
IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 1

Abstract-- Data abstractions such as hash tables are
included in most runtime libraries because of their widespread
use and straightforward implementation. While operating
systems and programming languages continue to improve their
real-time features, much of what is offered by a runtime
library is not yet suitable for real-time or embedded-systems.

In this paper, we present an algorithm for managing hash
tables that is suitable for such systems. The algorithm has
been implemented and deployed in place of Java's
Hashtable class. We present evidence of the algorithm's
performance, experimental results documenting our
algorithm's suitability for real-time, and lessons learned from
migrating this data structure to real-time and embedded
platforms.

1 INTRODUCTION
With the advent of operating systems and programming

languages that support predictable execution times and
reliable scheduling, the Real-Time and Embedded Systems
(RTES) communities are beginning to consider the use of
higher-level systems and abstractions for software
development.

Most programming languages have rich libraries that
offer strong implementations of commonly used data
structures. Similarly, middleware [1] offers services,
patterns, and frameworks that support the development of
robust and portable software. For both runtime libraries and
middleware, the need for predictable execution can have
dramatic and widespread impact on the suitability of their
offerings for RTES.

In this paper, we consider the adaptation to the RTES of
a data structure that is common to most runtime libraries
and middleware systems [9]. The hash table [4] is among
the most popular of data structures, occurring in systems
code, tools, and application code. In Sun's Java Virtual
Machine (JVM) system, 7 hash tables are created before an
application is even started; jack of the SPEC [5]
benchmarks instantiates 18,805 additional hash tables. The
theory [3, 6] of hash tables predicts nearly constant-time
performance of hash tables on average, and experience has
verified this theoretical efficiency. However, for RTES
systems, bounds are needed on every call. Thus, for such
systems, worst-case behavior per call is of greater concern
than average performance.

Sponsored by DARPA under contract F33615--00--C—1697 and
by Rockwell Collins
Contact author: cytron@cs.wustl.edu
Washington University Box 1045
Department of Computer Science
St. Louis, MO 63130 USA

1.1 Hash Table Interface
Essentially, a hash table is an implementation by

memorization of a series of partial functions; a hash table
can also be regarded as a mutable set of (key, value) pairs.

More informally, a hash table provides an
implementation of a dictionary interface. Hash table
implementations vary as to their Application Programming
Interface (API), but most offer something resembling the
following methods, called on an instance of a hash table we
denote as HT:

GET(key) returns the value currently associated with key, if

(key, value) ∈ HT; otherwise, a predetermined value
(null in Java) is returned to indicate that ¬∃ value |
(key,value) ∈ HT.

PUT(key, value) causes HT to become the set
(HT - { (k,v) | k=key } ∪ { (key,value) }

REMOVE(key) causes HT to become (HT - {(k,v) | k=key)}

Textbook treatments [4] of hash tables sometimes expose
internal data structures for maintaining (key, value) pairs.
The resulting API can accomplish REMOVE() in constant
time, because the container for the (key, value) pair is
provided directly to the method, which spares the method
the need to find the pair before removing it.

The above API closely matches Java's Hashtable
class---differences are discussed in Section 3 where they
become relevant. Java's API deals only with keys and
values and avoids exposing container objects that hold a
given key and value.

Because of the strength of its design and because our
experiments are based on a Java system, we adopt Java's
hash table API as articulated above, without significant loss
in generality.

1.2 Implementing the API
We implement each of the API's methods using the

Command pattern [7], so that each method can make
incremental progress when a rehash operation is in progress.
The LOCATE() operation is described as follows:

LOCATE(key, command(args)) runs the supplied command

which requires locating the entry for the supplied key,
if such an entry exists.

All three of the API's methods involve determining if the

hash table contains an entry (key, value) for the supplied

Hashtables for Embedded and Real-Time Systems
Scott Friedman, Nicholas Leidenfrost, Benjamin C. Brodie, and Ron K. Cytron

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 2

key. Our mechanism for enlarging the hash table takes
action upon accessing such an entry.

The LOCATE() method allows us to perform additional
work on behalf of the command at the supplied key's bucket.
We elaborate on this in Section 2.

1.3 Hash Functions
A hash table is typically implemented by mapping the

space of all possible keys to a relatively small sequence of
integers---suitable for indexing a table. A hash function h is
defined as

h: Keys → S

where S ⊂ Z is a finite sequence of integers. Based on the
above, a hash table is constructed to have t=|S| buckets,
denoted B(1), B(2), …, B(t). Thus, h(key) is suitable for
selecting a bucket that might contain the key and its
associated value. We follow practice [4] and assume that
h(key) will map its inputs uniformly across the range of
buckets. This property is commonly called the simple
uniform hash property.

