes. For example, consider
a function that can deal with any objects that have a close() method (note that we use
a slightly more Python-like syntax in this section):

def finish(o) { o.close(); }

We can define an interface and bind it to any classes that happen to implement this
method using a bind declaration, even if the original implementers did not foresee
this possibility, and without needing to modify the source code or definitions of these
classes. In the example below, we assume that classes Stream and ServerSocket

provide close():

interface Closeable {

bind Stream;

bind ServerSocket;

def close() : () -> Unit;

} ...

def finish(o) : (Closeable) -> Unit { o.close(); }

13

Now finish accepts one argument of type Closeable. If finish is called with a
dynamically-typed argument that does not implement Closeable but supports close(),
the runtime monitoring system will log an error, but the call will succeed. Adding new
interface declarations to existing dynamically-typed programs is safe, even if some type
declarations or interface bindings turn out to have errors that were not caught in testing.

Bindable interfaces can also be used as a partial replacement for union types. For
example, consider a variable that can hold either an Int or a Str object (both types are
built-in). Int and Str are unrelated types, but we can define an interface IntOrStr,
and bind it to the built-in types Int and Str:

interface IntOrStr {

bind Int;

bind Str;

} ...

IntOrStr x; Str s;

x = 1; x = "s"; s = (Str)x; // No type errors

The interface IntOrStr could define functionality supported by both Int and Str

(in this example, it has no methods). A cast expression can be used to get back to the
Int or Str type. This is more descriptive and statically catches more programming
errors than using the type Object or ? to hold the heterogeneous reference x.

Intersection types Our semantics do not support Java-style method overloading based
on method signatures, since signatures can be erased during evaluation. An overloaded
method can, however, be represented using an intersection type [14]: a single imple-
mentation can have multiple types. For example, a multiply-and-add method accepts
both integer and floating point arguments:

: (Int, Int, Int) -> Int

: (Float, Float, Float) -> Float

def mulAdd(x, y, z) {

return x * y + z;

}

The method mulAdd has an intersection type with two components; it can be in-
voked either with 3 Int or 3 Float arguments. Note that the Java-style method syntax
of FJ? is inconvenient for representing intersection types.

We must restrict intersection types somewhat compared to static method overload-
ing in Java. The runtime monitoring system only sees runtime types of the arguments,
and it must be able to deduce the called signature from the runtime types uniquely. So
if B inherits A, we cannot generally have an intersection type (A)→ X∧ (B)→ Y, since
the return type is not unique when the argument has runtime type B: we could use either
of the items in the intersection type.

Intersection types are also useful for representing callable, function-like objects.
Each Alore class is represented by an object of type Type, similar to the Python type
type. Applying a Type object constructs instances of the type, without requiring a
keyword such as new. A type object can also be used for querying the runtime type

14

inclusion of values. Type objects can be assigned to variables and manipulated like any
other values:

? t = Int; // Declare t, initialize to type object Int

t("15"); // Evaluates to Int instance 15

3 instanceof t; // True

We model the above behaviour by giving type objects an intersection type. A valid
type for variable t in the example is Type∧ (Str)→ Int (here→ binds more tightly
than ∧). The Type component enables us to use the instanceof operator while the
second component allows application. Function objects can also be applied, but they are
not types and cannot be used as the right operand of instanceof. A similar function
object would have a type Function∧ (Str)→ Int or simply (Str)→ Int.

Genericity Support for generic types and generic functions is important for static type
safety of container types. Casts and the ? type can be used to work around the lack of
genericity, but at the cost of sacrificing some static type safety.

Different runtime monitoring implementations might check generic types in differ-
ent ways. Type errors in generic container items could be checked eagerly (verifying the
contents of a dynamically-typed container when binding to a statically-typed variable)
or lazily (only when reading or modifying the container). Combining runtime monitor-
ing of type errors with genericity and intersection types is not yet well-understood.

Arbitrary mixing of dynamic and static types For simplicity, FJ? does not allow a
method with ? types in the signature to override a statically-typed method, or vice versa.
To support that, the runtime monitoring system can use techniques similar to Siek and
Taha’s gradual typing for objects [15], but adapted to a nominal type system.

Tuple types We include first-class tuple types as a straightforward extension, as tuples
are common in idiomatic Python and Alore programs.

5 Comparison with Python

In this section we compare Alore with Python to highlight common features and dif-
ferences. Other imperative scripting languages such as Ruby and Lua also share many
of the common properties. Alore has enough convenience features for practical exper-
imentation using fairly complex programs, and as we showed in Section 2, Alore is
well-suited for formal study of pluggable type systems.

Common properties In both Alore and Python, every value is a reference to a class
instance. Both languages use call by value. There is no semantic difference between
values of primitive and class-based types, unlike Java, so there is no need for boxing
and unboxing in the semantics.

Alore and Python have similar sets of basic program structuring primitives (vari-
ables, expressions, statements, functions, classes with single dispatch, modules and ex-
ceptions). They also share a similar expression syntax, similar basic types (but Alore
has fewer) and similar programming idioms related to basic types. For example, re-
turning multiple values from a function is implemented as returning a tuple. Parallel

15

assignment is supported for tuples and array-like sequences. Neither Alore nor Python
has separate types for characters and strings. Array-like and hash-table-like containers
are used more commonly than linked lists.

Differences Unlike Python, Alore classes and objects currently do not allow members to
be added or redefined at runtime. Python also has a very general eval and introspection
capabilities in the built-ins, while Alore has more restricted introspection capabilities.
We argue that not only does this simplify adding static types and runtime monitoring
of type errors to Alore, but it also improves runtime efficiency, supports concurrency
more naturally and is preferable from a software engineering point of view by making
large programs easier to understand and maintain. We are planning to add support for
additional dynamic features to Alore, but only when their undesirable effects can be
isolated from those parts of a program that do not use these features.

The Python standard library3 contains commonly-used features that are subtly dif-
ficult to model precisely in a type system. For example, file object construction could
benefit from dependent types: open(’f.ext’, ’r’) constructs a file object that pro-
duces str objects, but after changing the call slightly to open(’f.ext’, ’rb’), the
resulting object produces bytes objects. In contrast, Alore has separate constructors for
binary and text files. We have designed the Alore standard library carefully to provide
static type safety with a relatively simple type system. Only inherently dynamic library
functionality such as reflection use the ? type.

6 Related Work

The Strongtalk variant of Smalltalk [4] has a pluggable type system based on structural
subtyping. Bracha [3] argues for pluggable type systems, and some of his arguments
are similar to ours. Our biggest contributions over previous work on pluggable types
are the use of optional runtime monitoring to track type errors across the static-dynamic
boundary and the introduction of bindable interfaces.

Our runtime monitoring was inspired by Siek and Taha’s gradual typing [16, 15] and
Findler and Felleisen’s contracts for higher-order functions [7]. They have some similar
goals as our system, but they use runtime type checking that affects the semantics of
programs and causes programs to terminate on type errors. Our approach also resembles
tools such as Valgrind [12] that allow instrumenting programs in order to detect various
runtime errors, while otherwise retaining the original program semantics.

The concept of blame can be used to track the origin of type errors in a mixed
type system [7, 19]. Gray et al. [9] use contracts with blame tracking for detecting
and reporting runtime type errors in a system for Java-Scheme interoperability. Typed
Scheme [18] enables mixing dynamically-typed and statically-typed modules in the
same program, and provides support for contracts and blame, but the language lacks
object-oriented features.

Ina and Igarashi [11] extend FJ with gradual typing, and their work has many simi-
larities with our FJ?. They also discuss the addition of generics to a gradual type system.

3 We are referring to Python 3.x, which is significantly different from previous Python versions.

16

Ahmed et al. [1] add parametric polymorphism to a system resembling gradual types
using sealing. Their system also supports blame.

Cecil [6], Thorn [2] and Boo [13] are examples of languages that support mixing dy-
namic and static typing, but with mandatory type systems that affect execution seman-
tics. Cecil is an object-based language based on multiple dispatch. Cecil allows adding
new supertypes, including new inherited features, to existing types. This precludes sepa-
rate compilation, unlike our bindable interfaces. Cecil does not track runtime type errors
at the dynamic-static boundary, and in this respect the type system is optional. Boo is
class-based language for the CLI with a syntax that resembles Python, but Boo’s basic
types and library functionality are mostly inherited from the .NET framework. Thorn
is a class-based language for the JVM. Thorn supports “like types” [21] for mixing dy-
namic and static types. They resemble our pluggable types without runtime monitoring:
static type checking does not guarantee the absence of runtime type errors when using
like types, and no wrappers are required at runtime.

Wright and Cartwright developed a soft type system for Scheme [20] that uses static
analysis to remove redundant runtime type checks from dynamically-typed programs.
Furr et al. [8] use profile-guided static analysis to find type errors in Ruby programs.
Using whole-program static analysis for type checking makes it difficult to predict the
impact of even small program changes, resulting in brittle systems that can be difficult
to use. We experimented with static analysis before adopting our current approach.

7 Conclusions and Future Work

We formalised a pluggable type system for an extension of FJ and showed how plug-
gable type systems can be extended with runtime monitoring of type errors in the spirit
of gradual typing. We also discussed extending the pluggable type system to a Python-
like language.

This is still work in progress. A potential next step is to formalise the runtime moni-
toring of type errors for the extended type system, to add support for blame and to prove
properties of the extended system. We will also implement a type checker and runtime
monitoring system for the extended type system. Finally, we plan to translate existing
Python programs to Alore and adapt them to static typing to assess the practicality of
our approach.

Acknowledgements

We thank Alan Mycroft and the anonymous reviewers for valuable feedback on earlier
drafts of this paper. This research was supported by the Academy of Finland, the Emil
Aaltonen Foundation and the Engineering and Physical Sciences Research Council.

