Project 4: Mazes
Due: November 30"

The goal of this project is to write a program that generates mazes, solves mazes, and provides a GUI
for people to interactively solve them.

1 Generating Mazes

Design a data definition for a maze that represents the connectivity information for a maze that exists on
a grid. Imagine a maze as a piece of graph paper where some of the lines between the squares have been
darkened (and thus do not allow passage) and others have not (and thus do allow passage).

;7 a maze is a ...
Design the function:

;7 generate-maze : number number -> maze
;i to generate a maze of width ‘w’ and height ‘h’
(define (generate-maze w h) ...)

following this algorithm:
e If wor his 1, generate a corridor that runs the length of the maze (either vertically or horizontally).

e Otherwise, divide the maze into four quadrants, picking two dividing lines randomly. Then, make
four separate mazes in those four quadrants. Finally, connect all but one pair of the quadrants by
randomly opening a hole somewhere in the line connecting them.

These pictures show the steps in action for a particular input. On the left is a blank maze. The next
step shows where the dividing lines for the quadrants were picked. In the third step, the sub-mazes
have been created, and the fourth step shows the completed maze after the quadrants have been
connected (the bottom left and bottom right quadrants were not connected, but the other three were).

e e e
— ([l
Ti _

1

i

1| [==10 %
HEH S = BN E=r
‘ =t =
Lﬂw SiEas NIEr SRS

These mazes can have beginnings and endings anywhere, but for the purposes of this assignment, take

the bottom right corner as the starting position of the maze, and the top-left corner as the ending position.

HINT: You will probably have many functions that operate on coordinates in tricky ways and also call random.
The best way to test these functions is to write helper functions that do the tricky arithmetic but do not
call random. One way to do this is to abstract over the random numbers, leaving them as arguments to a
helper function. Then, test the tricky arithmetic carefully (being sure to at least test the largest and smallest
possible random values).

HINT: There are only 4 possible 2x2 mazes, so that size makes a good test for the combination of your helper
functions with the calls to random.



2 Exploring Mazes

Use the world.ss teachpack to build a program that lets others interactively explore mazes. Your program
should

e react to the player pressing arrow keys by moving an indicator of the current position around in the
maze (unless it would be blocked by a wall of course),

e record the path taken by the player (showing that on the maze), and

e in the case the player retraces their steps (ie, moves back to a square it has just come from in the
previous move), erase that portion of the trail.

To do this, you will need to design a data definition for the world (from world.ss) to cover all of the
information you need to provide the functionality above.

3 Helpful Exploration

Extend your maze playing system so that, when the player presses the “h” key (for “help”) your program
finds the path from the player’s current position in the maze to the exit, and then takes just a single step
along that path. Thus, if someone were to just repeatedly type “h” your program should move them to the
exit.

A straightforward way to do this is to find a path from the current location to the exit and then picks the
first step along this path, each time the player presses the “h” key. While this works, it is inefficient, and
probably will be noticeable when playing the game.

Instead, when making a maze, build a table that indicates which direction is the best direction to go
from any given spot in the maze. Because mazes generated from the above algorithm have the property
that there is only a single path from any given spot in the maze to the exit (assuming that you do not retrace
your steps) you can adapt the depth-first searching algorithm from class to build this table.

Starting from the exit, at each step in the traversal of the maze, if you encounter a new neighbor of the
current node (ie, a space in the maze where you have not been before), you know that the traveling through
current node is the best way to get there. So, to build a table that records which neighbor of each node
is on the shortest path to the exit, just traverse the graph, adding entries to the table for each new node
encountered. Then, when the player types “h”, simply look in the table.

4 Requirements
Be sure to follow these requirements when implementing your project:

e You must not write any functions whose recursive calls are processed by other recursive functions,
even built-in recursive functions like map, filter, etc. (Note that append processes all but the last of
its arguments in this manner.) Instead, use an accumulator. You may wish to write your functions
directly first and then transform them to accumulator style. This two-step approach is usually easier
and gives you a good way to test the accumulator-style function.

¢ You must put the definitions in your program into a sensible order. This means your program should
be organized in meaningful sections, and each section should be labeled and presented top-down (ie,
main functions come before helper functions).

e Similarly, organize your test cases well. You must also use the testing.ss teachpack for all of your
tests, except for those functions that use random.



	Generating Mazes
	Exploring Mazes
	Helpful Exploration
	Requirements

