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1 Introduction to Sudoku

Sudoku is a logic puzzle set on a nine by nine grid. The goal is to fill in the
blank spaces in the puzzle with the digits 1 thru 9, according to these four
rules:

• each row contains each digit once;

• each column contains each digit once;

• each three by three sub-grid (with dark lines) contains each digit once;

• each cell contains only a single number.

To solve the puzzles, you must deduce what numbers go where, based on
the positions of numbers already in the puzzle. As an example, here is a puzzle:

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9
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Consider the left-most column. Since it has the numbers 4, 5, 6, 7, and 8, we
know that the blank spaces in that column must be filled with 1, 2, 3, and 9.
Now, look at each row that intersects those blank spaces. The first one has a 9
already, as do the last two. So, the only possible place to put a 9 is in the starred
cell:

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

In that same puzzle, look at this starred cell:

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9
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We know from the right-most column that that cell cannot have a 1, 3, 5, 6, or 9.
But, since the bottom-right 3x3 grid cannot duplicate any numbers either, we
know that that cell cannot be 2, 7, or 8. So, that cell must be a 4.

2 Advice & Logistics

Helper functions. Most of the functions you are asked to write will require
helper functions, sometimes many helper functions. Think carefully about
each function: is it structural or generative or a composition of helper func-
tions? If structural, on which argument (or maybe multiple arguments)?; can
you use map, filter, andmap, ormap, or one of the folds?

Tests. Test as you go, or you will be overwhelmed. Test cases play two roles.
Before you write each function, they help you understand what will go into
the function (and thus, help you figure if you need a helper function and what
a helper function might do). After you write the function, they make sure that
you wrote it properly. Be sure you exploit them in both ways.

Teachpack. The Sudoku teachpack is here: http://www.cs.uchicago.edu/
∼robby/courses/15100-2005-fall/fp/sudoku-tp.zip. Unzip the file and use
the teachpack sudoku-tp.ss in version 209 and the teachpack sudoku-tp-299.ss
in version 299. (The provides all of the exports of the image.ss, in addition to
the operations described here. Do not use any other teachpacks.) If you use the
wrong teachpack, you will get strange error messages.

Solution submission. Both sections should email solutions (the “Intermediate
Student with Lambda” code, not .pdfs or word files, etc.) to robby@cs.uchicago.edu
by the end of Dec 5th (i.e., midnight).

Performance. Do not read this paragraph until your solver is working. You
may notice that your solver is not particularly fast. Partly, this is due to all
of the extra checking that the teaching languages do. Once you are sure your
program is working well and not before, you can change the language level to
make it run faster. Beware, however, that this will make your program much
harder to debug; it is so bad, in fact, that some programs that should signal
errors will now just give bad output. You have been warned. To speed it up,
follow these steps:

1. Select the Choose Language... menu item in the Language menu.

2. Choose the Pretty Big language level, under the PLT turndown triangle.

3. Before closing the language dialog, click the Show Details button, which
will make some more options visible.

4. Click No debugging or profiling.
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5. Remove the teachpack.

6. Add a new first line to your program: (require "sudoku-tp.ss") after
moving your solution file to the same folder as the Sudoku teachpack (do
not move the teachpack out of the folder it was in; it needs all of the other
files there).

Now your solver should run much more quickly.

3 Mechanically solving Sudoku puzzles

This section gives an overview of how your program will proceed, and the rest
of this document breaks down the job down into a number of programming
tasks. Read this section carefully before beginning to program.

Overall, you will solve Sudoku puzzles by translating them to logical for-
mulas and then simplifying the formulas. First, you convert the rules above
into a list of formulas that must all be true and to write a program that simpli-
fies the formulas until there are no more simplifications possible.

We begin with 93 (729) claims. Each claim consists of three numbers: a
column-number (between 1 and 9), a row-number (between 1 and 9), and a
digit (between 1 and 9).

;; an claim is:
;; (make-claim number[1-9] number[1-9] number[1-9])
(define-struct claim (i j n))

Each of the claim’s truth values indicates if a particular cell has a particular
value. For example, if (make-claim 2 3 4) holds then the cell at (2,3) has a
4. If the claim (make-claim 2 3 5) does not hold, then the cell at (2,3) does
not have a 5. The coordinates use the standard computer-science ordering:
the upper-left is (0,0), increasing the first coordinate moves to the right and
increasing the second coordinate moves down.

Each of the rules of Sudoku corresponds to some axioms about all Sudoku
puzzles, and we can express each axiom as a list of claims where exactly one of
the claims in the list must true, and the rest must be false. (Of course we do not
know ahead of time which is the true claim and which are the false ones and
which is which varies for each puzzle.)