References

1. Ahmed, A., Findler, R.B., Matthews, J., Wadler, P.: Blame for all. In: STOP ’09: Proceedings
for the 1st workshop on Script to Program Evolution. pp. 1–13 (2009)

17

2. Bloom, B., Field, J., Nystrom, N., Östlund, J., Richards, G., Strniša, R., Vitek, J., Wrigstad,
T.: Thorn: robust, concurrent, extensible scripting on the JVM. In: OOPSLA ’09: Proceeding
of the 24th ACM SIGPLAN conference on Object oriented programming systems languages
and applications. pp. 117–136 (2009)

3. Bracha, G.: Pluggable type systems. In: OOPSLA Workshop on Revival of Dynamic Lan-
guages (2004)

4. Bracha, G., Griswold, D.: Strongtalk: typechecking Smalltalk in a production environment.
In: OOPSLA ’93: Proceedings of the eighth annual conference on Object-oriented program-
ming systems, languages, and applications. vol. 28, pp. 215–230 (October 1993)

5. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the future safe for the past:
adding genericity to the Java programming language. In: Proceedings of the 13th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications.
pp. 183–200. OOPSLA ’98 (1998)

6. Chambers, C., the Cecil Group: The Cecil language: Specification and rationale. Tech. rep.,
Department of Computer Science and Engineering, University of Washington (February
2004)

7. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP ’02: Proceed-
ings of the seventh ACM SIGPLAN international conference on Functional programming.
vol. 37, pp. 48–59 (September 2002)

8. Furr, M., An, J.h.D., Foster, J.S.: Profile-guided static typing for dynamic scripting lan-
guages. In: OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications. pp. 283–300 (2009)

9. Gray, K.E., Findler, R.B., Flatt, M.: Fine-grained interoperability through mirrors and con-
tracts. In: Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. pp. 231–245 (2005)

10. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java
and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

11. Ina, L., Igarashi, A.: Towards gradual typing for generics. In: STOP ’09: Proceedings for the
1st workshop on Script to Program Evolution. pp. 17–29 (2009)

12. Nethercote, N., Seward, J.: Valgrind: A Program Supervision Framework. Electronic Notes
in Theoretical Computer Science 89(2), 44–66 (October 2003)

13. de Oliveira, R.B., et al.: The Boo programming language (2011), http://boo.codehaus.
org/

14. Pierce, B.C.: Programming with intersection types, union types, and polymorphism. Tech.
Rep. CMU-CS-91-106, Carnegie Mellon University (February 1991)

15. Siek, J., Taha, W.: Gradual typing for objects. In: ECOOP ’07. pp. 2–27 (2007)
16. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and Functional

Programming Workshop (September 2006)
17. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to programs. In:

OOPSLA ’06: Companion to the 21st ACM SIGPLAN symposium on Object-oriented pro-
gramming systems, languages, and applications. pp. 964–974 (2006)

18. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed Scheme. In:
POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. pp. 395–406 (2008)

19. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: ESOP ’09: Proceedings
of the 18th European Symposium on Programming Languages and Systems. pp. 1–16 (2009)

20. Wright, A.K., Cartwright, R.: A practical soft type system for Scheme. ACM Trans. Program.
Lang. Syst. 19(1), 87–152 (January 1997)

21. Wrigstad, T., Nardelli, F.Z., Lebresne, S., Östlund, J., Vitek, J.: Integrating typed and untyped
code in a scripting language. In: POPL ’10: Proceedings of the 37th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 377–388 (2010)

18

Position Paper: Dynamically Inferred Types for
Dynamic Languages

Jong-hoon (David) An1, Avik Chaudhuri2, Jeffrey S. Foster3, and
Michael Hicks3

1 Epic Systems Corporation, Madison, WI, USA
2 Advanced Technology Labs, Adobe Systems, San Jose, CA, USA

3 University of Maryland, College Park, USA

Over the past few years we have been developing Diamondback Ruby (DRuby),
a tool that brings static type inference to Ruby [1], a dynamically typed, object-
oriented language. Developing DRuby required creating a Ruby front-end, which
was extremely challenging: like other dynamic languages, Ruby has a complex,
yet poorly documented syntax and semantics, which we had to carefully reverse-
engineer. Writing our front-end took well over a year, and now that Ruby 1.9 is
available, we are faced with the daunting prospect of significant additional effort
to discover how the language has changed and to extend our front-end accord-
ingly. We suspect that maintaining a static analysis system for other dynamic
languages, such as Perl or Python, is similarly daunting.

To remedy this situation, we recently introduced a new program analysis
technique for dynamic languages: constraint-based dynamic type inference, which
requires no language front-end, but instead uses introspection features to gather
information at run time and infer static types [2]. More precisely, at run-time
we introduce type variables for fields, method arguments, and method return
values. As values are passed to those positions, we dynamically wrap them in
proxy objects to track the associated type variables. We also allow methods to
have trusted type annotations, which are maintained dynamically at run time.
As wrapped values are used, we generate subtyping constraints on the associated
type variables. We solve those constraints at the end of one or more program
runs, which produces a satisfying type assignment, if one exists. Importantly,
despite relying on dynamic runs, we can prove a soundness theorem: if the dy-
namic runs from which types are inferred cover every path in the control-flow
graph of every method of a class, then the inferred types for that class’s fields
and methods are sound for all possible runs. (Currently, this coverage criterion
must be checked manually, though we could potentially automate the check.)
Note this coverage criterion is in contrast to requiring that every program path
is covered.

We have implemented this technique for Ruby, as a tool called Rubydust
(where “dust” stands for dynamic unraveling of static types). An important
property of Rubydust is that, rather than a standalone tool, it is a Ruby library
that is loaded at run-time just like any other library. To operate, Rubydust
uses Ruby’s rich introspection features to wrap objects, intercept method calls,
and store and retrieve any type annotations supplied by the programmer. Thus
far, we have run Rubydust on a number of small programs, and have found

19

that Rubydust produces correct, readable types. We expect that our approach
could be implemented in the same way in other languages that have sufficient
introspection facilities.

We believe that it is worth exploring whether constraint-based dynamic type
inference is a practical means to adding static typing support to dynamic lan-
guages. In particular, we believe that users will often want to develop their
scripts without types at first, and then might like to add types (as checked an-
notations) later. Constraint-based dynamic type inference could be quite useful
for discovering possible annotations automatically. We would hope that Ruby-
dust’s approach, made practical, could be applied to other dynamic languages
such as Python or Perl, and to gradually typed languages such as ActionScript.

Before we can claim victory, however, there are a number of challenges that
require further research. We list a few here. First, Rubydust’s performance over-
head is significant: an instrumented program can be as much as 1000× slower
than the uninstrumented original. We believe the major source of slowdown is in
the additional levels of indirection introduced by wrapping all objects. Thus we
are currently investigating ways to improve performance by integrating wrap-
ping directly into the Ruby interpreter. Second, Rubydust’s inference is currently
limited to nominal and structural types involving unions; Rubydust cannot infer
intersection or polymorphic types, though it can understand such types in an-
notations. Our experience with DRuby gives us reason to believe that inferring
intersection and polymorphic types would be very useful, but it makes the infer-
ence problem significantly harder. Third, inference relies on instrumenting the
running program, but some type-relevant events escape instrumentation. In par-
ticular, we know of no way to intercept calls to blocks (i.e., closures), nor do we
yet know how to reinstrument a program after it has called eval to create new
code or definitions. (We suspect this might be accomplished by redefining eval,
though we have not worked out the details.) Finally, we wish to understand the
practical benefits of types: once we have them, what do we do with them? One
possibility is to check them, e.g., at method call boundaries. This would per-
mit reporting errors earlier, and the results might be more informative. Another
question is whether we have chosen the right design point for our type language:
should types be more expressive, to convey richer properties, or perhaps less
expressive, so they are easier to read? When are programmers most interested
in types, e.g., during maintenance, or during initial development? Many of these
questions require careful human studies, which we plan to undertake once we
have worked out some technical issues.

References

1. Michael Furr. Combining Static and Dynamic Typing in Ruby. PhD thesis, Univer-
sity of Maryland, College Park, 2009.

2. Jong hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. Dy-
namic Inference of Static Types for Ruby. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), Austin, TX, USA, January 2011.

20

Gradual Information Flow Typing

Tim Disney and Cormac Flanagan

University of California Santa Cruz

Abstract. We present a method to support the gradual evolution of
secure scripts by formalizing an extension of the simply-typed lambda
calculus that provides information flow constructs. These constructs al-
low initially insecure programs to evolve via targeted refactoring and to
provide dynamic information flow guarantees via casts, as well as static
information flow guarantees via labeled types.

1 Introduction

Several decades of software engineering experience has demonstrated that writ-
ing “correct” software is close to impossible, due to the inherent complexity of
software systems and the fallible nature of human programmers. Consequently,
relying on security to be an emergent property of software is unwise. We ar-
gue instead that security properties, such as data confidentiality and integrity,
should be monitored and enforced by small trusted parts of the code base, with
help from the run-time system where appropriate.

In practice, programmers are initially concerned more with functionality than
with security. It is only once a system has proven useful, and has attracted users
and potential attackers, that security concerns become dominant. While it might
be preferable to address security concerns right from the start of a project, com-
petitive pressures often dictate quickly developing an initial (perhaps insecure)
system that helps clarify the requirements and gain a market foothold, and
then to evolve the system with additional features, including security guaran-
tees. Hence, we would like to support a development methodology whereby the
programmer first develops an initial, insecure system, and then incrementally
refactors the system to add data confidentiality and integrity guarantees via
information flow tracking.

Much prior work has addressed information flow security. Most of this work
has focused on static type systems such as JFlow [15], Jif [14], and others [29,
16], which involve significant up-front costs. More recent investigations explore
dynamic information flow [4, 5, 10], which requires less up-front investment but
which cannot document security properties as types.

In this paper, we explore some initial steps towards realizing the vision of
gradual evolution from untyped scripts into security typed applications. Since
prior work has addressed evolving dynamic scripts into typed code [1, 27, 12, 11],
the starting point for our development is a typed language. We explore how to
gradually extend programs in this language with security guarantees and with
security types.

21

To support gradual evolution of security properties, our approach provides
both static and dynamic information flow guarantees. We use dynamic informa-
tion flow tracking for all code, including conventionally typed code that has not
been refactored to express information flow properties in the type system. Our
language includes a labeling operation for marking data as private, and a cast
operation for checking the labels on data. Both operations naturally extend to
higher-order data by treating contravariant function arguments appropriately.
The cast operation may fail if applied to incorrectly-labeled data; in this case
either the term inside the cast or the context of the cast is blamed, which we
call positive and negative blame respectively.

For any program, including those without security types, our approach guar-
antees termination insensitive non-interference (TINI), which means that pri-
vate inputs cannot flow into or influence public outputs. Attempts to violate
TINI results in cast failures. We assume a label lattice for expressing data con-
fidentiality and integrity properties. For simplicity, we often use a two-element
lattice with a public or low confidentiality label (L) and a private or high confi-
dentiality label (H), but the approach generalizes to any lattice.

In addition to tracking information flow dynamically, we enrich the type
system to express invariants regarding security labels on the underlying data.
Our preservation theorem states that if a term t has type Intk, where k is a
security label, then t can only evaluate to a value nm, where n is an integer and
the label m satisfies m v k. Thus, the type system documents a conservative
upper bound on the label of the resulting value.

In our language, each value and type has an associated security label. To
support legacy code, an unlabeled value implicitly has label ⊥ (the bottom
element in the lattice) indicating that the value is not confidential. Conversely, an
unlabeled type implicitly has label>, allowing it to describe values with arbitrary
labels, since any label m satisfies m v >. In this manner, conventionally typed
code can interoperate with new precisely typed code, with casts at interfaces
between the two typing disciplines.

If the entire application has precise security types, then there is no need for
downcasts and for dynamic tracking of information flow labels. This approach
has been explored in depth in prior systems such as JFlow [15]. In contrast,
the novelty of this paper is that dynamic label tracking enables downcasts, and
avoids the need to statically document precise security types throughout the
entire application all at once. Instead, the application can gradually evolve from
(1) conventionally typed with no security guarantees, to (2) having casts and
dynamic information flow guarantees, to (3) being precisely typed with no casts
and with static information flow guarantees. Additionally, this evolution process
can stop or pause at any point in the middle, depending on engineering, eco-
nomic, and security requirements, as each intermediate step is a valid well-typed
program (albeit with different run-time guarantees).

