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Abstract-- Data abstractions such as hash tables are 
included in most runtime libraries because of their widespread 
use and straightforward implementation.  While operating 
systems and programming languages continue to improve their 
real-time features, much of what is offered by a runtime 
library is not yet suitable for real-time or embedded-systems. 

In this paper, we present an algorithm for managing hash 
tables that is suitable for such systems.  The algorithm has 
been implemented and deployed in place of Java's 
Hashtable class.  We present evidence of the algorithm's 
performance, experimental results documenting our 
algorithm's suitability for real-time, and lessons learned from 
migrating this data structure to real-time and embedded 
platforms. 

1 INTRODUCTION 
With the advent of operating systems and programming 

languages that support predictable execution times and 
reliable scheduling, the Real-Time and Embedded Systems 
(RTES) communities are beginning to consider the use of 
higher-level systems and abstractions for software 
development. 

Most programming languages have rich libraries that 
offer strong implementations of commonly used data 
structures.  Similarly, middleware [1] offers services, 
patterns, and frameworks that support the development of 
robust and portable software.  For both runtime libraries and 
middleware, the need for predictable execution can have 
dramatic and widespread impact on the suitability of their 
offerings for RTES. 

In this paper, we consider the adaptation to the RTES of 
a data structure that is common to most runtime libraries 
and middleware systems [9]. The hash table [4] is among 
the most popular of data structures, occurring in systems 
code, tools, and application code.  In Sun's Java Virtual 
Machine (JVM) system, 7 hash tables are created before an 
application is even started; jack of the SPEC [5] 
benchmarks instantiates 18,805 additional hash tables.  The 
theory [3, 6] of hash tables predicts nearly constant-time 
performance of hash tables on average, and experience has 
verified this theoretical efficiency.  However, for RTES 
systems, bounds are needed on every call.  Thus, for such 
systems, worst-case behavior per call is of greater concern 
than average performance. 
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1.1 Hash Table Interface 
Essentially, a hash table is an implementation by 

memorization of a series of partial functions; a hash table 
can also be regarded as a mutable set of (key, value) pairs. 

More informally, a hash table provides an 
implementation of a dictionary interface. Hash table 
implementations vary as to their Application Programming 
Interface (API), but most offer something resembling the 
following methods, called on an instance of a hash table we 
denote as HT: 
 
GET(key) returns the value currently associated with key, if 

(key, value) ∈  HT;  otherwise, a predetermined value 
(null in Java) is returned to indicate that ¬∃  value | 
(key,value) ∈  HT.  
 

PUT(key, value) causes HT to become the set 
(HT - { (k,v) | k=key } ∪  { (key,value) } 

 
REMOVE(key) causes HT to become (HT - {(k,v) | k=key)} 
 

Textbook treatments [4] of hash tables sometimes expose 
internal data structures for maintaining (key, value) pairs. 
The resulting API can accomplish REMOVE() in constant 
time, because the container for the (key, value) pair is 
provided directly to the method, which spares the method 
the need to find the pair before removing it. 

The above API closely matches Java's Hashtable 
class---differences are discussed in Section 3 where they 
become relevant.  Java's API deals only with keys and 
values and avoids exposing  container objects that hold a 
given key and value. 

Because of the strength of its design and because our 
experiments are based on a Java system, we adopt Java's 
hash table API as articulated above, without significant loss 
in generality. 

 

1.2 Implementing the API 
We implement each of the API's methods using the 

Command pattern [7], so that each method can make 
incremental progress when a rehash operation is in progress.  
The LOCATE() operation is described as follows: 
 
LOCATE(key, command(args)) runs the supplied command 

which requires locating the entry for the supplied key, 
if such an entry exists. 

 
All three of the API's methods involve determining if the 

hash table contains an entry (key, value) for the supplied 
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key.  Our mechanism for enlarging the hash table takes 
action upon accessing such an entry. 

The LOCATE() method allows us to perform additional 
work on behalf of the command at the supplied key's bucket.  
We elaborate on this in Section 2. 

