Code analysis and transformation

DFA foundation

Simone Campanoni
simonec@eecs.northwestern.edu
We have seen several examples of DFAs

• Are they correct?
• Are they precise?
• Will they always terminate?
• How long will they take to converge?
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Understanding DFAs

• We need to understand all of them
 • Liveness analysis: is it correct? Precision? Convergence?
 • Reaching definitions: is it correct? Precision? Convergence?
 • ...

• Idea: create a framework to help reasoning about them
 • Provide a single formal model that describes all data-flow analyses
 • Formalize the notions of “safe,” “conservative,” and “optimal”
 • Correctness proof for DFAs
 • Place bounds on time complexity of iterative DFAs
Lattices

• Lattice $L = (V, \leq)$:
 • V is a (possible infinite) set of elements
 • \leq is a binary relation over elements of V

• Lower bound
 • z is a lower bound of x and y iff $z \leq x$ and $z \leq y$

• Upper bound
 • z is a upper bound of x and y iff $x \leq z$ and $y \leq z$

• Operations: meet (\wedge) and join (\vee)
 • $b \vee c$: least upper bound
 • $b \wedge c$: greater lower bound
Lattices

- Lattice $L = (V, \leq)$:
 - V is a (possible infinite) set of elements
 - \leq is a binary relation over elements of V

- Properties of \leq:
 - \leq is a partial order (reflexive, transitive, anti-symmetric)
 - Every pair of elements in V has
 - A unique greatest lower bound (a.k.a. meet) and
 - A unique least upper bound (a.k.a. join)

- Top (T) = unique greatest element of V (if it exists)
- Bottom (\bot) = unique least element of V (if it exists)
- Height of L: longest path from T to \bot
 - Infinite large lattice can still have finite height
Lattices and DFA

• A lattice \(L = (V, \leq) \) describes all possible solutions of a given DFA
 • A lattice for reaching definitions
 • Another lattice for liveness analysis
 • ...
 • For DFAs that look for solutions per point in the CFG, then
 1 “lattice instance” per point

• The relation \(\leq \) connects all solutions of its related DFA
 from the best one (\(T \)) to the worst one --most conservative one--(\(\perp \))
 • Liveness analysis:
 \(T = \) no variable is alive = \{\}
 \(\perp = \) all variables are alive = \(V \)

• We traverse the lattice of a given DFA
 to find the correct solution in a given point of the CFG
 • We repeat it for every point in the CFG
Lattice example

• How many apples I must have?
• $V =$ sets of apples
• $\leq =$ set inclusion
 $\{\ \}$ $\leq \{\ ,\ ,\ \}$
• $T =$ (best case) = all apples
• $\perp =$ (worst case) no apples (empty set)

Apples, definitions, variables, expressions ...
How can we use this mathematical framework, lattice, to study a DFA?
Use of lattice for DFA

• Define domain of program properties (flow values --- apple sets) computed by data-flow analysis, and organize the domain of elements as a lattice

• Define how to traverse this domain to compute the final solution using lattice operations

• Exploit lattice theory in achieving goals
Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
 - e.g., Sets of apples

T = { , , }
⊥ = { }
Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
 - *e.g.*, Sets of live variables for liveness
- ⊥ “worst-case” information
 - *e.g.*, Universal set
- T “best-case” information
 - *e.g.*, Empty set
- If $x \leq y$, then x is a conservative approximation of y
 - *e.g.*, Superset
Data-flow analysis and lattice (reaching defs)

• Elements of the lattice (V) represent flow values (IN[], OUT[])
 • e.g., Sets of definitions

• T represents “best-case” information
 • e.g., Empty set

• ⊥ represents “worst-case” information
 • e.g., Universal set

• If x ≤ y, then x is a conservative approximation of y
 • e.g., Superset
How do we choose which element in our lattice is the data-flow value of a given point of the input program?
We traverse the lattice

for (each instruction i other than ENTRY) $\text{OUT}[i] = \{ \}$;
We traverse the lattice

for (each instruction i other than ENTRY) $\text{OUT}[i] = \{ \}$;

\[T = \{ \}
\]

\[
\begin{aligned}
\{ \text{d1} \} & \quad \{ \text{d2} \} & \quad \{ \text{d3} \} \\
\{ \text{d1,d2} \} & \quad \{ \text{d1,d3} \} & \quad \{ \text{d2,d3} \} \\
\bot = \{ \text{d1,d2,d3} \}
\end{aligned}
\]
Merging information

• New information is found
 • e.g., a new definition \(d_1\) reaches a given point in the CFG

• New information is described as a point in the lattice
 • e.g. \{d_1\}

• We use the ”meet” operator (\(\land\)) of the lattice to merge the new information with the current one
 • e.g., set union
 • Current information: \{d_2\}
 • New information: \{d_1\}
 • Result: \{d_1\} U \{d_2\} = \{d_1, d_2\}
How can we find new facts/information to iterate over the lattice?
Computing a data-flow value (ideal)

• For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together

• Meet-over-all-paths (MOP) solution at each program point
 • It’s a correct solution
Computing MOP solution for reaching definitions

```
T={ }
| {d1}
| {d1,d2}
| {d1,d2,d3}
```
From ideal to practical solution

• **Problem**: all preceding paths must be analyzed
 • Exponential blow-up

• **Solution**: compute meets early (at merge points) rather than at the end
 • Maximum fixed-point (MFP)

\[
\text{IN}[i] = \bigcup p \text{ a predecessor of } i \text{ OUT}[p];
\]