22

1.1 Motivating Example

To illustrate the benefits of gradual information flow, consider the following code
fragment which deals with sensitive salary information:

let age : Int = 42
let salary : Int = 58000
let intToString : Int→ Str = . . .
let print : Str→ Unit = λs:Str. . . .
print(intToString(salary))

This code does not track the flow of sensitive information. After some embar-
rassing salary leaks, the program manager might want to “harden” the script to
limit the flow of sensitive information

In the following revised code, the labeling operation (58000 : Int V IntH)
marks data as private, and the cast (s : Str⇒p StrL) checks that data is public:

let age : Int = 42
let salary : Int = 58000: IntV IntH

let intToString : Int→ Str = . . .
let print : Str→ Unit = λs:Str. let s = (s : Str⇒p StrL) in . . .
print(intToString(salary))

The runtime system tracks the flow of information through all code. Since the
intToString library function is applied to a confidential argument, it produces
a confidential result, and so the cast inside print will fail at runtime. Thus,
independent of bugs in the rest of the code, print ensures that confidential data
is never printed.

As a next step, we wish to document and verify information flow invariants
using the type system. We begin by extending the code with explicit labels on
types. Note that IntH is the most general integer type, since these potentially
private integers can store both public and private data.

let age : IntL = 42
let salary : IntH = 58000: IntL V IntH

let intToString : Int→ Str = . . . // unrefactored module
let print : StrH → UnitH = λs:StrH . let s = (s : StrH ⇒p StrL) in . . .
print(intToString(salary))

The above code incorporates information flow types but does not yet provide
static guarantees since print accepts H values (at least statically). To pro-
vide static guarantees, we first refine print’s argument type to specify that it
only accepts public data. This refactoring requires introducing a variant of the
intToString function, called intToStringL, for handling public data, using a
cast to specify that intToString has the desired behavior of mapping public

23

Figure 1: λgif Syntax

ı ::= Int | Bool | Str Base Types
a, b ::= ı | A→ B Raw Types

A,B ::= ak Labeled Types
t, s ::= v | x | t s | op t | t : AV B | t : A⇒p B Terms
r ::= c | λx:A. t Raw Values

v, w ::= rk Labeled Values
k, l,m Labels
Γ ::= ∅ | Γ, x : A Typing Environment

integer inputs to public string results.

let age : IntL = 42
let salary : IntH = 58000: IntL V IntH

let intToString : Int→ Str = . . . // unrefactored module
let intToStringL : IntL → StrL = intToString : (IntH → StrH)⇒q (IntL → StrL)
let print : StrL → UnitL = λs:StrL. . . .
print(intToStringL(salary))

Using these more precise types, bugs such as print(intToStringL(salary)) now
are revealed at compile time. The programmer then corrects the code to the
intended print(intToStringL(age)), which passes both static and dynamic se-
curity checks. Note that this security typed code interoperates with the legacy
intToString module via the security interface specification (aka cast) inside
intToStringL.

2 The Gradual Information Flow Language

We formalize our ideas for gradual security for an idealized language called λgif ,
which extends the simply typed λ-calculus with gradual information flow.

The syntax of λgif is presented in figure 1. Raw types a include integers
(Int), booleans (Bool), strings (Str), and function types (A→ B). Types A are
labeled raw types (ak). Security labels (k) denote the confidentiality or integrity
of a particular value or term. The set of labels form a lattice, with a ordering
operation v, join operation t, least element ⊥, and top element >.

Terms t include variables (x), function applications (t s), primitive operations
(op t), and values (v). Raw values r can be either constants (c), such as 42
or true, or functions (λx : A. t). Values v are labeled raw values (rk). The
classification operation (t : A V B) adds a label to a value. For example, 3L :
IntL V IntH evaluates to 3H .

Casts (t : A⇒p B) attempt to coerce a term t of type A into a new type B.
If the labels on the value are not compatible with type B, the cast will fail, in
which case the blame label p assigns blame to the appropriate code fragment.
For example, attempting to downcast a private integer 42H to public via the cast
42H : IntH ⇒p IntL will fail. An upcast of a public integer 42L : IntL ⇒p IntH

to a private integer however will succeed, and return the value 42L unchanged.
That is, casts do not change values, they only change static types (or else fail).

24

2.1 Operational Semantics

We formalize the dynamic semantics of λgif using the big-step evaluation relation
t ⇓ v, which evaluates a term t to value v: see figure 2. The [e-app] rule for
function application (t s) evaluates t to a function (λx:A. t1)k with a security
label k, evaluates the argument s to a value v, and then evaluates the substituted
function body t1[x := v] to a labeled value rm. The result of the application
depends on the function that is invoked, so the rule adds the label k of the callee
to the resulting value, yielding rmtk.

The [e-prim] rule for primitive operations (op t) refers to the δop function,
which defines the semantics of primitive operations on raw values.

There are three rules to support the cast operation, which checks if a runtime
label is compatibile with a specified static label. If the check fails then the rules
use a blame label p to identify the code that is at fault. We say that positive blame
(p) means the term within the cast is at fault and negative blame (p) means the
context containing the cast is at fault. The negation of negative blame is the

original blame label: p
def
= p.

The [e-cast-base] rule is for casts of base types ı (i.e. non-functions). The
cast (t : ık ⇒p ıl) evaluates t to a value rm and checks that the label m on the
value is less than the label l on the target type; if not then the [b-cast-bad] rule
will blame p. The other [b-. . .] rules simply propagate blame.

The [e-cast-fn] rule for t : (A→ B)k ⇒p (A′ → B′)l is similar to [e-cast-base],
except that the value rm produced by t is wrapped in a new function:

(λx′:A′. (rm (x′ : A′ ⇒p A)) : B ⇒p B′)⊥

which satisfies the target type (A′ → B′). The wrapper function is used to cast
the argument and result to the appropriate types. The argument x′ is cast from
the new type A′ to the original type A, which the original function r can accept.
The blame in this cast is inverted p to indicate that if this cast fails blame is
assigned to the cast context (which invoked the function with an incompatible
argument). The result of calling the function is cast to B′.

For an example of the cast rule, consider a function f of type IntL → BoolL.
If we strengthen its range via the cast f : (IntL → BoolL)⇒p (IntL → BoolH),
calling the resulting wrapper function f ′ : IntL → IntH will always succeed
since the result res of f is guaranteed to be public and f ′ casts res to a private
boolean, which will always succeed. If, however, we strengthen the domain with
the cast f : (IntL → BoolL) ⇒p (IntH → BoolL), the argument x′ must be
downcast (x′ : IntH ⇒p IntL) and will fail when x′ is private.

The final two rules support classification, marking data as having higher
confidentiality (or alternatively lower integrity). The [e-classify-base] rule is
used for classifying base types. The classification t : ık V ıl adds the target label
l to the data by evaluating t to a value rm and joining l to label m.

The [e-classify-fn] rule for t : (A → B)k V (A′ → B′)l returns a wrapper
function

(λx′:A′. (rm (x′ : A′ V A)) : B V B′)mtl

25

Figure 2: λgif Operational Semantics

t ⇓ v

v ⇓ v [e-value]

t ⇓ (λx:A. t1)k

s ⇓ v t1[x := v] ⇓ rm
t s ⇓ rmtk [e-app]

r = δop(r1, · · · , rn)

ti ⇓ rki
i k = tki

op t ⇓ rk [e-prim]

t ⇓ rm
m v l

(t : ık ⇒p ıl) ⇓ rm [e-cast-base]

t ⇓ rm m v l
v = (λx′:A′. (rm (x′ : A′ ⇒p A)) : B ⇒p B′)⊥

(t : (A→ B)k ⇒p (A′ → B′)l) ⇓ v [e-cast-fn]

t ⇓ rm
(t : ık V ıl) ⇓ rmtl [e-classify-base]

t ⇓ rm
v = (λx′:A′. (rm (x′ : A′ V A)) : B V B′)mtl

(t : (A→ B)k V (A′ → B′)l) ⇓ v [e-classify-fn]

t ⇓ blame p

t ⇓ rm
m 6v l

(t : ak ⇒p bl) ⇓ blame p
[b-cast-bad]

ti ⇓ vi ∀i ∈ 1..j − 1
tj ⇓ blame p

op t ⇓ blame p
[b-prim]

t ⇓ blame p

t s ⇓ blame p
[b-app-l]

t ⇓ v
s ⇓ blame p

t s ⇓ blame p
[b-app-r]

t ⇓ blame p

(t : ak ⇒p bl) ⇓ blame p
[b-cast]

t ⇓ blame p

(t : AV B) ⇓ blame p
[b-classify]

that adds the labels in A to the argument and the labels in B′ to the result.
In addition, the security label of the function type is maintained by giving the
wrapper function the label from the original function (m) joined with the label
from the function being cast to (l).

3 Termination Insensitive Non-Interference

The central guarantee provided by our semantics is non-interference, which in-
formally states that two runs of the same program that differ only in private
data will not produce different public results. We formalize the notion of two
terms differing only in private data via the equivalence relation (∼H) defined in
figure 3. Essentially, two values are equivalent if either (1) both are at least as
secure as H (where H is an arbitrary lattice element) or (2) their subterms are
equivalent.

Theorem 1 (Termination Insensitive Non-Interference).
If t1 ∼H t2 and t1 ⇓ v1 and t2 ⇓ v2 then v1 ∼H v2.

26

Figure 3: Equivalence

v ∼H v

H v m1 H v m2

rm1
1 ∼H rm2

2

[eq-val1]
r1 ∼H r2

rm1 ∼H rm2
[eq-val2]

r ∼H r

t1 ∼H t2

(λx:A. t1) ∼H (λx:A. t2)
[eq-fun]

c ∼H c
[eq-const]

t ∼H t

x ∼H x
[eq-var]

t1 ∼H t2 s1 ∼H s2

(t1 s1) ∼H (t2 s2)
[eq-app]

t1 ∼H t2

(t1 : A⇒p B) ∼H (t2 : A⇒p B)
[eq-cast]

ti ∼H t′i i ∈ 1..n

(op t) ∼H (op t′)
[eq-prim]

t1 ∼H t2

(t1 : AV B) ∼H (t2 : AV B)
[eq-classify]

Proof. By induction on the derivation of t1 ⇓ v1 and case analysis on the last
rule used in the derivation.

Note that since non-interference is termination insensitive two different pro-
gram runs could differ in their termination behavior (e.g. one could run to normal
completion while the other terminates due to an attempted leaking of private
data). The termination behavior permits an attacker to learn at most one bit of
information about a value per execution1. Termination sensitive non-interference
is a stronger guarantee but requires verifying that every loop with a confidential
loop test eventually terminates, which is rather difficult (see for example [7]).

Note that blame is an additional termination channel. We could have two
equivalent terms where one term evaluates to a value and the other fails by
assigning blame. This does not affect termination insensitive non-interference
since assigning blame is just another method of termination.

4 Gradual Information Flow Types

The runtime semantics detects bad downcasts in order to guarantee termination
insensitive non-interference. However, we also want to catch security violations
at compile time, where possible. To achieve this goal, we next develop a gradual
type system where the labels on static types provide an upper bound on the
labels of corresponding dynamic values.

1 Though Askarov et al. [3] point out that an attacker could use intermediary output
channels to leak more than a single bit, but only through a brute-force attack

27

The type system is given by the typing relation Γ ` t : A, which judges
a term t to have type A under the typing environment Γ : see figure 4. The
[t-prim] rule enforces that for each primitive operation op t, the raw types ai
are compatible with the type signature type(op) : a1× . . .×an → b. It also joins
the labels from each argument type (l = tli) into the result type bl so that the
resulting type will be at least as secure as the most secure argument.