;; an axiom is:
;; (listof claim)

As an example, the first rule tells us that there can only be a single number
1 in the first row. Written as an axiom, we have this:

(list (make-claim 1 1 1) (make-claim 2 1 1) (make-claim 3 1 1)
(make-claim 4 1 1) (make-claim 5 1 1) (make-claim 6 1 1)
(make-claim 7 1 1) (make-claim 8 1 1) (make-claim 9 1 1))
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Similarly, the second rule tells us that there can only be a single number 1 in
the first column, which is represented by this axiom:

(list (make-claim 1 1 1) (make-claim 1 2 1) (make-claim 1 3 1)
(make-claim 1 4 1) (make-claim 1 5 1) (make-claim 1 6 1)
(make-claim 1 7 1) (make-claim 1 8 1) (make-claim 1 9 1))

The third rule tells us that there can only be a single number 1 in the top-left
3x3 grid, which corresponds to this axiom:

(list (make-claim 1 1 1) (make-claim 1 2 1) (make-claim 1 3 1)
(make-claim 2 1 1) (make-claim 2 2 1) (make-claim 2 3 1)
(make-claim 3 1 1) (make-claim 3 2 1) (make-claim 3 3 1))

Finally, this axiom tells us that there can be only one number in the top-left cell:

(list (make-claim 1 1 1) (make-claim 1 1 2) (make-claim 1 1 3)
(make-claim 1 1 4) (make-claim 1 1 5) (make-claim 1 1 6)
(make-claim 1 1 7) (make-claim 1 1 8) (make-claim 1 1 9))

Of course, there are many more axioms, but these give you the flavor of them.
There are two basic rules for learning the truth value of a claim, based on

the axioms.

1. If one of the claims in an axiom is true, then all of the rest must be false.

2. If all of the claims in an axiom are false except for one, then that one must
be true.

So, to solve a Sudoku puzzle, we can translate the initial, given numbers
from the puzzle into some claims that we know are true. Then, we can use the
two basic rules to find out the truth values for all of the rest of the claims. The
rest of the document gives some guidance on how to do that and how to build
a stepper that allows you to watch your solver chug away.

A Representing (partial) knowledge

The first programming task is to design a data definition to represent the truth
values of the 729 claims. Values of this data definition should contain the truth
values (true, false, or unknown) for each of the 729 claims.

Since there are 729 of them, you might naturally imagine putting the claims
into a list. But, this has a tremendous performance penalty, since looking at
the value of each element of the list once takes roughly 7292

2 (265720) steps. If,
instead, we used a struct that had 729 fields, looking at each of these fields
once would only take roughly 729 steps, a significant improvement. Of course,
a structure with 729 fields is far too complicated to be useful.

Instead, we use can use a vector. A vector is similar to a struct in that
it has fields and the access to each field only requires a single step. Unlike
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structs, however, we access the fields of a vector by numeric indices (starting
at 0), rather than by field names.

To get started, design a pair of functions that convert claims to numbers
between 0 and 728, and numbers between 0 and 728 to claims:

;; claim->num : claim → number
;; to convert a claim to a number between 0 and 728.
(define (claim->num claim) ...)

;; num->claim : number → claim
;; to convert a number between 0 and 728 to a claim
(define (num->claim n) ...)

To write these functions, it helps to think of the claim as a three-digit num-
ber, written in base nine. Here is a data definition for arbitrary numbers in base
nine:

;; a base-nine-nat is either:
;; - a digit (i.e., an integer between 0 and 8, inclusive), or
;; - (+ (* base-nine-nat 9) digit)

where the selectors and digit predicate are:

;; digit? : base-nine-nat -> boolean
(define (digit? n) (<= n 8))

;; all-but-last-digit : base-nine-nat -> base-nine-nat
(define (all-but-last-digit b9n) (quotient b9n 9))

;; last-digit : base-nine-nat -> digit
(define (last-digit b9n) (modulo b9n 9))

Now that we can convert a claim into a number between zero and 728, we
can represent our current knowledge of the set of true, false, and unknown
claims as a vector of 729 elements. The vector that has one element for each
claim, and the element at a specific position is either a boolean indicating the
claim’s value is known to be the boolean, or ’unknown to indicate it is not
known:

;; a claim-table is:
;; (vectorof status)

;; a status is either:
;; - true
;; - false
;; - ’unknown

Using the functions in figure 1, define a library of helper functions on claims:

;; claim-true? : claim-table claim → boolean
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;; build-vector : nat (nat → X) → (vector X)
;; creates a vector of size n filling all of the
;; positions in the vector with the results of f
(define (build-vector n f) ...)

;; vector-ref : (vectorof X) nat → X
;; extracts the element at position n from the vector v
(define (vector-ref v n)

;; vector-length : (vectorof X) → nat
;; computes the number of elements in v
(define (vector-length v) ...)

;; vector->list : (vectorof X) → (listof X)
;; builds a list containing the elements of v
(define (vector->list v) ...)

Figure 1: Functions on vectors from the sudoku-tp teachpack

;; indicates if the claim is true
(define (claim-true? table claim) ...)

;; claim-false? : claim-table claim → boolean
;; indicates if the claim is false
(define (claim-false? table claim) ...)

;; claim-unknown? : claim-table claim → boolean
;; indicates if the claim’s truth value is unknown
(define (claim-unknown? table claim) ...)

;; mostly-unknown-table : (listof claim) → claim-table
;; constructs a claim-table where all claim are ’unknown,
;; except those in the argument claims, which are true.
(define (mostly-unknown-table claims) ...)