• **Questions**:
 • Is MFP correct?
 • What’s the precision of MFP?
Outline

• Lattice and data-flow analysis
• DFA correctness
• DFA precision
• DFA complexity
Correctness

\[T = \{ \} \]

\[V_{\text{correct}} \leq V_{\text{MOP}} \]

\[\{ \text{d1} \} \]

\[\{ \text{d2} \} \]

\[\{ \text{d3} \} \]

\[\{ \text{d1,d2} \} \]

\[\{ \text{d1,d3} \} \]

\[\{ \text{d2,d3} \} \]

\[\bot = \{ \text{d1,d2,d3} \} \]
Correctness

• Key idea:
 • “Is MFP correct?” iff \(V_{MFP} \leq V_{MOP} \)

• Focus on merges:
 • \(V_{MOP} = fs(V_{p1}) \land fs(V_{p2}) \)
 • \(V_{MFP} = fs(V_{p1} \land V_{p2}) \)
 • \(V_{MFP} \leq V_{MOP} \) iff \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2}) \)

• If \(fs \) is monotonic: \(X \leq Y \) then \(fs(X) \leq fs(Y) \)
 • \((V_{p1} \land V_{p2}) \leq V_{p1} \) by definition of meet
 • \((V_{p1} \land V_{p2}) \leq V_{p2} \) by definition of meet
 • So \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2}) \)
 • And therefore \(V_{MFP} \leq V_{MOP} \)

\(fs \) is monotonic \(\Rightarrow \) MFP is correct!
Monotonicity

• $X \leq Y$ then $f_s(X) \leq f_s(Y)$

• If the flow function f is applied to two members of V, the result of applying f to the “lesser” of the two members will be under the result of applying f to the “greater” of the two members.

• More conservative inputs leads to more conservative outputs (never more optimistic outputs).
Convergence

• **From lattice theory**
 If f_s is monotonic,
 then the maximum number of times f_s can be applied
 w/o reaching a fixed point is $\text{Height}(V) - 1$

• Iterative DFA is guaranteed to terminate
 if the f_s is monotonic and
 the lattice has finite height
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Precision

• V_{MOP}: the best solution

• $V_{MFP} \leq V_{MOP}$
 • $fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2})$

• Distributive fs over \land
 • $fs(V_{p1} \land V_{p2}) = fs(V_{p1}) \land fs(V_{p2})$
 • $V_{MFP} = V_{MOP}$

• Is reaching definition fs distributive?
A new DFA example: reaching constants

• Goal
 • Compute the value that a variable must have at a program point

• Flow values (V)
 • Set of (variable,constant) pairs

• Merge function
 • Intersection

• Data-flow equations
 • Effect of node $n \ x = c$
 • $\text{KILL}[n] = \{(x,k) \mid \forall k\}$
 • $\text{GEN}[n] = \{(x,c)\}$
 • Effect of node $n \ x = y + z$
 • $\text{KILL}[n] = \{(x,k) \mid \forall k\}$
 • $\text{GEN}[n] = \{(x,c) \mid c=\text{valy}+\text{valz}, (y, \text{valy}) \in \text{in}[n], (z, \text{valz}) \in \text{in}[n]\}$
Reaching constants: characteristics

• $\bot = ?$
• IN = ?
• OUT = ?
• Let’s study this analysis
 • Does it convergence?
 • is fs monotonic? Has the lattice a finite height?
 • What is the precision of the solution?
 • is fs distributive?
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
OUT[ENTRY] = { };
for (each instruction \(i \) other than ENTRY) \(\text{OUT}[i] = \{ \} \);
while (changes to any \(\text{OUT} \) occur){
 for (each instruction \(i \) other than ENTRY) {
 \(\text{IN}[i] = \cup p \) a predecessor of \(i \) \(\text{OUT}[p] \);
 \(\text{OUT}[i] = \text{GEN}[i] \cup (\text{IN}[i] - \text{KILL}[i]) \);
 }
}
Complexity

• N instructions (N definitions at most)
 • Each IN/OUT set has at most N elements
 • Each set-union operation takes O(N) time
 • The for loop body
 • constant # of set operations per node
 • O(N) nodes ⇒ O(N^2) time for the loop
 • Each iteration of the repeat loop can only make the set larger
 • Each iteration modifies in the worst case only one set ⇒ O(N^3)
 • N iterations to reach the fixed point at most

• Worst case: O(N^4)

• Typical case: 2 to 3 iterations with good ordering & sparse sets
 • O(N) to O(N^2)
Optimization: basic blocks

\[\text{OUT}[\text{ENTRY}] = \{ \}; \]

\text{for (each basic block B other than ENTRY)} \quad \text{OUT}[B] = \{ \};

\text{while (changes to any OUT occur)}

\text{for (each basic block B other than ENTRY)} \{

\quad \text{IN}[B] = \bigcup p \text{ a predecessor of } B \text{ OUT}[p];

\quad \text{OUT}[B] = \text{GEN}[B] \cup (\text{IN}[B] - \text{KILL}[B]);

\}

\}
Optimization: work list

\[
\text{OUT}[\text{ENTRY}] = \{ \};
\]
for (each basic block B other than ENTRY) \(\text{OUT}[B] = \{ \} \); \(\text{workList} = \text{all basic blocks} \)
while (workList isn’t empty)
 \(B = \text{pick and remove a block from workList} \)
 \(\text{oldOUT} = \text{OUT}[B] \)
 \(\text{IN}[B] = \cup p \text{ a predecessor of } B \ \text{OUT}[p]; \)
 \(\text{OUT}[B] = \text{GEN}[B] \cup (\text{IN}[B] – \text{KILL}[B]); \)
 \(\text{if } (\text{oldOut} \neq \text{OUT}[B]) \ \text{workList} = \text{workList} \cup \{\text{all successors of } B\} \)
}