Each bucket contains a set of (key,value) pairs, with each
key occurring at most once in all the buckets. (This is the
chaining approach for handling collisions; open-addressing
[4] is an alternative but is not well suited to RTES
applications.) We can then perform GET(key) (more
generally, LOCATE(key, command)) by searching the bucket
B(h(key)) for an entry with the specified key. The hash
table HT maintains that

GET(key)=value ↔
 h(key)=i → (key,value) ∈ B(i)

We say that key hashes to bucket i using the hash function h.
A key is located in a hash table by searching the bucket
B(h(key)) for a (k,value) pair such that k=key.

The domain of a hash function h is typically much larger
than its range. It is therefore likely that multiple keys of
interest will hash to the same bucket. From the above, we
can see that a bucket

B(i) = {(key,value) ∈ HT | h(key)=i}.
As the number of entries in HT increases, the number of
entries per bucket increases correspondingly. If the simple
uniform hash assumption holds, then the increases are
spread uniformly among the buckets.

The average and worst-case times to access HT are
determined by the average and worst-case sizes of the
buckets in the hash table. When a table's contents reaches
some predetermined size, it is common pratice to consider
redistributing that table's contents into a larger table with
the goal of reducing and balancing the buckets' sizes.
Because this typically occurs in response to a PUT call, it is
possible that some PUT calls will be much more expensive
than others. It is this behavior that makes extant hash table
implementations unsuitable for RTES applications.

1.4 Real-Time and Embedded Systems Concerns
Operating systems such as Linux/RT2 and languages such

as Real-Time Specification for Java (RTSJ) [2] offer
interfaces for declaring real-time concerns, such as a task's
cost, periodicity, and deadline. Based on scheduling theory
[8], a scheduler can determine whether a given set of tasks
is feasible, in the sense that the tasks' deadline requirements
are guaranteed to be accommodated on a given platform.

 Because feasibility testing requires each task to declare
its cost, it is important to state such costs as precisely as
possible. Consider the provisioning that should occur when
an application performs a PUT() on a hash table. As
described above, most PUT() operations are performed
relatively quickly; however, an occasional PUT() causes the
hash table to be resized, with all its entries redistributed
according to a new hash function. At a given PUT(), it is
difficult to determine whether a hash-table resize would
occur. How should the time for a PUT() operation be
provisioned?

• Provisioning for the average or typical case is

dangerous. The resulting requirements may be deemed
feasible by a scheduler, but the PUT() in question may
greatly exceed its stated cost. As a result, deadlines can
be missed and an application can fail.

• Provisioning for the worst case is safe, but the resulting
requirements may be infeasible on a given platform---
every PUT() operation is provisioned as if a rehash
operation is necessary.

Based on the above, the suitability of a hash-table

implementation can be judged by the amount of over
provisioning it imposes on a real-time application. This in
turn can be quantified by an implementation's ratio of its
worst- to average-case performance: as that ratio
approaches 1, so does the implementation's suitability for
RTES applications. In Section 3 we measure this ratio for
our implementation and for Java's reference
implementation.

For embedded systems, storage behavior can be a
determining factor. Hash tables adapt to greater load
typically by reprovisioning the space in which (key, value)
pairs are kept. For languages like Java, this can imply

1.) allocation of a new table (sometimes twice as large as
the old (extant) table)

 2.) rehashing of extant entries into the new table
3.) deallocation of the old table

Such storage behavior momentarily increases the

program's footprint as items are copied, and then decreases
the footprint as the old table is deallocated. This behavior
is not well suited to embedded systems for the following
reasons:

2 See URL http://ww.timesys.com/products/linux2.html

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 3

• The program exhibits a storage blip during rehashing.
The size of this blip is typically 50% of the new table's
size. For an embedded system, this can be
unacceptable.

• The deallocation of old hash tables can leave holes in
the runtime storage heap. Such holes can cause the
heap to be fragmented and thus trigger heap
compaction.

As explained in Section 2.2, our approach avoids the

temporary increase in storage footprint caused by allocating
the new table before deallocating the old one.