The [t-app] rule for function application (t s) judges t to have the function
type (A → bk)l and the argument s to have a type A′ that is a subtype of
A. Subtyping allows a function expecting a private input to also accept public
arguments, since it will use both safely. In addition, the resulting type bk is
joined with the function’s label l since the result depends on the function being
used.

The [t-cast] rule for t : A ⇒p B enforces that A and B are identical apart
from security labels. The operation b.c defined in figure 4 strips labels from a
λgif type to consider just the base types. Note that a well-typed cast may fail
at runtime if the runtime security labels are not compatible.

The [t-classify] rule for t : A V B checks that B has higher security labels
than A. This rule uses the positive subtyping relation (<:+) instead of the stan-
dard subtyping relation (<:) since it is not acceptable to lower the security label
of a function’s domain with a classification. If this rule used standard subtyping,
then the classification t : IntH → IntH V IntL → IntH would be valid, which
we do not want.

The full subtyping relation is given in figure 4. Two types are subtypes if
they have the same base type and their labels are compatible (l v k). If the
types are function types, then the labels must be compatible and the domains
must be contravariant (A′ <:A) and the ranges covariant (B <:B′).

The typing system ensures that the labels in each static type is a conservative
upper bound on the labels of corresponding runtime values.

We note that if a term t is well typed and we evaluate t then the resulting
value v will still be well typed with the same type.2

Theorem 2 (Preservation).
If ∅ ` t : A and t ⇓ v then ∅ ` v : A

The type system defers cast checks to the runtime system, since the safety of
downcasts cannot be determined by the typing rules. For example, v : IntH ⇒p

IntL will succeed if v has a public runtime label but it will fail if the label is
private. However, we can still use types to partially reason about which cast
failures may occur. In particular, if two types are subtypes in a cast, then it
is not possible for either positive or negative blame to occur. Furthermore, we
can decompose the subtyping relation into positive and negative subtyping (see
figure 4), in a manner similar to [1, 2, 27]. If the types in a cast are positive (resp.
negative) subtypes then the cast cannot produce positive (resp. negative) blame.

2 Since we are using a big-step semantics to simplify the proof of non-interference we
omit the standard progress theorem, which is difficult to show in a big-step semantics.

28

Figure 4: λgif Typing Rules

Γ ` t : A

Γ ` cl : type(c)l
[t-const]

x : A ∈ Γ
Γ ` x : A

[t-var]

Γ, x : A ` t : B

Γ ` (λx:A. t)l : (A→ B)l
[t-abst]

Γ ` t : A A<:+ B

Γ ` (t : AV B) : B
[t-classify]

Γ ` t : (A→ bk)l

Γ ` s : A′ A′ <:A

Γ ` t s : bktl
[t-app]

Γ ` t : A bAc = bBc
Γ ` (t : A⇒p B) : B

[t-cast]

Γ ` ti : alii i ∈ 1..n
type(op) : a1 × . . .× an → b

l = tli
Γ ` op t : bl

[t-prim]

A<:B

l v k
ıl <: ık

[sub-base]
l v k A′ <:A B <:B′

(A→ B)l <: (A′ → B′)k
[sub-app]

l v k
ıl <:+ ık

[sub-p-base]
l v k A′ <:− A B <:+ B′

(A→ B)l <:+ (A′ → B′)k
[sub-p-app]

k v l
ıl <:− ık

[sub-n-base]
k v l A′ <:+ A B <:− B′

(A→ B)l <:− (A′ → B′)k
[sub-n-app]

bAc : λgif types→ λstlc types

b(A→ B)kc = bAc → bBc
bakc = a

Theorem 3 (Blame Theorem).

1. If ∅ ` t : A and ∀(t′ : B ⇒p C) ∈ t, B<:C then t 6⇓ blame p and t 6⇓ blame p.
2. If ∅ ` t : A and ∀(t′ : B ⇒p C) ∈ t, B <:+ C then t 6⇓ blame p.
3. If ∅ ` t : A and ∀(t′ : B ⇒p C) ∈ t, B <:− C then t 6⇓ blame p.

Proof. By contradiction assuming that blame has occurred.

5 Related Work

Information flow has a long history of investigating both static and dynamic ap-
proaches to track information going back to the work of Denning [8, 9]. Sabelfeld
and Myers have an extensive survey of the field [18]. Our paper provides a syn-
thesis of prior static and dynamic techniques.

There are a number of approaches that use type systems for information
flow. Volpano et al. [26] formulate the work of Denning as a type system and
prove its soundness. Heintze and Riecke [13] extend a simple calculus that uses

29

a type system to track direct and indirect object creators and readers. Pottier
and Simonet [17] present information flow type inference for a simplified ML.

Some approaches use purely dynamic techniques. Austin and Flanagan [4,
5] dynamically track information flow. Shroff et al. [19] dynamically track infor-
mation flow by tracking indirect dependencies of program points. Devriese and
Piessens [10] take an alternative approach called secure multi-execution that
runs the program multiple times, once for each security level.

Several approaches use a hybrid of static analysis with dynamic checks during
runtime to enforce information-flow guarantees. This idea is similar to our work
but our contribution is to allow the programmer to choose when to use dynamic
checks and when to use static typing. Chandra and Franz [6] use both static
and dynamic techniques for the Java Virtual Machine and allow policies to be
changed at runtime. Myers [15] defines an extension to Java called JFlow (which
has become Jif [14]) using the hybrid method.

Research on integrating static and dynamic type systems also has a large
body of work which we take as our starting point for extending types with secu-
rity labels. Thatte [22] uses structural subtyping and the notion of quasi-static
typing to integrate static and dynamic types. Tobin-Hochstadt and Felleisen [23]
automatically infer contracts on untyped modules and formulate Typed Racket [24,
25]. Gronski et al. [12] use hybrid type checking, which integrates static type
checking with dynamic contract checking in the Sage language. Siek and Taha [20]
present gradual typing which uses runtime casts when types are not known at
compile time. Wrigstad et al. [28] use the notion of like types in the Thorn lan-
guage. Ahmed et al. [21, 1, 27] combine static and dynamic types with casts and
blame; much of our formulation follows their methods and notation but with the
addition of security labels and information flow.

6 Conclusion

We have presented an idealized language for gradual security. The language
enables programmers to mark data as confidential, and the language runtime
tracks confidential data through all program operations, allowing subsequent
cast checks to ensure that sensitive data is not released inappropriately. In this
way, termination insensitive non-interference is guaranteed in a dynamic manner.

In addition, types can be gradually refined with security labels to document
interface expectations and to statically reason about the data. These labels need
not be added all at once; instead, dynamic casts mediate between conventionally
typed code (with no security labels) and precisely typed code (with labels).

We show how the notions of positive and negative subtyping help reason
about which casts may fail at run-time, and who may be blamed for such failures.

This work represents an initial exploration in terms of an idealized language,
illustrating some key ideas and correctness properties. Much work remains to
scale up these techniques to realistic languages and to validate the practical
utility of gradual security. In particular, we have not yet addressed assignments,
which introduce some difficulties for dynamic information flow due to implicit
flows, and which remains an important topic for future work.

30

References

1. A. Ahmed, R. Findler, J. Matthews, and P. Wadler. Blame for all. In Proceedings
for the 1st workshop on Script to Program Evolution, pages 1–13. ACM, 2009.

2. A. Ahmed, R. Findler, J. G. Siek, and P. Wadler. Blame for all, 2011. Draft copy,
to appear in POPL 2011.

3. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive nonin-
terference leaks more than just a bit. In ESORICS ’08: Proceedings of the 13th
European Symposium on Research in Computer Security, pages 333–348, Berlin,
Heidelberg, 2008. Springer-Verlag.

4. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS ’09: Proceedings of the ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security, pages 113–124, New York, NY, USA,
2009. ACM.

5. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In
Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, pages 1–12. ACM, 2010.

6. D. Chandra and M. Franz. Fine-grained information flow analysis and enforcement
in a java virtual machine. In ACSAC, pages 463–475. IEEE Computer Society,
2007.

7. B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving con-
ditional termination. In Computer Aided Verification, pages 328–340. Springer,
2008.

8. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, 1976.

9. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, 1977.

10. D. Devriese and F. Piessens. Noninterference through secure multi-execution. Se-
curity and Privacy, IEEE Symposium on, 0:109–124, 2010.

11. R. B. Findler and M. Felleisen. Contracts for higher-order functions. In Proceedings
of the International Conference on Functional Programming, pages 48–59, 2002.

12. J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage: Practi-
cal hybrid checking for expressive types and specifications. In Proceedings of the
Workshop on Scheme and Functional Programming, pages 93–104, 2006.

13. N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and
integrity. In Symposium on Principles of Programming Languages, pages 365–377,
1998.

14. Jif homepage. http://www.cs.cornell.edu/jif/, accessed October 2010.
15. A. C. Myers. JFlow: Practical mostly-static information flow control. In Symposium

on Principles of Programming Languages, pages 228–241, 1999.
16. A. C. Myers and B. Liskov. A decentralized model for information flow control. In

Symposium on Operating System Principles, pages 129–142, 1997.
17. F. Pottier and V. Simonet. Information flow inference for ML. Transactions on

Programming Languages and Systems, 25(1):117–158, 2003.
18. A. Sabelfeld and A. C. Myers. Language-based information-flow security. Selected

Areas in Communications, IEEE Journal on, 21(1):5–19, Jan 2003.
19. P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency monitoring to secure

information flow. In CSF, pages 203–217. IEEE Computer Society, 2007.
20. J. G. Siek and W. Taha. Gradual typing for functional languages. In Proceedings

of the Workshop on Scheme and Functional Programming, 2006.

31

21. J. G. Siek and P. Wadler. Threesomes, with and without blame. In POPL, pages
365–376, 2010.

22. S. Thatte. Quasi-static typing. In POPL 90 Proceedings of the 17th ACM SIG-
PLANSIGACT symposium on Principles of programming languages, pages 367–
381. ACM, 1990.

23. S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts to
programs. In Companion to the 21st ACM SIGPLAN symposium on Objectoriented
programming systems languages and applications, pages 964–974. ACM, 2006.

24. S. Tobin-Hochstadt and M. Felleisen. The design and implementation of typed
scheme. ACM SIGPLAN Notices, 43(1):395–406, 2008.

25. S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages. In
Proceedings of the 15th ACM SIGPLAN international conference on Functional
programming, pages 117–128. ACM, 2010.

26. D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis.
Journal of Computer Security, 4(2-3):167–187, 1996.

27. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proceedings
of the Workshop on Scheme and Functional Programming, 2007.

28. T. Wrigstad, F. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating typed
and untyped code in a scripting language. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
377–388. ACM, 2010.

29. S. A. Zdancewic. Programming languages for information security. PhD thesis,
Cornell University, 2002.

32

Type Inference with Run-time Logs
(Work in Progress)

Ravi Chugh, Ranjit Jhala, and Sorin Lerner

University of California, San Diego

Abstract. Gradual type systems offer the possibility of migrating pro-
grams in dynamically-typed languages to more statically-typed ones.
There is little evidence yet that large, real-world dynamically-typed pro-
grams can be migrated with a large degree of automation. Unfortunately,
since these systems typically lack principal types, fully automatic type
inference is beyond reach. To combat this challenge, we propose using
logs from run-time executions to assist inference. As a first step, in this
paper we study how to use run-time logs to improve the efficiency of a
type inference algorithm for a small language with first-order functions,
records, parametric polymorphism, subtyping, and bounded quantifica-
tion. Handling more expressive features in order to scale up to gradual
type systems for dynamic languages is left to future work.

