
CMSC 15100, Fall 2005
Midterm Exam 2 Section 01

Name

1a (from 4)
1b (from 5)
1c (from 10)
2a (from 4)
2b (from 4)
2c (from 4)
2d (from 4)
3a (from 5)
3b (from 20)
4a (from 5)
4b (from 10)
4c (from 10)
4d (from 5)

5 (from 10)
Total (from 100)

Rule: You may use any function assigned as homework here without
re-defining it. You may also use any function on this test in any other
function.

1



CMSC 15100, Fall 2005
Midterm Exam 2 Section 02

Name

1a (from 4)
1b (from 5)
1c (from 10)
2a (from 4)
2b (from 4)
2c (from 4)
2d (from 4)
3a (from 5)
3b (from 20)
4a (from 5)
4b (from 10)
4c (from 10)
4d (from 5)

5 (from 10)
Total (from 100)

Rule: You may use any function assigned as homework here without
re-defining it. You may also use any function on this test in any other
function.

1



1 [19 total points]. A (tree-of X ) can be defined as follows:

;; A (tree-of X ) is either:
;; - (make-leaf X )
;; - (make-branch (tree-list-of X ))
;; A (tree-list-of X) is:
;; - (listof (tree-of X ))
(define-struct leaf (item))
(define-struct branch (subtrees))

For example, the following is a (tree-of num):

(define a-tree (make-branch (list (make-leaf 1)
(make-branch (list (make-leaf 2) (make-leaf 3)))
(make-leaf 4))))

1a [4 points]. Write an example (tree-of boolean) and an example (tree-of symbol ). Include at least two
branch structures in each.

Solution

(define tree-2 (make-branch (list (make-branch (list (make-leaf true))))))
(define tree-3 (make-branch (list (make-leaf ’hello)

(make-branch (list (make-leaf ’world)
(make-leaf ’!))))))

2



1b [5 points]. Write a template for functions that process (tree-of X ) values.
Solution

(define (fft/tree tox)
(cond

((leaf? tox) · · · (leaf-item tox) · · ·)
((branch? tox)
· · · (fft/list (branch-subtrees tox)) · · ·)))

(define (fft/list lot )
(cond

((empty? lot ) · · ·)
(else
· · · (fft/tree (first lot )) · · ·
· · · (fft/list (rest lot )) · · ·)))

3



1c [10 points]. Develop the function fringe : (tree-of X ) → (listof X ), which takes a tree and produces the
list of elements contained in its leaf nodes. For instance, (fringe a-tree) = (list 1 2 3 4).

Solution

(define (fringe tox)
(cond

((leaf? tox) (list (leaf-item tox)))
((branch? tox)
(fringe/subtrees (branch-subtrees tox)))))

(define (fringe/subtrees lot )
(cond

((empty? lot ) empty)
(else
(append (fringe (first lot ))

(fringe/subtrees (rest lot ))))))

4



2 [16 total points]. For each of these contracts and purpose statements, write a function that would imple-
ment it by calling the appropriate helper functions with the appropriate arguments. You may use filter , map ,
and ormap (you have not seen ormap in class). None of the answers to these questions should be recursive
functions themselves. You do not need to write test cases.

;; filter : (X → boolean) (listof X ) → (listof X )
;; returns the elements of lox for which (f x) returns true
(define (filter f lox)

(cond
[(empty? lox) empty]
[else
(cond

[(f (first lox))
(cons (first lox) (filter f (rest lox)))]

[else (filter f (rest lox))])]))

;; map : (X → Y ) (listof X ) → (listof Y )
;; constructs a list by applying f to each element in lox
(define (map f lox)

(cond
[(empty? lox) empty]
[else
(cons (f (first lox)) (map f (rest lox)))]))

;; ormap : (X → boolean) (listof X ) → boolean
;; determines if the given function returns true for at least one element in the given list
(define (ormap f lox)

(cond
[(empty? lox) false]
[else
(or (f (first lox)) (ormap f (rest lox)))]))

2a [4 points]. add3-to-all : (listof number) → (listof number) Returns a list of each number in the input list
with 3 added to it. E.g., (add3-to-all (list 0 1 2 3)) = (list 3 4 5 6).

Solution

(define (add3-to-all lon)
(map (lambda (x) (+ x 3)) lon))

5



2b [4 points]. any-even? : (listof number) → boolean . Returns true if the given list of numbers contains an
even number.

Solution

(define (any-even? lon)
(ormap even? lon))

2c [4 points]. zeroes? : (listof (listof num)) → boolean . Returns true if and only if there there is some input
list that contains a zero. E.g.,

(zeroes? (list empty (list 1))) = false
(zeroes? (list (list 1 0 2) (list 0))) = true

Solution

(define (zeroes? lolon)
(ormap
(lambda (lon) (ormap zero? lon))
lolon))

6



2e [4 points]. remove-zeroes (listof (listof num)) → (listof (listof num)). Eliminates all zeroes from the
input lists. E.g.,

(remove-zeroes (list empty (list 1))) = (list empty (list 1)))
(remove-zeroes (list (list 1 0 2) (list 0))) = (list (list 1 2) empty))

Solution

(define (remove-zeroes lolon)
(map
(lambda (lon)

(filter (lambda (n) (not (zero? n))) lon))
lolon))

7



3 [25 total points]. Some graphs have the interesting property that they contain at least one node with
exactly as many neighbors as the average number of neighbors of all nodes in the graph (graphs with no
nodes do not have this property). Recall from class:

;; a (graph-of X ) is:
;; (make-graph (listof X ) (X → (listof X )) (X X → boolean))
(define-struct graph (nodes neighbors node-equal? ))

3a [5 points]. Define two graphs, graph1 and graph2 . The first must have this property, and the second
must not.