 

1.3 Hash Functions 
A hash table is typically implemented by mapping the 

space of all possible keys to a relatively small sequence of 
integers---suitable for indexing a table.  A hash function h is 
defined as 

 
h: Keys → S 

 
where S ⊂  Z is a finite sequence of integers. Based on the 
above, a hash table is constructed to have t=|S| buckets, 
denoted B(1), B(2), …, B(t). Thus, h(key) is suitable for 
selecting a bucket that might contain the key and its 
associated value. We follow practice [4] and assume that 
h(key) will map its inputs uniformly across the range of 
buckets.  This property is commonly called the simple 
uniform hash property.  

Each bucket contains a set of (key,value) pairs, with each 
key occurring at most once in all the buckets. (This is the 
chaining approach for handling collisions; open-addressing 
[4] is an alternative but is not well suited to RTES 
applications.) We can then perform GET(key) (more 
generally, LOCATE(key, command)) by searching the bucket 
B(h(key)) for an entry with the specified key.  The hash 
table HT maintains that 

GET(key)=value     ↔  
     h(key)=i → (key,value) ∈  B(i) 

We say that key hashes to bucket i using the hash function h. 
A key is located in a hash table by searching the bucket 
B(h(key)) for a (k,value) pair such that k=key. 

The domain of a hash function h is typically much larger 
than its range.  It is therefore likely that multiple keys of 
interest will hash to the same bucket.  From the above, we 
can see that a bucket  

B(i) = {(key,value) ∈  HT |  h(key)=i}. 
As the number of entries in HT increases, the number of 
entries per bucket increases correspondingly.  If the simple 
uniform hash assumption holds, then the increases are 
spread uniformly among the buckets. 

The average and worst-case times to access HT are 
determined by the average and worst-case sizes of the 
buckets in the hash table.  When a table's contents reaches 
some predetermined size, it is common pratice to consider 
redistributing that table's contents into a larger table with 
the goal of reducing and balancing the buckets' sizes. 
Because this typically occurs in response to a PUT call, it is 
possible that some PUT calls will be much more expensive 
than others. It is this behavior that makes extant hash table 
implementations unsuitable for RTES applications. 

1.4 Real-Time and Embedded Systems Concerns 
Operating systems such as Linux/RT2 and languages such 

as Real-Time Specification for Java (RTSJ) [2] offer 
interfaces for declaring real-time concerns, such as a task's 
cost, periodicity, and deadline.  Based on scheduling theory 
[8], a scheduler can determine whether a given set of tasks 
is feasible, in the sense that the tasks' deadline requirements 
are guaranteed to be accommodated on a given platform. 

 Because feasibility testing requires each task to declare 
its cost, it is important to state such costs as precisely as 
possible.  Consider the provisioning that should occur when 
an application performs a PUT() on a hash table.  As 
described above, most PUT() operations are performed 
relatively quickly; however, an occasional PUT() causes the 
hash table to be resized, with all its entries redistributed 
according to a new hash function.  At a given PUT(), it is 
difficult to determine whether a hash-table resize would 
occur.  How should the time for a PUT() operation be 
provisioned? 
 
• Provisioning for the average or typical case is 

dangerous.  The resulting requirements may be deemed 
feasible by a scheduler, but the PUT() in question may 
greatly exceed its stated cost.  As a result, deadlines can 
be missed and an application can fail. 

• Provisioning for the worst case is safe, but the resulting 
requirements may be infeasible on a given platform---
every PUT() operation is provisioned as if a rehash 
operation is necessary. 

 
Based on the above, the suitability of a hash-table 

implementation can be judged by the amount of over 
provisioning it imposes on a real-time application.  This in 
turn can be quantified by an implementation's ratio of its 
worst- to average-case performance: as that ratio 
approaches 1, so does the implementation's suitability for 
RTES applications.  In Section 3 we measure this ratio for 
our implementation and for Java's reference 
implementation. 

For embedded systems, storage behavior can be a 
determining factor.  Hash tables adapt to greater load 
typically by reprovisioning the space in which (key, value) 
pairs are kept.  For languages like Java, this can imply  
 

1.) allocation of a new table (sometimes twice as large as     
the old (extant) table) 

   2.) rehashing of extant entries into the new table 
3.) deallocation of the old table 

 
Such storage behavior momentarily increases the 

program's footprint as items are copied, and then decreases 
the footprint as the old table is deallocated.  This behavior 
is not well suited to embedded systems for the following 
reasons: 
 

 
2 See URL http://ww.timesys.com/products/linux2.html 
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• The program exhibits a storage blip during rehashing.  
The size of this blip is typically 50% of the new table's 
size.  For an embedded system, this can be 
unacceptable. 