1 Introduction

Dynamic languages have become increasingly popular in recent years, stimulat-
ing renewed interest in the long-studied question of how to mix the guarantees of
static type systems with the flexibility of dynamic languages. The gradual typing
approach [10, 11, 2] extends a static type system with a type dynamic that all
values inhabit. Unlike values of a Top type, which cannot be used to do any com-
putation, values of type dynamic can be implicitly downcast to any type. The
benefit of this approach is that portions of a program can be annotated with
non-trivial (non-dynamic) types that are statically checked in standard ways,
while other portions annotated with dynamic fall back on run-time checks. The
continuous spectrum offered by this approach is appealing for migrating existing
programs written in dynamic languages to more statically-typed languages.

There is little evidence yet that such programs can easily be migrated, how-
ever. The first barrier is defining a type system (even with the dynamic type)
that can assign types to non-trivial programs in practice. Many attempts [13, 14,
6, 5] are unable to type all of the features in a full dynamic language and so fall
back on manual annotation or refactoring. Even if this challenge is overcome, the
problem of how to add type annotations to existing unannotated programs re-
mains. Requiring programmers to provide type annotations can hinder adoption,
so a successful approach will likely require a large degree of automation.

Unfortunately, there are barriers to static type reconstruction for statically-
typed object systems, let alone gradual ones. Both partial and full type inference

33

for System F are undecidable [8, 15], and many object systems [3] are based on
yet more expressive type theories like F≤, which extends F with subtyping and
bounded quantification [4, 9]. The lack of principal types in these systems stand
in the way of effective type inference. Constraint-based systems have been used
to recover principal types despite the presence of subtyping [12], but types in
these systems can become more complex than those in syntactic systems like F≤.
Since our ideal gradual type system should types that are easy to understand,
in this work we focus on systems with syntactically-limited forms of subtyping
constraints. When extending these systems with dynamic, to create gradual ob-
ject systems, the problem becomes harder still because dynamic annotations can
be assigned in multiple incomparable ways. One approach is to insert the mini-
mal number of casts required [7]. Another approach, however, might be to insert
casts to minimize how frequently they are executed during typical executions.

To combat these challenges, we propose an approach that uses traces from
run-time executions to assist type inference for languages without principal
types. The idea is that although a program may be well-typed in many ways,
a particular set of executions may eliminate some of the incomparable possible
types. The test suites that often accompany dynamically-typed programs could
provide our approach with the run-time observations it needs. As a first step to-
wards this goal, in this paper we study a language with first-order functions and
records, defined in Section 2. We present several type systems for this language,
fully-static type inference algorithms, and improvements that can be made with
the help of run-time information. In Sections 3 and 4, we start with a system
that has parametric polymorphism and subtyping; we call it System E due to its
similarity to System F besides the lack of higher-order functions. In Section 5,
we extend the system with a simple form of bounded quantification. Although
we consider the type inference algorithms in a fair amount of detail, we will not
prove desired formal properties in this work. In Section 6, we outline the future
challenges for our approach, including adding support for recursion, higher-order
functions, and dynamic.

Recent work on type inference for Ruby [1] leverages run-time executions to
assign types to a program. They wrap run-time values with type variables and
then generate subtype constraints when wrapped values are used at primitive
operations, field operations, and method invocations. Constraints are then solved
after execution to assign static types. Our approach, which instead starts with
completely static type inference and then uses run-time information to improve
its efficiency, deviates from their fully-dynamic approach for two reasons. Since
dynamic code generation, a major obstacle to static type inference in Ruby, is
not present in our language, we would like to do as much static inference as possi-
ble. Furthermore, even though not all expressions in our language have principal
types, some do. We would like to statically infer types in these situations and
only rely on run-time information when necessary. If the challenges for our ap-
proach are overcome, then the combination of these two approaches might be
fruitful, because most dynamic languages have both dynamic code generation
and features that prevent the existence of principal types.

34

2 Programs

Each type system in this paper classifies programs from the following grammar.
A program is a sequence of function declarations.

d ::= def z(x){ e } | def z[X](x:π){ e }

e ::= x | c | e1 op e2 | { f = e } | e.f | z(e) | z[τ](e)
| ifk e1 then e2 else e3 | let x = e1 in e2

We use the metavariables d for function declarations, e for expressions, x and y
for arguments and let-bound variables, z for function identifiers, c for base value
constants, f and g for field names, B for base types, X for type variables, and
τ , π, and σ for arbitrary types. Expressions are variables, base values (naturals,
booleans, etc.), primitive operations, record literals, field projections, function
calls, if-expressions labeled with unique integer identifiers k, and let-bindings.
We use vector notation for sequences and use integer subscripts to index them.
Note that function definitions and calls both have untyped and typed versions.
Strictly speaking, terms of the external language contain no type annotations
and leave the burden to the type inference algorithm, and terms of the internal
language always provide type annotations to be checked by the type checker. To
keep the presentation simple, we informally represent both forms with the same
grammar, and we rely on context to disambiguate between typed and untyped
programs.

3 Type Inference for System E−

We start with E− (“E-Minus”), a system without a typing rule for if-expressions.
The type language, subtyping relation, two expression typing rules, and a top-
level function typing rule for E− are shown below.

τ ::= B | Xx.l | { f :τ }• | { f :τ }x.l

τ ≤ τ
S-Refl

∀i. ∃ji. fi = gji ∧ πji ≤ τi

{ g:π } ≤ { f :τ }
S-Rcd

S;Γ ` e : π
π ≤ { f :τ }

S;Γ ` e.f : τ
T-Proj

S(z) = ∀X. π → π′ S;Γ ` e : τ

|X| = |σ| τ ≤ π[σ/X]

S;Γ ` z[σ](e) : π′[σ/X]
T-App

S;x:π ` e : π′

S ` def z[X](x:π){ e } : π′
T-Fun

A signature S maps functions z to function types ∀X. π → π′ and a context Γ
maps variables x to expression types τ . We write subscripts on type variables,
using Xx.l for the type of formal parameter x projected on the sequence of fields l.
We also write subscripts on record types, using {f :τ }• to denote that the record

35

type corresponds to a record literal, and {f :τ }x.l to denote that it corresponds
to the parameter x projected on fields l. We omit subscripts on record types
when they are irrelevant. Subscripts on type variables and record types are used
only during inference and are ignored by the type checking rules. Notice that
in the T-Fun rule, we check that the number of type actuals supplied i equals
the number of type parameters required j. We expect E− to have a standard
soundness property but have not checked it.

Consider the following function and three of its infinitely many valid types.1

def wrap(x){ { orig=x;asucc=succ x.a } }

σ1 { a:Nat }x → { orig:{ a:Nat }x;asucc:Nat }•
σ2 ∀Xx.b. { a:Nat;b:Xx.b }x → { orig:{ a:Nat;b:Xx.b }x;asucc:Nat }•
σ3 { a:Nat;b:Bool }x → { orig:{ a:Nat;b:Bool }x;asucc:Nat }•

There is no best type among these; σ2 is better than σ3, but σ1 and σ2 are
incomparable since σ1 would allow wrap to be called in more contexts but σ2
would allow its return value to used in more contexts. This demonstrates that
E− does not have the principal type property, so our type inference algorithm
considers the calling contexts of wrap to determine which type to assign.

3.1 Iterative Static Inference

In this section, we outline an iterative, fully-static type inference algorithm for
E−. We develop the intuition for the algorithm by considering how to type wrap

and the following calling context.

def main(){ let o = wrap({ a=1;b=true }).orig in o.b }

The first time we process wrap, we gather constraints on its argument based
on its uses only within the function body. Since the only requirement is that x

has an a field, we assign σ1 before moving on to main. Because of the function’s
return type and the projection on field orig, the variable o gets type {a:Nat}x,
so the expression o.b is not well-typed. The subscript x indicates that the record
type originated from the parameter of wrap, so if we could require x to have a b

field, then o.b would be well-typed. At this point, we record the caller-induced
field constraint (as opposed to callee-induced constraints generated from the
body of a function) that x has b and restart inference from the beginning of the
program.2 In light of this constraint, when we process wrap for the second time,
we assign σ2. Notice that the type of the b field is left unconstrained. When we
process main for the second time, the type of o is {a:Nat;b:Bool}x, so o.b

is well-typed. In general, when a function type is changed from one iteration to
the next, calls that were well-typed with the old type may not be with the new
type. Multiple valid function types may be incomparable, so there might not be
one that satisfies all of its callers. Similarly, although one type may satisfy all

1 This example is used to motivate bounded quantification in TAPL [9].
2 An optimized version would process only wrap and its (transitive) callers again.

36

calling contexts in a given program, it may not satisfy other well-behaved calls
added to the program in the future.

Our inference algorithm for E− generates constraint sets C with two kinds
of constraints. A type variable can either be equated to a base type when used
at a primitive operation or required to have a field because of a projection.
Notice that we do not generate arbitrary subtyping constraints between types,
only subtyping constraints to denote that a record must have a particular field.
This limited form of subtyping constraints enables a simple solving algorithm
(Appendix A). Caller-induced constraints will always be of the second kind.

C ::= C ∪ {Xx.l = B} | C ∪ {Xx.l ≤ { f :Xx.l.f }} | ∅

Constraint Typing for Expressions. In this section, we define a constraint
typing relation that derives a type for an expression if constraints induced by
the expression are satisfiable. A term e is rewritten to e′, because type parameters
for function calls must be filled in. For all other kinds of expressions, the original
and rewritten terms are equal. We intend the following soundness proposition,
as well as a similar completeness one, to hold, though we do not prove it.

If S;Γ ` e ⇒ e′ : τ | C and θ = Solve(C),Then S; θΓ ` θe′ : θτ

The interesting cases are for field projection and function application. In the fol-
lowing, we assume that x is the formal parameter for the function currently being
processed and y ranges over the parameters of previously processed functions.
We first consider two projection rules.

S;Γ ` e ⇒ e′ : { g:τ } | C
∃j. f = gj

S;Γ ` e.f ⇒ e′.f : τj | C
CT-Proj1

S;Γ ` e ⇒ e′ : Xx.l | C
C′ = C ∪ {Xx.l ≤ { f :Xx.l.f }}
S;Γ ` e.f ⇒ e′.f : Xx.l.f | C′

CT-Proj2

If e is a record type with the desired field f , CT-Proj1 concludes that e.f has
the type of the field. If the type of e is a variableXx.l (one of the arguments for the
function that we are currently analyzing), CT-Proj2 imposes the appropriate
subtype constraint on Xx.l and Xx.l.f and concludes that e.f has type Xx.l.f .

To support backtracking, we define a second constraint expression typing re-
lation that indicates failure with a caller-induced constraint. CT-Proj3 triggers
backtracking by producing a caller-induced constraint on the parameter y of a
previous function, which immediately propagates through expressions with rules
like CT-PropSucc and CT-PropApp1.