Solution

(define test1 (make-graph (list ’a ’b ’c) (lambda (x) (list ’a ’b ’c)) symbol=? ))
(define test2 (make-graph (list ’a ’b ’c)

(lambda (x)
(cond

((symbol=? ’a x) ’())
(else (list ’a ’b ’c))))

symbol=? ))

8



3b [20 points]. Develop the function average? : (graph-of X ) → boolean which determines whether a given
graph has this property. In your solution, you may use the function avg which computes the average of a
list of numbers:

;; avg : (listof num) → num
(define (avg lon)

(/ (foldl + 0 lon) (length lon)))

Solution

(define (average? G )
(local ((define neighbors (graph-neighbors G )))

(ormap
(lambda (node)

(= (length (neighbors node)) (graph-average G )))
(graph-nodes G ))))

(define (graph-average G )
(avg (map

(lambda (n) (length ((graph-neighbors G ) n)))
(graph-nodes G ))))

9



10



4 [30 total points]. A number can be naturally encoded as a base-10-nat , which is either a digit or another
base-10-nat with an extra digit at the end. More formally:

;; a base-10-nat is either:
;; - a digit (i.e., a number from 0 to 9)
;; - (+ (∗ 10 n) d) where n is a base-10-nat and d is a digit

(define (digit? n) (< n 10))

The selectors for a multi-digit base-10-nat n are all-but-last-digit and last-digit , which can be defined as
follows:

;; all-but-last-digit : base-10-nat → base-10-nat
(define (all-but-last-digit n)

(quotient n 10))

;; last-digit : base-10-nat → digit
(define (last-digit n)

(remainder n 10))

For example, the number 123 is a base-10-nat since it can be written as (+ (∗ 10 12) 3) and 12 is a
base-10-nat and 3 is a digit. Furthermore:

(all-but-last-digit 123) = 12
(last-digit 123) = 3

4a [5 points]. Write a template for functions that process base-10-nats .
Solution

(define (fun-for-b10n b10n)
(cond

((digit? b10n) · · ·)
(else
· · · (fun-for-b10n (all-but-last-digit b10n)) · · ·
· · · (last-digit b10n) · · ·)))

11



4b [10 points]. Develop the function number→digits : base-10-nat → (listof digit ). This function is the
inverse of the function digits→number you developed for homework: digits→number produced a number
from a given sequence of digits, and number→digits produces the sequence of digits represented by the
given number. For example, (number→digits 3) = (list 3) and (number→digits 123) = (list 1 2 3).

Do not use an accumulator.
Solution

(define (number→digits b10n)
(cond

((digit? b10n) (list b10n))
(else
(append (number→digits (all-but-last-digit b10n))

(list (last-digit b10n))))))

12



4c [10 points]. Your number→digits function should be a good candidate for being rewritten in accu-
mulator style. Concisely describe a useful accumulator for this function, state its initial value, and state
an accumulator invariant for it. Recall that an accumulator invariant is a logical statement relating three
things: the input to the original function, the input to the accumulator version of the function, and the
accumulator.

Solution
An accumulator could hold the list of digits representing the conversion of the suffix of the number being
converted into a list. It would start with empty. Accumulator invariant: if n1 is the original argument to
number→digits , n is the argument to the accumulator function, and acc is the accumulator, then the digits
of n1 are the digits of n followed by acc .

13



4d [5 points]. Write a revised version of number→digits that maintains and exploits an accumulator.
Solution

(define (number→digits n)
(local ((define (n→d n acc)

(cond
((digit? n) (cons n acc))
(else (n→d

(all-but-last-digit n)
(cons (last-digit n) acc))))))

(n→d n empty)))

14



5 [10 points]. A number palindrome is a number that is the same when read from left to right or from right to
left. It is possible to associate a palindrome with a positive number n using the following rule:

• If n is a palindrome, it is associated with itself.

• If n is not a palindrome, then it is associated with whatever palindrome is associated with the number
formed by adding n to the number formed by reversing the digits of n.

For instance, 14741 is associated with itself; 23 is associated with 55 because 23 + 32 = 55 and 55 is a
palindrome; and 87 is associated with 4884 because 87+78 = 165 and 165+561 = 726 and 726+627 = 1353
and 1353 + 3531 = 4884 and 4884 is a palindrome.1

Develop the function find-palindrome : number → number , which determines the palindrome associ-
ated with the given number. For instance, (find-palindrome 14741) = 14741, (find-palindrome 23) = 55,
and (find-palindrome 87) = 4884. You may find these two helper functions useful:

;; reverse-num : number → number
;; reverses the digits of a number
;; e.g., (reverse-num 123) = 321
(define (reverse-num n)

(digits→number (reverse (number→digits n))))

;; palindrome? : number → boolean
;; determines if a number is a palindrome.
;; e.g., (palindrome? 123) = false, (palindrome? 12321) = true
(define (palindrome? n)

(= n (reverse-num n)))

Solution

(define (find-palindrome n)
(cond

((palindrome? n) n)
(else (find-palindrome (+ n (reverse-num n))))))

1Curiously, no one knows whether 196 has any palindrome associated with it at all. Numbers that have no associated palindrome
are called Lychrel numbers, and no one knows whether any Lychrel numbers actually exist. We do know that if 196 has an associated
palindrome, that palindrome must be over 278,750,715 digits long!

15