• The deallocation of old hash tables can leave holes in 
the runtime storage heap.  Such holes can cause the 
heap to be fragmented and thus trigger heap 
compaction. 

 
As explained in Section 2.2, our approach avoids the 

temporary increase in storage footprint caused by allocating 
the new table before deallocating the old one. 
 

2 APPROACH 
To avoid burdening a single call with the overhead of an 

entire rehash, we spread the transition between table 
configurations over multiple operations. During a rehash, 
we maintain two hash functions, one “old” and one “new”. 
The old function applies to the old table configuration and 
will be used to locate data that was mapped prior to the 
rehash and has not yet been relocated according to the new 
hash function.   Rehashing does not occur in the context of a 
single hash-table method-call, but is instead amortized over 
as many calls as are necessary to complete the transition to 
the new hash function. 

Although an implementation could feasibly maintain 
more than two hash functions, and thus perform multiple 
simultaneous rehashes, an unbounded number of such 
functions leads to unbounded time for LOCATE(key, 
command)---unacceptable given our requirements. This 
paper and its accompanying implementation allow only one 
transition in effect at any time: from the old to the new hash 
functions. 
 

2.1 Incremental Rehashing 
To complete the rehashing process, every element must 

be removed from its old location and correctly mapped to 
its new location using the new hash function.  Since we 
resolve collisions by chaining, this involves rehashing each 
element in a linked list. We refer to the process of rehashing 
a bucket's contents according to the new hash function as 
cleaning that bucket. 

We perform cleaning in two ways: operation-driven 
cleaning and methodical cleaning.  Whenever the user 
performs an operation on the hash table (GET(), PUT(), 
REMOVE()), we rehash the elements contained in the bucket 
located by the old hash function. 

To ensure progress toward completion of the rehashing, 
we cannot depend only on operation-driven cleaning.  It is 
possible that the operations at-hand avoid a particular 
bucket.  Therefore, methodical cleaning is also performed 
per operation; here, the bucket chosen for cleaning is based 
on the state of an incremental sweep of the hash table. 
While implementations may vary, it is essential that a 

bucket record whether it has been cleaned and that a table 
record whether any of its buckets are still dirty. 

Bucket-cleaning is implemented as part of the  
Command-pattern.  Specifically, if the hash table is 
moving from hash function hold to hnew, then our 
implementation does the following when LOCATE(key, 
command) is called: 
 
  1.) The bucket B(hold(key)) is cleaned. 
  2.) The bucket B(hnew(key)) is cleaned. 
  3.) The next bucket in the methodical list is cleaned. 
  4.) The command is executed. 
 

2.2 Space Utilization 
 

 
Figure 1: Two-level hashing scheme 

 
Because of the constraints of RTES systems, particularly 

the embedded-systems concerns, our hash table does not 
free old storage when moving to the new hash function.  
Instead, the hash table grows by adding more tables to a 
two-dimensional hash scheme, as shown in Figure 1. Thus, 
the old subtables continue to participate as the hash table 
increases in size by adding additional subtables. 

A hash function then must select both a table and a 
bucket; we assume both outcomes are subject to the simple 
uniform hash property. 

The benefit of our approach is that the hash table does 
not temporarily blow up in size while the rehash takes 
place; instead, new space is added to the existing table, and 
the new hash function maps into the enlarged space. 

 

2.3 Design 
Our redesign of the hash table does not assume that all 

clients necessarily want real-time behavior.  In order to give 
the user control over this aspect of the hash table, while 
providing the intended functionality, we separate the idea of 
the hash table mechanism---which implements the API and 
cleaning functionality---from the strategy that decides when 
the hash table should perform a rehash.   

We introduce a POD object, or Point Of Design, through 
which an Observer of the hash table may call for rehashing.  
Such an Observer could subscribe to certain statistics about 
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the hash table that are of interest, and based on those 
statistics decide to ask for a rehash, as shown in Figure 2. 

 

 
Figure 2: Observer can request a rehash. 