S;Γ ` e ⇒ e′ : { g:τ }y.l | C 6 ∃j. f = gj

S;Γ ` e.f ↖ {Xy.l ≤ { f :Xy.l.f }}
CT-Proj3

S;Γ ` e ↖ C

S;Γ ` succ e ↖ C
CT-PropSucc

S;Γ ` e ↖ C

S;Γ ` z(e) ↖ C
CT-PropApp1

The last case that we discuss here is for function calls. The Call judgment
(defined in Appendix A) takes a formal type π, an actual type τ , and returns a
substitution θ that instantiates the free variables of π together with additional

37

constraints C ′ required for τ to be a subtype of π (after instantiation). The
additional constraints may fail because of missing fields, so there is also a failure
version of Call, which is propagated by CT-PropApp2.

S(z) = ∀X. π → π′

S;Γ ` e ⇒ e′ : τ | C
Call(π, τ) ` (C′, θ) σ = θX

S;Γ ` z(e) ⇒ z[σ](e′) : θπ′ | C ∪ C′
CT-App

S(z) = ∀X. π → π′

S;Γ ` e ⇒ e′ : τ | C
Call(π, τ)↖ C′

S;Γ ` z(e) ↖ C′
CT-PropApp2

Constraint Typing for Functions. We define a constraint typing relation for
function definitions that processes one at a time by appealing to the constraint
expression typing relation for its body. The judgment refers to a set of caller-
induced constraints C0 from previous iterations, as well as the list of previously
processed untyped functions d, which must be processed again if there are new
caller-induced constraints.

S;x:Xx ` e ⇒ e′ : τ ′ | C θ = Solve(C0 ∪ C)

π = θXx π′ = θτ ′ X = FTV (π) e′′ = θe′

C0; d;S ` def z(x){ e }⇒ def z[X](x:π){ e′′ } : π′
CT-Fun

S;x:Xx ` e ↖ C C1 = C0 ∪ C
C1;−;− ` d⇒ d′ : S′ C1; d;S′ ` d1 ⇒ d2 : π′

C0; d;S′ ` d1 ⇒ d2 : π′
CT-Iter

The CT-Fun rule applies when the body of function z has a successful con-
straint typing derivation. In addition to the constraints C that it produces, the
caller-induced constraints C0 must also be satisfied. The Solve function (defined
in Appendix A) attempts to solve C and C0. If a solution exists, it is used to
ascribe a function type to the declaration. The CT-Iter rule handles the case
where constraint typing on the function body fails with new caller-induced con-
straints C. These are combined with the existing caller-induced constraints C0,
and all previous functions d are processed again (the third premise). We omit
the definition of this relation. If all previous functions can be typed with the
updated caller-induced constraints, then typing of the current function resumes
(the fourth premise). Notice that the signature S′ may differ from S, since the
types of previously processed functions may have changed.

Like with constraint typing for expressions, we intend that the following
soundness property holds, as well as a similar completeness one.

If C0; d;S ` def z(x){ e }⇒ def z[X](x:π){ e′′ } : π′,

Then S ` def z[X](x:π){ e′′ } : π′.

We expect that this property will be considerably harder to prove than the one for
expressions. One important lemma will be that if the third premise of CT-Iter
is satisfied, then resumption of the current function (the fourth premise), will
get strictly farther than did the previous attempt (the first premise). Because
expressions are finite, this will enable proving termination.

38

3.2 Inference with Run-time Logs

Now that we have sketched out how static iterative type inference for E− works,
we turn to the question of how run-time logs might help. The need for iteration in
our constraint typing rules comes from the fact that when processing a function,
we do not know how its return value will be used in calling contexts. We will
define an evaluation semantics for E− to record precisely this information, so that
we can define a modified inference algorithm that does not need to backtrack.3

In our evaluation semantics, we wrap run-time values with sets of type vari-
ables T . We use v to range over raw values, tv over tagged values, and L over
run-time logs. Notice that every run-time log is a valid constraint set.

v ::= c | { f = tv }

tv ::= (v, T)

L ::= L ∪ {Xx.l ≤ { f :Xx.l.f }} | ∅

Our big-step evaluation relation evaluates an expression e in an environment E,
which maps variables to tagged values, and produces a tagged value along with
a log. The cases for application and projection are the interesting ones.

S(z) = λx.e′

(E, e) ⇓ ((v, T), L)
tv1 = (v, T ∪ {Xx})

(E[x 7→ tv1], e′) ⇓ (tv2, L
′)

(E, z(e)) ⇓ (tv2, L ∪ L′)
E-App

(E, e) ⇓ (({ g = tv }, T), L)
∃j. f = gj (vj , Tj) = tvj

L′ = {Xy.l ≤ { f :Xy.l.f } | Xy.l ∈ T }
T ′ = {Xy.l.f | Xy.l ∈ T }

(E, e.f) ⇓ ((vj , Tj ∪ T ′), L ∪ L′)
E-Proj

When a tagged value is passed as an argument to a function with parameter x,
E-App adds the variable Xx to its tag set before evaluating the function body.
When a tagged value is projected on field f , E-Proj records constraints that
each of its type variables have the f field. There are no rules that strip tags from
values, so once E-App adds a tag to a value, it will carry around that tag for the
rest of its execution. Consequently, if a function returns one of its arguments,
the run-time log will capture all subsequent caller-induced constraints.

We can now improve our constraint typing for functions. In place of CT-Fun
and CT-Iter, we define a new relation that refers to a run-time log and does
not need to maintain previously processed functions. CTL-Fun refers to a log
L instead of caller-induced constraints C0 like CT-Fun does.

S;x:Xx ` e ⇒ e′ : τ ′ | C θ = Solve(L ∪ C)

π = θXx π′ = θτ ′ X = FTV (π) e′′ = θe′

L;S ` def z(x){ e }⇒ def z[X](x:π){ e′′ } : π′
CTL-Fun

If the execution that produced L exercised every expression in the program, then
L will contain all the caller-induced constraints that the iterative static algorithm
generates.4 Thus, by using the run-time log, the modified inference algorithm

3 We could instead use normal evaluation and instrument programs to emit logs.
4 To check, we can add integer identifiers to expressions and log them during execution.

39

(which runs after execution) does not need to backtrack. We intend this modified
algorithm to satisfy analagous soundness and completeness properties to the
iterative version.

The fully-static and modified inference algorithms for E−, which we consid-
ered fairly closely, form the basis of the algorithms for the remaining systems,
which we will discuss in less detail.

4 Type Inference for System E

System E extends E− with a typing rule for if-expressions. We extend the type
language with three forms: a maximal type Top, a type variable that stands for
the result of if-expression k and then projected on fields l, and a new kind of
record type to indicate that its provenance is an if-expression.

τ ::= · · · | Top | Xk.l | { f :τ }k.l

The new subscripted type variables and record types are used only by the infer-
ence algorithm; they are “expanded away” during inference.

Consider the following function and several valid incomparable types. We use
tuple notation freely since we can encode them as records with fields 1 and 2.
Each return type has a subscript to indicate its origin from the if-expression.

def choose(y,z){ if1 y.n > 0 then y else z }

σ4 ({ n:Nat }y*{}z)→ {}1
σ5 ({ n:Nat }y*{ n:Top }z)→ { n:Top }1
σ6 ({ n:Nat }y*{ n:Nat }z)→ { n:Nat }1
σ7 ({ n:Nat;b:Bool }y*{ n:Nat }z)→ { n:Nat }1
σ8 ({ n:Nat;b:Bool }y*{ n:Nat;b:Bool }z)→ { n:Nat;b:Bool }1
σ9 ({ n:Nat;b:Top }y*{ n:Nat;b:Top }z)→ { n:Nat;b:Top }1
σ10 ∀Xy.b. ({ n:Nat;b:Xy.b }y*{ n:Nat;b:Xy.b }z)→ { n:Nat;b:Xy.b }1

Although some of these types are better than others, there is no best one. For
example, given the following calling contexts, σ4 can type main1, σ5 can type
main2, and σ6 can type main3, but these three types are incomparable.

def main1(){ let t1 = choose({ n = 1 },{}) in t1 }

def main2(){ let t2 = choose({ n = 1 },{ n = true }) in t2.n }

def main3(){ let t3 = choose({ n = 1 },{ n = 2 }) in succ t3.n }

As before, our inference algorithm for System E iteratively adds constraints
to arguments based on calling contexts. Consider how we arrive at σ6 for main3
in three iterations. In the first iteration, we assign σ4 based on the constraints
on y within the body of choose. When we get to the projection t2.n, we restart
since z must have the n field for this projection to succeed. Thus, in the second
iteration we assign σ5. When we get to the succ operation, we require another
restart since y and z must have the same type for the n field for this primitive
operation to succeed. Thus, in the third iteration we assign σ6.

40

Our constraint expression typing relation – in particular, the CT-If rule –
now produces a “join tree” J that maps if-expression identifiers k to the types
of their branches. We also generate two new kinds of constraints, both of which
can be caller-induced.5

S;Γ ` e1 ⇒ e′1 : Bool ; J1 | C1

S;Γ ` e2 ⇒ e′2 : τ2 ; J2 | C2 S;Γ ` e3 ⇒ e′3 : τ3 ; J3 | C3

J = J1 ◦ J2 ◦ J3 ◦ [k 7→ (τ2, τ3)] C = C1 ∪ C2 ∪ C3

S;Γ ` ifk e1 then e2 else e3 ⇒ ifk e
′
1 then e′2 else e′3 : Xk ; J | C CT-If

C ::= · · · | C ∪ {Xk.l ≤ { f :Xk.l.f }} | C ∪ {Xk.l primop}

To solve a constraint of the form Xk.l ≤ {f :Xk.l.f }, the inference algorithm
uses the join tree to expand Xk.l to its sources. For each source of the form Xy.l′ ,
it adds the constraint Xy.l′.l ≤ {f :Xy.l′.l.f }, which is a constraint on ordinary
type variables. To solve a constraint of the form Xk.l primop, the algorithm
expands Xk.l to its sources and equates them. The definition of Expand can be
found in Appendix B.

Like we did for E−, we can instrument evaluation so that the inference algo-
rithm never needs to backtrack.

L ::= · · · | L ∪ {Xk.l ≤ { f :Xk.l.f }} | L ∪ {Xk.l primop}

(E, e1) ⇓ ((true, T1), L1) (E, e2) ⇓ ((v, T2), L2)

(E, ifk e1 then e2 else e3) ⇓ ((v, T2 ∪ {Xk}), L1 ∪ L2)
E-IfTrue

After E-IfTrue or E-IfFalse adds the Xk tag to the return value of the if-
expression, the modified E-Proj rule (not shown), which treats Xk.l variables
like it does Xx.l variables, gathers the caller-induced constraints that would
require iteration in the fully-static algorithm.

5 Type Inference for System E≤

We now add support for a simple form of bounded quantification. Each type
variable in a function definition is declared with a single upper bound, which
must be a base type, Top, or a record of bounds. In particular, a bound cannot
be another type variable. This restriction allows constraint solving for E≤ to
remain simple.

d ::= · · · | def z[X ≤ δ](x:π){ e }
δ ::= B | Top | { f :δ }

5 So that we can discuss the algorithm at a high-level, we omit a subtle detail from the
discussion: the Top might also carry a subscript. Constraints of the form Xk.l primop

can only be directly generated within the function containing the if-expression, since
type variables Xk.l are eliminated when computing the function type. We use Topk.l
to enable generating Xk.l primop from a calling context.

