
CMSC 15100, Fall 2004
Section 1
Exam 2

Name

1 (from 20)
2 (from 25)
3 (from 25)
4 (from 10)
5 (from 20)

total (from 100)

0



Recall reverse and add-at-end :

;; reverse : list-of-numbers → list-of-numbers
(define (reverse l )

(cond
[(empty? l ) empty]
[else (add-at-end (first l ) (reverse (rest l )))]))

;; add-at-end : number list-of-numbers → list-of-numbers

(define (add-at-end ele l )
(cond

[(empty? l ) (list ele)]
[else (cons (first l ) (add-at-end ele (rest l )))]))

Rewrite these functions, using fold :

;; fold : list-of-X Y (X Y → Y ) → Y
(define (fold l base combine)

(cond
[(empty? l ) base]
[else (combine (first l ) (fold (rest l ) base combine))]))

For each use of fold , identify what X and Y from fold ’s type are.

Solution

(define (reverse l ) (fold l empty add-at-end ))
(define (add-at-end ele l ) (fold l (list ele) cons))

In both cases, X is number and Y is list-of-numbers.

1



Here is a data definition for a set of numbers. Unlike a list of numbers, a set of numbers should not
contain any duplicated elements.

;; a set-of-numbers is either
;; - empty
;; - (cons number[n] set-of-numbers[l])
;; INVARIANT: the number n is not in the list-of-numbers l

Not all sets have unique representations. For example, the set of numbers {1, 3} can be represented as
either

(cons 1 (cons 3 empty))

or

(cons 3 (cons 1 empty))

These should be thought of as equivalent sets.

Develop three functions:

;; start : number → set-of-numbers
;; to build a new set of numbers that contains only n
(define (start n) . . . )

;; extend : number set-of-numbers → set-of-numbers
;; to build a bigger set of numbers, extending son.
(define (extend n son) . . . )

;; test : number set-of-numbers → boolean
;; to determine if n is in son.
(define (test n son) . . . )

Solution

;; start : number → set-of-numbers
;; to build a new set of numbers that contains only n
(define (start n) (list n))

;; extend : number set-of-numbers → set-of-numbers
;; to build a bigger set of numbers, extending son.
(define (extend n son)

(cond
[(test n son) son]
[else (cons n son)]))

;; test : number set-of-numbers → boolean
;; to determine if n is in son.
(define (test n son)

(cond
[(empty? son) false]
[else (or (= n (first son))

(test n (rest son)))]))

2



Here is another data definition for a set of numbers:

;; a set of numbers is a function:
;; number → boolean

The intention is that applying the set to a number determines if the number is in the set. For example,
this function:

(lambda (x) false)

represents the set with no numbers and this function:

(lambda (x) (or (= x 2) (= x 1)))

represents the set that contains only the numbers 1 and 2.

Develop the same three functions from the previous page, but using the new data definition:

;; start : number → set-of-numbers
;; to build a new set of numbers that contains only n
(define (start n) . . . )

;; extend : number set-of-numbers → set-of-numbers
;; to build a bigger set of numbers, extending son.
(define (extend n son) . . . )

;; test : number set-of-numbers → boolean
;; to determine if n is in son.
(define (test n son) . . . )

Solution

;; start : number → set-of-numbers
;; to build a new set of numbers that contains only n
(define (start n) (lambda (x) (= x n)))

;; extend : number set-of-numbers → set-of-numbers
;; to build a bigger set of numbers, extending son.
(define (extend n son)

(lambda (y)
(or (= n y)

(son y))))

;; test : number set-of-numbers → boolean
;; to determine if n is in son.
(define (test n son)

(son n))

3



;; merge-sort : list-of-numbers → list-of-numbers
(define (merge-sort l )

(cond
[(empty? l ) empty]
[else
(merge (merge-sort (evens l ))

(merge-sort (odds l )))]))

;; merge : list-of-numbers list-of-numbers → list-of-numbers
(define (merge l1 l2 )

(cond
[(empty? l1 ) l2 ]
[(empty? l2 ) l1 ]
[else
(cond

[(<= (first l1 ) (first l2 ))
(cons (first l1 ) (merge (rest l1 ) l2 ))]

[else (cons (first l2 ) (merge l1 (rest l2 )))])]))

;; evens : non-empty-list-of-numbers → list-of-numbers
;; to extract alternating elements of l , skipping the first one.
(define (evens l )

(cond
[(empty? (rest l )) empty]
[else (odds (rest l ))]))

;; odds : non-empty-list-of-numbers → list-of-numbers
;; to extract alternating elements of l , starting with the first one.
(define (odds l )

(cond
[(empty? (rest l )) l ]
[else (cons (first l ) (evens (rest l )))]))

;; (some) examples
(evens (list 1 2 3 4)) = (list 2 4)
(odds (list 1 2 3 4)) = (list 1 3)

Is the function merge-sort generative or structurally recursive?

Solution
Generative

Is the function merge generative or structurally recursive?

Solution
Structural

4



The merge-sort function on the previous page does not terminate for all lists of numbers. Identify an
input for which it fails to terminate. Provide a fix so that it will terminate for all lists of numbers.

Hint: try some (small) hand evaluations.
Solution

merge-sort doesn’t make progress for a list of numbers that only has one number in it. For example:
(merge-sort (list 1))

= (merge (merge-sort empty) (merge-sort (list 1)))
= (merge (merge-sort empty) (merge (merge-sort empty) (merge-sort (list 1))))
= ...

To fix, add a case for a singleton list to merge-sort .

;; merge-sort : list-of-numbers → list-of-numbers
(define (merge-sort l )

(cond
[(empty? l ) empty]
[(empty? (rest l )) l ]
[else
(merge (merge-sort (evens l ))

(merge-sort (odds l )))]))

5


