
154, Spring 2008
Lab Assignment 7: Web Proxy

Assigned: May 30, Due: Jun 8, 11:59PM

Introduction

A Web proxy is a program that acts as a middleman between a Web browser and an end server. Instead of
contacting the end server directly to get a Web page, the browser contacts the proxy, which forwards the
request on to the end server. When the end server replies to the proxy, the proxy sends the reply on to the
browser.

Proxies are used for many purposes. Sometimes proxies are used in firewalls, such that the proxy is the only
way for a browser inside the firewall to contact an end server outside. The proxy may do translation on the
page, for instance, to make it viewable on a Web-enabled cell phone. Proxies are also used as anonymizers.
By stripping a request of all identifying information, a proxy can make the browser anonymous to the end
server. Proxies can even be used to cache Web objects, by storing a copy of, say, an image when a request
for it is first made, and then serving that image in response to future requests rather than going to the end
server.

In this lab, you will write a Web proxy that logs requests. Your web proxy will repeatedly wait for a request,
forward the request to the end server, and return the result back to the browser, keeping a log of such requests
in a disk file. This will help you understand basics about network programming and the HTTP protocol.

Logistics

As always, you may work in a group of up to two people. The only handin will be electronic. Any clarifica-
tions and revisions to the assignment will be posted on the course Web page.

Hand Out Instructions

Start by downloading proxylab-handout.tar from the course web page to a protected directory in
which you plan to do your work. Then give the command “tar xvf proxylab-handout.tar”. This
will cause a number of files to be unpacked in the directory:

• proxy.c: This is the only file you will be modifying and handing in. It contains the bulk of the
logic for your proxy.

1



• csapp.c: This is the file of the same name that is described in the CS:APP textbook. It contains
error handling wrappers and helper functions such as the RIO (Robust I/O) package (CS:APP 11.4),
open clientfd (CS:APP 12.4.4), and open listenfd (CS:APP 12.4.7).

• csapp.h: This file contains a few manifest constants, type definitions, and prototypes for the func-
tions in csapp.c.

• Makefile: Compiles and links proxy.c and csapp.c into the executable proxy.

Your proxy.c file may call any function in the csapp.c file. However, since you are only handing in a
single proxy.c file, please don’t modify the csapp.c file. If you want different versions of functions in
in csapp.c (see the Hints section), write new functions in the proxy.c file.

Implementing a Web Proxy

In this part you will implement a sequential logging proxy. Your proxy should open a socket and listen
for a connection request. When it receives a connection request, it should accept the connection, read the
HTTP request, and parse it to determine the name of the end server. It should then open a connection to the
end server, send it the request, receive the reply, and forward the reply to the browser if the request is not
blocked.

Since your proxy is a middleman between client and end server, it will have elements of both. It will act as
a server to the web browser, and as a client to the end server. Thus you will get experience with both client
and server programming.

Logging

Your proxy should keep track of all requests in a log file named proxy.log. Each log file entry should be
a file of the form:

Date: browserIP URL size

where browserIP is the IP address of the browser, URL is the URL asked for, size is the size in bytes
of the object that was returned. For instance:

Sun 27 Oct 2002 02:51:02 EST: 128.2.111.38 http://www.cs.cmu.edu/ 34314

Note that size is essentially the number of bytes received from the end server, from the time the connection
is opened to the time it is closed. Only requests that are met by a response from an end server should be
logged. We have provided the function format log entry in csapp.c to create a log entry in the
required format.

Port Numbers

You proxy should listen for its connection requests on the port number passed in on the command line:

unix> ./proxy 15213

2



You may use any port number p, where 1024 ≤ p ≤ 65536, and where p is not currently being used by any
other system or user services (including other students’ proxies). See /etc/services for a list of the
port numbers reserved by other system services.

Evaluation

• Basic proxy functionality (40 points). Your sequential proxy should correctly accept connections,
forward the requests to the end server, and pass the response back to the browser, making a log entry
for each request. Your program should be able to proxy browser requests to the following Web sites
and correctly log the requests:

– http://www.google.com

– http://www.economist.com

– http://sports.yahoo.com/nba

• Style (20 points). Up to 20 points will be awarded for code that is readable and well commented.
Your code should begin with a comment block that describes in a general way how your proxy works.
Furthermore, each function should have a comment block describing what that function does. Your
code should not have any memory leaks.

Hints

• The best way to get going on your proxy is to start with the basic echo server (CS:APP 12.4.9) and
then gradually add functionality that turns the server into a proxy.

• Initially, you should debug your proxy using telnet as the client (CS:APP 12.5.3).

• Later, test your proxy with a real browser. Explore the browser settings until you find “proxies”, then
enter the host and port where you’re running yours. With Netscape, choose Edit, then Preferences,
then Advanced, then Proxies, then Manual Proxy Configuration. In Internet Explorer, choose Tools,
then Options, then Connections, then LAN Settings. Check ’Use proxy server,’ and click Advanced.
Just set your HTTP proxy, because that’s all your code is going to be able to handle.

• Since we want you to focus on network programming issues for this lab, we have provided you with
two additional helper routines: parse uri, which extracts the hostname, path, and port components
from a URI, and format log entry, which constructs an entry for the log file in the proper format.

• Be careful about memory leaks. When the processing for an HTTP request fails for any reason, the
thread must close all open socket descriptors and free all memory resources before terminating.

• Use the RIO (Robust I/O) package (CS:APP 11.4) for all I/O on sockets. Do not use standard I/O on
sockets. You will quickly run into problems if you do. However, standard I/O calls such as fopen
and fwrite are fine for I/O on the log file.

• The Rio readn, Rio readlineb, and Rio writen error checking wrappers in csapp.c are
not appropriate for a realistic proxy because they terminate the process when they encounter an
error. Instead, you should write new wrappers called Rio readn w, Rio readlineb w, and
Rio writen w that simply return after printing a warning message when I/O fails. When either
of the read wrappers detects an error, it should return 0, as though it encountered EOF on the socket.

3



• Reads and writes can fail for a variety of reasons. The most common read failure is an errno =
ECONNRESET error caused by reading from a connection that has already been closed by the peer
on the other end, typically an overloaded end server. The most common write failure is an errno =
EPIPE error caused by writing to a connection that has been closed by its peer on the other end. This
can occur for example, when a user hits their browser’s Stop button during a long transfer.

• Writing to connection that has been closed by the peer first time elicits an error with errno set to
EPIPE. Writing to such a connection a second time may elicit a SIGPIPE signal whose default action
is to terminate the process. To keep your proxy from crashing you can use the SIG IGN argument to
the signal function (CS:APP 8.5.3) to explicitly ignore these SIGPIPE signals.

Handin Instructions

• Remove any extraneous print statements.

• Make sure that you have included your identifying information in proxy.c.

• Create a team name of the form:

– “ID” where ID is your login, if you are working alone, or

– “ID1+ID2” where ID1 is the login of the first team member and ID2 is the login of the second
team member.

• To hand in your proxy.c file, email it to mirsattari@uchicago.edu.

4