41

We use U to range over lists of bounded type variables X ≤ δ. Function types
become ∀U. π → π′. The subtyping relation is defined to read subtyping assump-
tions from U , transitively if necessary. The typing judgment for expressions in-
cludes the bounds U of the particular function being typed. Before checking the
type of the value argument, the function application rule must check that the
type parameters supplied satisfy the bounds specified by the function’s type.

Xx.l ≤ δ ∈ U
U ` Xx.l ≤ δ

S-BQ-Bound
U ` δ1 ≤ π U ` π ≤ δ2

U ` δ1 ≤ δ2
S-BQ-Trans

S(z) = ∀X ≤ δ. π → π′ n = |X| = |σ|
∀i ∈ 1..n θi = [X1 7→ σ1] ◦ · · · ◦ [Xi−1 7→ σi−1] U ` σi ≤ θiδi

S;U ;Γ ` e : τ U ` τ ≤ θnπ τ ′ = θnπ
′

S;U ;Γ ` z[σ](e) : τ ′
T-BQ-App

We now revisit the wrap and choose examples from previous sections. In E≤,
we can assign the following type to wrap.

σ11 ∀Xx ≤ { a:Nat }. Xx → { orig:Xx;asucc:Nat }•

This type is more general than σ1, σ2, and σ3, the types that we saw in Section 3.
Indeed, this is the most general type that can be assigned to wrap. In E≤, we
can assign the following type to choose.

σ12 ∀Xy ≤ { n:Nat }. (Xy*Xy)→ Xy

This type is more general than types σ6 through σ10 that we saw in Section 4.
However, σ12 is still incomparable with σ4 and σ5.

The previous example demonstrates that not every program has a principal
type in System E≤.6 The source of ambiguity is whether or not to “share” a type
variable for two parameters returned by an if-expression. To help demonstrate,
consider the following versions of σ4 and σ5 equivalent to the original ones.

σ4 ∀Xy ≤ { n:Nat }. ∀Xz ≤ {}. (Xy*Xz)→ {}1
σ5 ∀Xy ≤ { n:Nat }. ∀Xz.n ≤ Top. ∀Xz ≤ { n:Xz.n }. (Xy*Xz)→ { n:Top }1

Notice that in σ4 and σ5 the constraints on y and z are kept separate with
different type variables. In σ12, on the other hand, the constraints are combined
into a single type variable (arbitrarily named Xy, though Xz would work just as
well). The first factor to consider is whether the separate bounds for two type
variables are compatible. Consider the following example.

def separateVars(v,w){ if2 iszero v.f && not w.f then v else w }

Since v.f and w.f have different base types, Xv and Xw must be kept separate;
there is no single bound that can type both v and w correctly.

6 In a system more powerful than E≤, choose might have the principal type
∀Xy, Xz. {Xy ≤ { n:Nat }, Xy ≤ Xz} ⇒ (Xy*Xz)→ Xz.

42

If the constraints on two type variables for a branch are compatible, we
start by using a shared variable. In general, sharing a type variable may impose
more constraints on a parameter than if it was assigned its own type variable.
Some call sites may not provide actuals that are well-typed with these additional
requirements. For example, σ12 imposes more requirements on z than does σ4.
In the presence of a calling context like choose({n=1},{}), which is not well-
typed when one type variable is shared for y and z, we trigger a restart and
keep Xy and Xz separate in subsequent iterations. Whenever we are forced to
keep two type variables separate – because their constraints are incompatible or
because there is some incompatible call site – we must track fields for each type
variable just we do for System E.

We would like to take advantage of run-time logs to eliminate backtracking.
However, it is not clear that the new source of backtracking can be completely
avoided, because observing the fields of actuals at run-time does not give an
accurate description of their corresponding static types. Consider the following
example.

def projFG(p,q){ if3 p.f > p.g then p else q }

def rememberF(r){ if4 true then r else { f = 1 } }

def main(){ let o = { f=1;g=2 } in projFG(o,rememberF(o)) }

At run-time, both values passed to projFG have fields f and g, so we might
be tempted to conclude that this call site would be well-typed if p and q share
the same type variable Xp. Statically, however, the second actual has only f

because it passes through rememberF. Thus, the run-time information about
record actuals is not sufficent to deduce that Xp and Xq must be kept separate.
On the other hand, we can be sure if two type variables must be kept separate,
since if some run-time actual does not have a required field, then its static type
will certainly not. For example, the call site projFG(o,{}) would rule out the
possibility of sharing the same type variable for p and q.

Thus, our modified type inference can rule out situations in which sharing
bounded type variables is certainly not possible, so bounds must be kept sepa-
rate. We can avoid backtracking in this case, since the run-time log will have all
fields that might be used, as was the case for System E. If the log does not rule
out sharing, the inference algorithm attempts to share the same type variable
and proceeds. If a call site is ill-typed, then a restart is necessary so that separate
type variables are used. At this point, the log contains all additional fields that
will be needed, so further backtracking is avoided. Thus, using run-time logs
improves the fully-static, iterative approach but does not completely eliminate
the need for iteration.

6 Conclusion

We have sketched out static type inference algorithms for several versions of Sys-
tem E that lack principal types and then improved them with information from
run-time executions. Clearly, the formal development of the desired soundness

43

and completeness properties must be addressed in future work. Furthermore, ad-
ditional features like recursion, recursive types, nominal object types, and most
importantly, higher-order functions, need to be studied for their amenability to
inference with run-time logs. In particular, it will be important to determine
whether partial or full type inference for System F becomes any easier with the
presence of run-time logs. If so, then we may be able to apply these techniques
to inferring types for realistic dynamic languages, since many object systems re-
quire System F-based type theories. If not, then more heuristic-based approaches
will likely be required.

References

1. Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks.
Dynamic inference of static types for ruby. In POPL, 2011.

2. Gavin Bierman, Erik Meijer, and Mads Torgersen. Adding dynamic types to c#.
In ECOOP, 2010.

3. Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encod-
ings. Information and Computation, 1999.

4. Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 1985.

5. Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-guided static
typing for dynamic scripting languages. In OOPSLA, 2009.

6. Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static
type inference for ruby. In SAC, 2009.

7. Fritz Henglein and Jakob Rehof. Safe polymorphic type inference for a dynamically
typed language: Translating scheme to ml. In Functional Programming Languages
and Computer Architecture, 1995.

8. Frank Pfenning. Partial polymorphic type inference and higher-order unification.
In POPL, 1988.

9. Benjamin C. Pierce. Types and Programming Languages. 2002.
10. Jeremy Siek and Walid Taha. Gradual typing for functional languages. In Scheme

and Functional Programming Workshop, 2006.
11. Jeremy Siek and Walid Taha. Gradual typing for objects. In ECOOP, 2007.
12. Martin Sulzmann, Martin Odersky, and Martin Wehr. Type inference with con-

strained types. In FOOL, 1997.
13. Peter Thiemann. Towards a type system for analyzing javascript programs. In

ESOP, 2005.
14. Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of

typed scheme. In POPL, 2008.
15. Joe Wells. Typability and type checking in the second-order lambda calculus are

equivalent and undecidable. In LICS, 1994.

44

A Some Additional Definitions for System E−

Call(Xy.l, τ) ` (∅, [Xy.l 7→ τ])

Call(B,B) ` (∅, []) Call(B,Xy.l) ` ({Xy.l = B}, [])

∀i. Call(τi, Xy.l.fi) ` (Ci, θi)
C = ∪i ({Xy.l ≤ { fi:Xy.l.fi }} ∪ Ci)

θ = θ1 ◦ · · · ◦ θn
Call({ f :τ }, Xy.l) ` (C, θ)

∀i. ∃ji. fi = gji
Call(τi, πji) ` (Ci, θi)

C = ∪i Ci θ = θ1 ◦ · · · ◦ θn
Call({ fi:τ }, { g:π }) ` (C, θ)

∀i. ∃ji. fi = gji
∃i′. Call(τi′ , πji′)↖ C

Call({ f :τ }, { g:π })↖ C

∃i′. ∀j. fi′ 6= gj
C = {Xy.l ≤ { fi′ :Xy.l.fi′ }}
Call({ f :τ }, { g:π }y.l)↖ C

Consistent(C) = true iff 1. If Xy.l = B ∈ C and Xy.l = B′ ∈ C, then B = B′

2. If Xy.l = B ∈ C and Xy′.l′ ≤ τ ∈ C, then (y, l) 6= (y′, l′)

TypOf(Xy.l, C) =

B if Xy.l = B ∈ C
{ fk:θkXy.l.fk }y.l otherwise, where

Xy.l ≤ { fk:Xy.l.fk } ∈ C
θk = TypOf(Xy.l.fk , C)

Solve(C) =

[Xy.l 7→ τy.l] if Consistent(C) = true
where τy.l = TypOf(Xy.l, C)
for each Xy.l ∈ C

fail if Consistent(C) = false

B Some Additional Definitions for System E

Path(τ, []) = τ

Path(B, f :: l) = fail

Path({ g:τ }, f :: l) =

{
Path(τj , l) if ∃j. f = gj
fail ow

Path(Xx.l′ , f :: l) = Xx.l′.f.l

Expand(J,B) = {B}
Expand(J,Xx.l) = {Xx.l}

Expand(J, { f :τ }) = {{ f :τ }}
Expand(J,Xk.l) = { Path(τ, l) | τ ∈ Expand(J, τ2) ∪ Expand(J, τ3) }

where J(k) = (τ2, τ3)

45

The Ciao Approach
to the Dynamic vs. Static Language Dilemma

(Position/System/Demo Paper1)

M. V. Hermenegildo1,2 F. Bueno1 M. Carro1 P. López-Garćıa2,4

E. Mera3 J. F. Morales2 G. Puebla1

1Universidad Politécnica de Madrid (UPM)
{bueno,mcarro,german,herme}@fi.upm.es

2Madrid Institute of Advanced Studies
in SW Development Technology (IMDEA Software Institute)

{manuel.hermenegildo,pedro.lopez,jose.morales}@imdea.org
3Universidad Complutense de Madrid (UCM)

edison@fdi.ucm.es
4Scientific Research Council (CSIC)

Dynamic vs. Static Languages

The environment in which much software needs to be developed nowadays (de-
coupled software development, use of components and services, increased inter-
operability constraints, need for dynamic update or self-reconfiguration, mash-up
development, etc.) is posing requirements which align with the classical argu-
ments for dynamic languages and which in fact go beyond them. Examples of
often required dynamic features include making it possible to (partially) test and
verify applications which are partially developed and which will never be “com-
plete” or “final,” or which evolve over time in an asynchronous, decentralized
fashion (e.g., software service-based systems). These requirements, coupled with
the intrinsic agility in development of dynamic programming languages such as
Python, Ruby, Lua, JavaScript, Perl, PHP, etc. (with Scheme or Prolog also in
this class) have made such languages a very attractive option for a number of
purposes that go well beyond simple scripting. Parts written in these languages
often become essential components (or even the whole implementation) of full,
mainstream applications.