2 APPROACH
To avoid burdening a single call with the overhead of an

entire rehash, we spread the transition between table
configurations over multiple operations. During a rehash,
we maintain two hash functions, one “old” and one “new”.
The old function applies to the old table configuration and
will be used to locate data that was mapped prior to the
rehash and has not yet been relocated according to the new
hash function. Rehashing does not occur in the context of a
single hash-table method-call, but is instead amortized over
as many calls as are necessary to complete the transition to
the new hash function.

Although an implementation could feasibly maintain
more than two hash functions, and thus perform multiple
simultaneous rehashes, an unbounded number of such
functions leads to unbounded time for LOCATE(key,
command)---unacceptable given our requirements. This
paper and its accompanying implementation allow only one
transition in effect at any time: from the old to the new hash
functions.

2.1 Incremental Rehashing
To complete the rehashing process, every element must

be removed from its old location and correctly mapped to
its new location using the new hash function. Since we
resolve collisions by chaining, this involves rehashing each
element in a linked list. We refer to the process of rehashing
a bucket's contents according to the new hash function as
cleaning that bucket.

We perform cleaning in two ways: operation-driven
cleaning and methodical cleaning. Whenever the user
performs an operation on the hash table (GET(), PUT(),
REMOVE()), we rehash the elements contained in the bucket
located by the old hash function.

To ensure progress toward completion of the rehashing,
we cannot depend only on operation-driven cleaning. It is
possible that the operations at-hand avoid a particular
bucket. Therefore, methodical cleaning is also performed
per operation; here, the bucket chosen for cleaning is based
on the state of an incremental sweep of the hash table.
While implementations may vary, it is essential that a

bucket record whether it has been cleaned and that a table
record whether any of its buckets are still dirty.

Bucket-cleaning is implemented as part of the
Command-pattern. Specifically, if the hash table is
moving from hash function hold to hnew, then our
implementation does the following when LOCATE(key,
command) is called:

 1.) The bucket B(hold(key)) is cleaned.
 2.) The bucket B(hnew(key)) is cleaned.
 3.) The next bucket in the methodical list is cleaned.
 4.) The command is executed.

2.2 Space Utilization

Figure 1: Two-level hashing scheme

Because of the constraints of RTES systems, particularly

the embedded-systems concerns, our hash table does not
free old storage when moving to the new hash function.
Instead, the hash table grows by adding more tables to a
two-dimensional hash scheme, as shown in Figure 1. Thus,
the old subtables continue to participate as the hash table
increases in size by adding additional subtables.

A hash function then must select both a table and a
bucket; we assume both outcomes are subject to the simple
uniform hash property.

The benefit of our approach is that the hash table does
not temporarily blow up in size while the rehash takes
place; instead, new space is added to the existing table, and
the new hash function maps into the enlarged space.

2.3 Design
Our redesign of the hash table does not assume that all

clients necessarily want real-time behavior. In order to give
the user control over this aspect of the hash table, while
providing the intended functionality, we separate the idea of
the hash table mechanism---which implements the API and
cleaning functionality---from the strategy that decides when
the hash table should perform a rehash.

We introduce a POD object, or Point Of Design, through
which an Observer of the hash table may call for rehashing.
Such an Observer could subscribe to certain statistics about

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 4

the hash table that are of interest, and based on those
statistics decide to ask for a rehash, as shown in Figure 2.

Figure 2: Observer can request a rehash.

2.4 Adapting to java.util.Hashtable
The class java.util.Hashtable implements

java.util.Map and extends
java.util.Dictionary. Because one of our criteria
for the hash table is a small footprint, we decided not
burden our primary implementation with all methods found
in java.util.Hashtable. Instead, we created a
wrapper around our hash table that provided the necessary
functionality, but maintained realtime-compliant properties.
We are thus able to substitute our implementation for
Java's, and the experiments of Section 3 are based on this
approach.

3 EXPERIMENTS
In this section we report on the results obtained from our

implementation. These include careful timings to verify the
real-time properties of our approach, as well as experiments
conducted by substituting our algorithm for Java's
implementation.

Our experiments were conducted on a Sparc Ultra~5 with
128 Mbytes of primary memory. To avoid unwanted
interference, pages were locked into primary memory and
our processes ran in real-time priority mode. Garbage-
collection was disabled during hash table methods---a
situation akin to running real-time threads under RTSJ.

3.1 Careful Timings of Contrived Benchmarks
We generated hash table entries using n random integers
(java.lang.Integer) as the keys, for n = {100, 1000,
10000, 100000, 150000}. Due to randomness, some
integers occur multiple times. The set of numbers is
sequentially inserted, searched, and deleted from the data
structures. The operations' times were gathered using
Solaris's gethrtime() function and the Java Native
Interface (JNI).