 

2.4 Adapting to java.util.Hashtable 
The class java.util.Hashtable implements 

java.util.Map and extends  
java.util.Dictionary.   Because one of our criteria 
for the hash table is a small footprint, we decided not 
burden our primary implementation with all methods found 
in java.util.Hashtable.  Instead, we created a 
wrapper around our hash table that provided the necessary 
functionality, but maintained realtime-compliant properties. 
We are thus able to substitute our implementation for 
Java's, and the experiments of Section 3 are based on this 
approach. 

3 EXPERIMENTS 
In this section we report on the results obtained from our 

implementation.  These include careful timings to verify the 
real-time properties of our approach, as well as experiments 
conducted by substituting our algorithm for Java's 
implementation. 

Our experiments were conducted on a Sparc Ultra~5 with 
128 Mbytes of primary memory.  To avoid unwanted 
interference, pages were locked into primary memory and 
our processes ran in real-time priority mode. Garbage-
collection was disabled during hash table methods---a 
situation akin to running real-time threads under RTSJ. 
 

3.1 Careful Timings of Contrived Benchmarks 
We generated hash table entries using n random integers  
(java.lang.Integer) as the keys, for n = {100, 1000, 
10000, 100000, 150000}.  Due to randomness, some 
integers occur multiple times.  The set of numbers is 
sequentially inserted, searched, and deleted from the data 
structures.  The operations' times were gathered using 
Solaris's gethrtime() function and the Java Native 
Interface (JNI). 
 

 
Figure 3: Comparison of our algorithm (rh)  

against Java’s (java) for the contrived benchmark. 
  Times are shown in microseconds. 

 
Figure 3 shows that the average time for both 

implementations is independent of the number of entries---
nearly constant as predicted by theory.  Also, the average 
time taken by Java's implementation is less than ours.  This 
is a direct result of the resize-amortization feature of our 
implementation: it spreads the operations of an entire resize 
over multiple calls to the table, so the average time per call 
suffers. 

The maximum time over all calls in our implementation 
appears to climb, but settles at a reasonable value; Java's 
maximum times are much worse, and are clearly dependent 
on the number of entries.  These times are attributed to the 
single-call rehashing that occurs (during a Put) when its 
target load factor is exceeded. 

These results show that the ratio of maximum to average 
time for each operation is reasonably bounded in our 
implementation while seemingly unbounded in Java's. 

 

3.2 SPEC Benchmarks 
As discussed in Section 2, we created an adapter class in 

our implementation so we could substitute it for Java's.  
This allowed us to test our implementation on the Java 
SPEC benchmarks jess, raytrace, db, mpegaudio, mtrt, and 
jack.  

The following methods of the Map class were timed and 
recorded: 
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   Object put(Object key, Object value),
Object get(Object key),
Object remove(Object key),
boolean containsKey(Object key),
boolean containsValue(Object value),
Set entrySet(),
Set keySet(),
Collection values().

 
Figure 4: Results on SPEC benchmarks. 

 
Figure 4 shows that our implementation provides more 

predictable performance (as measured by ratios of worst-
case to average times) for the SPEC benchmarks than does 
the standard implementation.  We expect nothing less given 
the simple uniform hash assumption; thus, Figure 4 is in 
some sense a measure of the uniformity of Java's 
hashCode() method on the objects used as keys in those 
runs.   

 

4 CONCLUSION 

We have described an adaptation of a common data 
structure to real-time.  From our experience, we offer 
thefollowing: 

 
• Amortization of expensive operations can play an 

important role in migrating a data structure to real-
time. 

• The API of a data structure can make a big 
difference concerning the feasibility of ever 
obtaining a real-time implementation of that data 
structure.  For example, some of the methods in 
Java's API insist on returning an array.  Java cannot 
partially instantiate an array; thus, the full cost of 

allocating and initializing an array (to zero) must be 
paid by any call that returns an array.  This can lead 
to unbounded behavior. 

 
Our data supports our claim that the time to use our hash 

table is reasonably bounded.  We are currently proving the 
real-time properties of our implementation; such a proof 
must show: 
 

• Bounded behavior prior to resize 
• Bounded behavior during resize 
• No need to resize while already resizing 
 
The last point can be proven only with respect to a 

reasonable strategy for picking the next table size.  Our 
early results indicate that it is not necessary to double the 
table size on rehash, as seems to be the common wisdom, to 
obtain bounded behavior. 
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