At the same time, detecting errors at compile-time and inferring many prop-
erties required in order to optimize programs are still important issues in real-
world applications. Thus, strong arguments are still also made in favor of static
languages. For example, many modern logic and functional languages (such as,
e.g., Mercury [24] or Haskell [12]) impose strong type-related requirements such
as that all types (and, when relevant, modes) have to be defined explicitly or

1 In addition to the other references, this recent tutorial overview of Ciao [11] covering
more fully the points made in this position paper can be downloaded from:
http://clip.dia.fi.upm.es/papers/hermenegildo10:ciao-design-tplp-tr.pdf

47

that all procedures have to be “well-typed” and “well-moded.” One argument
supporting this approach is that it clarifies interfaces and meanings and facili-
tates “programming in the large” by making large programs more maintainable
and better documented. Also, the compiler can use the static nature of the lan-
guage to generate more specific code, which can be better in several ways (e.g.,
performance-wise).

The Ciao Approach

In the design of Ciao [7,6,2,10,11] we certainly had the latter arguments in mind,
but we also wanted Ciao to be useful (as the “scripting” languages) for highly
dynamic scenarios such as those listed above, for “programming in the small,”
for prototyping, for developing simple scripts, or simply for experimenting with
the solution to a problem. We felt that compulsory type and mode declarations,
and other related restrictions, can sometimes get in the way in these contexts.
Ciao aims at combining the flexibility of dynamic/scripting languages with the
guarantees of static languages, to bridge programming in the small and program-
ming in the large, while performing efficiently on platforms ranging from small
embedded processors to powerful multicore architectures.

Important components of the solution we came up with are the rich Ciao as-
sertion language and the Ciao methodology for dealing with such assertions [3,8,22],
which implies making a best effort to infer and check properties statically, even
highly complex ones, by using powerful and rigorous static analysis tools based
on safe approximations, while accepting that complete verification may not al-
ways be possible (at least in a fully automated way) and run-time checks may
sometimes be needed. This approach opens up the possibility of dealing in a uni-
form way with a wide variety of properties besides traditional types (e.g., rich
modes, determinacy, non-failure, shapes, sharing/aliasing, term linearity, time,
memory, general resources,. . .), while at the same time allowing all assertions to
be optional.

The Ciao assertion language provides a homogeneous framework which al-
lows, among other things, static and dynamic verification (including unit test-
ing [17]) to work cooperatively in a unified way. It is also instrumental for auto-
documentation. The Ciao Preprocessor (CiaoPP) [3,8,21,9]) is a compile-time
tool, based on abstract interpretation and other related techniques, which is
capable of statically finding non-trivial bugs, verifying that the program com-
plies with specifications (written in the assertion language), introducing run-time
checks for (parts of) assertions that cannot be verified statically, and perform-
ing many types of program optimizations (including automatic parallelization).
Such optimizations produce code that is highly competitive not only with other
dynamic (or “scripting”) languages but even that of static languages, when the
optimizing compiler is used, all while retaining the interactive development en-
vironment of a dynamic language. This static/dynamic compilation architecture
supports modularity and separate compilation throughout.

In the Ciao approach many properties used in assertions, including for exam-
ple types, are written directly (or with convenient syntactic sugar) in the source

48

language, so that they can be run and experimented with. I.e., one can test in-
teractively if a certain data structure belongs to a type, has a particular size, or
does not contain aliased pointers by just passing the data structure to the defini-
tion of the corresponding property and executing it. Furthermore, properties can
often be used to enumerate (produce examples) of data which meet the property,
such as, e.g., generating concrete examples of a type. This is all instrumental in
the implementation of run-time checks and testing. The underlying logic engine
and meta-programming capabilities of Ciao are fundamental in these tasks.

As mentioned above, the assertion language and preprocessor design also
allows a smooth integration with unit testing. Unit tests are expressed as asser-
tions. Then, as with other assertions, the (parts of) unit tests that can be verified
at compile-time are eliminated, and sometimes it not not necessary whole sets
of tests.

We argue that the solutions that were adopted in the Ciao design allow
programming both in the small and in the large, combining effectively the ad-
vantages of the strongly typed and untyped language approaches. In contrast,
systems which focus exclusively on automatic compile-time checking are often
rather strict about the properties which the user can write. This is understand-
able because otherwise the underlying static analyses are of little use for proving
the assertions.

Some Related Work

The Ciao model is related to the soft typing approach [4]. However, compile-time
inference and checking in the Ciao model is not restricted to types (nor requires
properties to be decidable), and it draws many new synergies from its novel
combination of assertion language, properties, certification, run-time checking,
testing, etc. The practical relevance of the combination of static and dynamic
features is in fact illustrated by the many other languages and frameworks which
have been proposed lately aiming at bringing together ideas of both worlds. This
includes the very interesting recent work in gradual typing for Scheme [25] (and
the related PLT-Scheme/Racket language), the recent uses of “contracts” in
verification [16,19], and the pragmatic viewpoint of [14], but applied to pro-
gramming languages rather than specification languages. The fifth edition of
ECMAScript [5], on which the JavaScript and ActionScript languages are based,
includes optional (soft-)type declarations to allow the compiler to generate more
efficient code and detect more errors. The Tamarin project [18] intends to use this
additional information to generate faster code. For Python, the PyPy project [23]
has designed a language, RPython [1], that imposes constraints on the programs
to ensure that they can be statically typed. RPython is moving forward as a gen-
eral purpose language. This line of thought has also brought the development of
safe versions of traditional languages, such as, e.g., CCured [20] or Cyclone [13]
for C, as well as of systems that offer functionality similar to those of the Ciao
assertion preprocessor, such as Deputy (http://deputy.cs.berkeley.edu/) or
Spec# [15]. In summary, we argue that Ciao pioneered what are becoming rela-

49

tively widely accepted approaches to marrying the static and dynamic language
worlds.

Language Extensibility in Ciao

While not as directly related to the dynamic vs. static dilemma, another im-
portant characteristic of Ciao is that it is built up from a kernel that includes
significant extensibility capabilities, i.e., it includes an easily programmable and
modular way of defining new syntax and giving semantics to it in terms of that
kernel language. This idea is not exclusive to Ciao, but in Ciao the facilities that
enable building up from a simple kernel are extensive and explicitly available
from the system programmer level to the application programmer level.

Also, this mechanism to add new syntax to the language and give semantics
to such syntax can be activated or deactivated on a per-compilation unit basis
without interfering with others. In fact, all Ciao operators, “builtins,” and most
other syntactic and semantic language constructs are user-modifiable and live
in libraries. Using these facilities, Ciao provides the programmer with a large
number of useful features from different programming paradigms and styles, and
the use of each of these features can be turned on and off at will for each program
module. Thus, a given module may be using, e.g., higher order functions and
constraints, while another module may be using imperative operations, objects,
predicates, Prolog meta-programming builtins, and concurrency.

Conclusions

We believe that Ciao has pushed and is continuing to push the state of the art in
solving the currently very relevant and challenging conundrum between statically
and dynamically checked languages. It pioneered what we believe is the most
promising approach in order to be able to obtain the best of both worlds: the
combination of a flexible, multi-purpose assertion language with strong program
analysis technology. This allows support for dynamic language features while at
the same time having the capability of achieving the performance and efficiency
of static systems. We believe that a good part of the power of the Ciao approach
also comes from the synergy that arises from using the same framework and
assertion language for different tasks (static verification, run-time checking, unit
testing, documentation, . . .) and its interaction with the design of Ciao itself (its
module system, its extensibility, or the support for predicates and constraints).

References

1. Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis.
RPython: a Step towards Reconciling Dynamically and Statically Typed OO Lan-
guages. In DLS ’07: Proceedings of the 2007 Symposium on Dynamic Languages,
pages 53–64, New York, NY, USA, 2007. ACM.

50

2. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and
G. Puebla-(Eds.). The Ciao System. Ref. Manual (v1.13). Technical re-
port, School of Computer Science, T.U. of Madrid (UPM), 2009. Available at
http://www.ciaohome.org.

3. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l Workshop on Au-
tomated Debugging–AADEBUG’97, pages 155–170, Linköping, Sweden, May 1997.
U. of Linköping Press.

4. Robert Cartwright and Mike Fagan. Soft Typing. In Programming Language
Design and Implementation (PLDI 1991), pages 278–292. SIGPLAN, ACM, 1991.

5. ECMA International. ECMAScript Language Specification, Standard ECMA-
262, Edition 5. Technical report, September 2009. Available at http://wiki.

ecmascript.org.
6. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda,

P. López-Garćıa, and G. Puebla. The CIAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism and
Implementation of Logic and Constraint Logic Programming, pages 65–85. Nova
Science, Commack, NY, USA, April 1999.

7. M. Hermenegildo and The CLIP Group. Some Methodological Issues in the De-
sign of CIAO - A Generic, Parallel, Concurrent Constraint System. In Principles
and Practice of Constraint Programming, number 874 in LNCS, pages 123–133.
Springer-Verlag, May 1994.

8. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25–Year Perspective, pages 161–192. Springer-
Verlag, July 1999.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2), 2005.

10. M. Hermenegildo and The Ciao Development Team. Why Ciao? –An Overview of
the Ciao System’s Design Philosophy. Technical Report CLIP7/2006.0, Technical
University of Madrid (UPM), School of Computer Science, UPM, December 2006.
Available from: http://cliplab.org/papers/ciao-philosophy-note-tr.pdf.

11. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Technical Report
CLIP2/2010.0, Technical University of Madrid (UPM), School of Computer Sci-
ence, March 2010. Under consideration for publication in Theory and Practice of
Logic Programming (TPLP).

12. P. Hudak, S. Peyton-Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzman, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Par-
tain, and J. Peterson. Report on the Programming Language Haskell. Haskell
Special Issue, ACM Sigplan Notices, 27(5), 1992.

13. Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of c. In Carla Schlatter El-
lis, editor, USENIX Annual Technical Conference, General Track, pages 275–288.
USENIX, 2002.

14. Leslie Lamport and Lawrence C. Paulson. Should your specification language be
typed? ACM Transactions on Programming Languages and Systems, 21(3):14, May
1999.

51

15. Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verifi-
cation challenges for sequential object-oriented programs. Formal Asp. Comput.,
19(2):159–189, 2007.

16. Francesco Logozzo et al. Clousot. http://msdn.microsoft.com/en-us/devlabs/

dd491992.aspx.
17. E. Mera, P. López-Garćıa, and M. Hermenegildo. Integrating Software Testing and

Run-Time Checking in an Assertion Verification Framework. In 25th International
Conference on Logic Programming (ICLP’09), number 5649 in LNCS, pages 281–
295. Springer-Verlag, July 2009.

18. Mozilla. Tamarin Project, 2008. Available at http://www.mozilla.org/

projects/tamarin/.
19. MSR. Code contracts. http://research.microsoft.com/en-us/projects/

contracts/.
20. George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley

Weimer. Ccured: type-safe retrofitting of legacy software. ACM Trans. Program.
Lang. Syst., 27(3):477–526, 2005.

21. G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 63–107. Springer-Verlag, September 2000.

22. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in
LNCS, pages 23–61. Springer-Verlag, September 2000.

23. A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine Construction. In
Dynamic Languages Symposium 2006. ACM Press, October 2006.

24. Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mercury:
an Efficient Purely Declarative Logic Programming Language. Journal of Logic
Programming, 29(1–3):17–64, October 1996.

25. Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of
typed scheme. In George C. Necula and Philip Wadler, editors, Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages
395–406. ACM, 2008.

52

