
Introduction to Computer Systems
Homework #6
Due: April 18th.

The following recurisve C function:
int silly(int n, int *p) {
int val, val2;

if (n > 0)
val2 = silly(n << 1, &val);

else
val = val2 = 0;

*p = val + val2 + n;

return val + val2;
}

yields the following assembly code:
silly:

pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl %ebx, -4(%ebp)
movl 8(%ebp), %ebx
testl %ebx, %ebx
jle .L2
leal -8(%ebp), %eax
movl %eax, 4(%esp)
leal (%ebx,%ebx), %eax
movl %eax, (%esp)
call silly ************ here

.L4:
movl -8(%ebp), %edx
addl %edx, %eax
movl 12(%ebp), %edx
leal (%ebx,%eax), %ecx
movl %ecx, (%edx)
movl -4(%ebp), %ebx
movl %ebp, %esp
popl %ebp
ret
.p2align 4,,7

.L2:
movl $0, -8(%ebp)
xorl %eax, %eax
jmp .L4

1

Given the call silly(2, yp), draw the state of the regis-
ters and the stack immediately preceeding the recursive call
to silly. You may assume that yp points to dynamically al-
located space large enough to hold an integer.

• Identify the location (stack or register) of each variable used
in silly.

• Mark any space that is unused as “unused.”

• Use identifying names (such as “old value of ebx”) any-
where you do not know the actual value.

Email your solution to mirsattari@uchicago.edu.

2