In addition to those, we need a way to build up tables that have more in-
formation about the truth or falsehood of particular claims. An assertion tells
us the truth or falsehood of a particular claim:

;; an assertion is
;; (make-assertion claim boolean)
(define-struct assertion (claim true?))

and the apply-assertion function records the assertion in claim table:

;; apply-assertion : assertion claim-table → claim-table
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;; builds a new table with the assertion a recorded in the table
(define (apply-assertion assertion table) ...)

;; a few examples as tests to get started
(claim-true?
(mostly-unknown-table empty)
(make-claim 1 1 1))

false

(claim-true?
(apply-assertion (make-assertion (make-claim 1 1 1) true)

(mostly-unknown-table empty))
(make-claim 1 1 1))

true

B Sudoku axioms and solving puzzles

The next step in solving a Sudoku puzzle is building all of the axioms like the
ones in section 3.

;; axioms : (listof axiom)
(define axioms ...)

Hint: There should be 324 axioms in your list. You will need multiple helper functions
and recursion on natural numbers to build that list.

Once you have the list, design these functions:

;; find-claim : claim-table (listof (listof claim)) → assertion or false
;; find a variable that is definitely either true or false, by
;; attempting to apply the two rules of inference to each axiom
;; in axioms (the rules of inference are at the end of section 3)
;; If no more rules apply, returns false.
(define (find-claim table axioms) ...)

;; next : claim-table → claim-table or false
;; uses find-claim and apply-assertion to compute an claim-table
;; with more information than the input table, if possible
(define (next table) ...)

;; solve : claim-table → claim-table
;; solves a Sudoku puzzle by repeatedly calling next
;; until no more steps are possible.
(define (solve table) ...)

Hint: Do not use the solve function until you are sure the rest of the functions
are working well. It may take several minutes to complete.
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C Single-stepping Sudoku

The solve function is kind of boring, because it just waits silently for so long
before producing an answer. We can, however, design a new solving function
that shows how our solving algorithm is proceeding.

So, the goal of this portion of the exercise is to design a function that draws
an claim-table, showing the state of the variables:

;; claims->image : claim-table → image
(define (claims->image claim-table) ...)

but this function needs a large number of helper functions.
The overall strategy for designing this function is to find all of the claims

that are true and draw big, black numbers in their corresponding places on
a Sudoku puzzle. Then, find all of the variables that are maybes and draw
smaller, orange numbers that show where they are. Here is an example:

(claims->image
(mostly-unknown-table
(list (make-claim 1 1 1)

(make-claim 2 5 2)
(make-claim 3 9 3)
(make-claim 5 2 4)
(make-claim 6 6 5)
(make-claim 4 7 6)
(make-claim 9 3 7)
(make-claim 8 8 8)
(make-claim 7 6 9))

So, we can split this up into a few jobs. First, design a single image that
forms the backdrop for the Sudoku board. Its size should be big enough to
hold all of the big black letters or all of the small orange letters, whichever
takes up more space.
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Second, design a function that takes a true claim and overlays the corre-
sponding number into the proper place in a board.

;; overlay-true : image claim -> image
;; to draw a big black digit in the right place on the board
(define (overlay-true board claim) ...)

Third, design a function that takes an unknown claim and overlays the cor-
responding number into the proper place.

;; overlay-unknown : image claim -> image
;; to draw a small orange digit in the right place on the board
(define (overlay-maybe board claim) ...)

Fourth, build functions that, using vector->list, extract the true and un-
known axioms from an at-table. Finally combine these functions to complete
claims->image. (Of course, the functions above require helper functions.)

Once you have defined a function that renders images, define a new ver-
sion of solve called solve/images that behaves just like solve, except that
around the recursive call in solve/images put with-image from the teachpack.
This new construct with-image accepts two arguments. The first should be
an image and the second can be anything. When the little man encounters
with-image, he shows the image in a window and then continues with the sec-
ond argument. So, if your solve function has a recursive call that looks like
this: (solve new-table), the solve/images function would have a recursive
call with with-image and otherwise be the same:

(define (solve claim-table)
... (solve new-table) ...)

(define (solve/images claim-table)
... (with-image (table->image new-table)

(solve/images new-table)) ...)

D Food for thought

This section is just a bonus for those who are interested in Sudoku. If you finished all
of the earlier work, you are done with the final project. Congrats!

Not all puzzles can be solved using the method you’ve implemented. As
an example, consider this puzzle:
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9

8

7

8 9

7

8

9

If you were to run it in your program, you would get the same puzzle back,
with no new big black numbers. But, we actually know one more number.

From the 7s, 8s, and 9s in the top and in the bottom of the puzzle, we know
that the center sub-grid’s 7, 8, and 9 must be in the center column. We also
know that the 8 and the 9 cannot be in the center row, and thus the 8 and 9
in the center sub-grid must be in the starred cells. (We don’t know which one
goes in which cell, however.) This means the only possible place for the 7 in
the center sub-grid is the center of the puzzle.

Happy Winter.
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