Figure 3: Comparison of our algorithm (rh)

against Java’s (java) for the contrived benchmark.
 Times are shown in microseconds.

Figure 3 shows that the average time for both

implementations is independent of the number of entries---
nearly constant as predicted by theory. Also, the average
time taken by Java's implementation is less than ours. This
is a direct result of the resize-amortization feature of our
implementation: it spreads the operations of an entire resize
over multiple calls to the table, so the average time per call
suffers.

The maximum time over all calls in our implementation
appears to climb, but settles at a reasonable value; Java's
maximum times are much worse, and are clearly dependent
on the number of entries. These times are attributed to the
single-call rehashing that occurs (during a Put) when its
target load factor is exceeded.

These results show that the ratio of maximum to average
time for each operation is reasonably bounded in our
implementation while seemingly unbounded in Java's.

3.2 SPEC Benchmarks
As discussed in Section 2, we created an adapter class in

our implementation so we could substitute it for Java's.
This allowed us to test our implementation on the Java
SPEC benchmarks jess, raytrace, db, mpegaudio, mtrt, and
jack.

The following methods of the Map class were timed and
recorded:

IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 5

 Object put(Object key, Object value),
Object get(Object key),
Object remove(Object key),
boolean containsKey(Object key),
boolean containsValue(Object value),
Set entrySet(),
Set keySet(),
Collection values().

Figure 4: Results on SPEC benchmarks.

Figure 4 shows that our implementation provides more

predictable performance (as measured by ratios of worst-
case to average times) for the SPEC benchmarks than does
the standard implementation. We expect nothing less given
the simple uniform hash assumption; thus, Figure 4 is in
some sense a measure of the uniformity of Java's
hashCode() method on the objects used as keys in those
runs.

4 CONCLUSION

We have described an adaptation of a common data
structure to real-time. From our experience, we offer
thefollowing:

• Amortization of expensive operations can play an

important role in migrating a data structure to real-
time.

• The API of a data structure can make a big
difference concerning the feasibility of ever
obtaining a real-time implementation of that data
structure. For example, some of the methods in
Java's API insist on returning an array. Java cannot
partially instantiate an array; thus, the full cost of

allocating and initializing an array (to zero) must be
paid by any call that returns an array. This can lead
to unbounded behavior.

Our data supports our claim that the time to use our hash

table is reasonably bounded. We are currently proving the
real-time properties of our implementation; such a proof
must show:

• Bounded behavior prior to resize
• Bounded behavior during resize
• No need to resize while already resizing

The last point can be proven only with respect to a

reasonable strategy for picking the next table size. Our
early results indicate that it is not necessary to double the
table size on rehash, as seems to be the common wisdom, to
obtain bounded behavior.

5 ACKNOWLEDGEMENTS
We thank Irfan Pyarali for suggesting this problem, and
Doug Niehaus for his advice about real-time scheduling
and his careful reading of this paper. We thank Gary
Daugherty and Dave Haverkamp of Rockwell Collins for
their support.

6 REFERENCES
[1] David Bakken. Middleware. In J. Urban and P. Dasgupta,

editors, Encyclopedia of Distributed Computing. Kluwer,
2001.

[2] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and
Turnbull. The Real-Time Specification for Java. Addison-
Wesley, 2000.

[3] J. L. Carter and M. N. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences,
18(2):143-154, 1979

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1990.

[5] SPEC Corporation. Java spec benchmarks. Technical report,
SPEC, 1999. Available by purchase from SPEC.

[6] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Mey auf der
Heid, H. Rohnert, and R. E. Tarjan. Dynamic Perfect
Hashing: Upper and Lower Bounds. SIAM Journal of
Computing, 23(4):738-761, August 1994

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[8] Jane W. S. Liu. Real-Time Systems. Prentice Hall, Upper
Saddle River, NJ, 2000.

[9] Douglas C. Schmidt and Stephen D. Huston. C++ Network
Programming: Resolving Complexity Using ACE and
Patterns. Addison-Wesley Longman, Reading, MA, 2001.

	Introduction
	Hash Table Interface
	Implementing the API
	Hash Functions
	Real-Time and Embedded Systems Concerns

	Approach
	Incremental Rehashing
	Space Utilization
	Design
	Adapting to java.util.Hashtable

	Experiments
	Careful Timings of Contrived Benchmarks
	SPEC Benchmarks

	Conclusion
	Acknowledgements
	References

