
H O W T O G E N E R AT E A C T I O N A B L E
A D V I C E A B O U T P E R F O R M A N C E

P R O B L E M S

Vincent St-Amour

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

College of Computer and Information Science
Northeastern University
Boston, Massachusetts

April 2015

Vincent St-Amour:
How to Generate Actionable Advice about Performance Problems,
Doctor of Philosophy, Northeastern University, Boston, Massachusetts
© April 2015

A B S T R A C T

Performance engineering is an important activity regardless of ap-
plication domain, as critical for server software as for mobile appli-
cations. This activity, however, demands advanced, specialized skills
that require a significant time investment to acquire, and are therefore
absent from most programmers’ toolboxes.

My thesis is that tool support can make performance engineering
both accessible and time-efficient for non-expert programmers. To
support this claim, this dissertation introduces two novel families of
performance tools that are designed specifically to provide actionable
information to programmers: optimization coaches and feature-specific
profilers. This dissertation presents blueprints for building tools in
these families, and provides examples from tools that I have built.

v

A C K N O W L E D G M E N T S

I would like to thank first and foremost my advisor Matthias Felleisen,
who has taught me most of what I know today about the craft of
research, writing, and design. He is the best advisor and ally I could
have wished for, and I am incredibly grateful for of all the help and
guidance he has provided me over the years.

This work would not have been possible without the help of my
collaborators, with whom I have worked on the projects described
in these pages and others along the way: Leif Andersen, Eric Dob-
son, Matthias Felleisen, Robby Findler, Matthew Flatt, Shu-yu Guo,
Asumu Takikawa, Sam Tobin-Hochstadt, and Neil Toronto.

I would also like to thank my thesis committee for their valuable
feedback and guidance: Matthias Felleisen, Kathryn McKinley, Olin
Shivers, Sam Tobin-Hochstadt, David Van Horn.

I also owe a great deal of thanks to my colleagues and former
colleagues whom I learned an immense amount from, at whom I
bounced many ideas—some good, some questionable—and who of-
ten found solutions to problems I had been banging my head on.
In particular, I would like to thank: Eli Barzilay, Michael Bebenita,
Stephen Chang, Ryan Culpepper, Luca Della Toffola, Christos Di-
moulas, Tony Garnock-Jones, Dave Herman, Shriram Krishnamurthi,
Ben Lerner, Niko Matsakis, Jay McCarthy, Jonathan Schuster, Justin
Slepak, Aaron Turon, Jesse Tov, and Jan Vitek.

J’aimerais finalement remercier ma famille, en particulier mes par-
ents, mes grand-parents, mon oncle Jacques, ma tante France et mon
oncle François pour avoir toujours encouragé ma curiosité et m’avoir
poussé à me dépasser.

vii

C O N T E N T S

I Tooling for the Discerning Programmer 1

1 Introduction 3
1.1 Background . 4

1.2 Scope . 5

1.3 Dissertation Outline . 6

1.4 Pronoun Conventions 8

II Optimization Coaching 9

2 When Optimizers Fail 11
2.1 A Dialog Between Compilers and Programmers . . . 12

2.2 Architecture . 13

2.3 Prototypes . 14

3 Host Compilers 15
3.1 The Typed Racket Compiler 15

3.2 The Racket Compiler 19

3.3 The SpiderMonkey JavaScript Engine 20

3.3.1 The IonMonkey Optimizer 22

3.3.2 Optimization Corpus 23

3.3.3 A Near Miss Walkthrough 25

4 Optimizer Instrumentation 29
4.1 The Typed Racket Optimizer 29

4.2 The Racket Inliner . 31

4.3 The IonMonkey Optimizer 32

5 Optimization Analysis 35
5.1 Pruning . 35

5.1.1 Incomprehensible Failure Pruning 35

5.1.2 Irrelevant Failure Pruning 36

5.1.3 Optimization Proximity 36

5.1.4 Harmless Failure Pruning 37

5.1.5 Partial Success Short-Circuiting 38

5.1.6 Profiling-Based Pruning 39

5.2 Targeting . 40

5.2.1 Type-Driven Specialization 40

5.2.2 Inlining . 40

5.2.3 Property Access and Assignment 40

5.2.4 Element Access and Assignment 41

ix

5.3 Ranking . 41

5.3.1 Static Badness 42

5.3.2 Profiling-Based Badness 42

5.4 Merging . 43

5.4.1 Causality Merging 44

5.4.2 Locality Merging 45

5.4.3 Temporal Merging 46

5.4.4 Same-Property Analysis 46

5.4.5 By-Solution Merging 48

5.4.6 By-Constructor Merging 48

6 Recommendation Generation 49
6.1 Recommendations for Typed Racket 49

6.2 Recommendations for Inlining 49

6.3 Recommendations for SpiderMonkey 51

7 User Interface 53
7.1 Racket Prototype . 53

7.2 SpiderMonkey Prototype 55

8 Evaluation 59
8.1 Racket Prototype . 59

8.1.1 Results and Discussion 60

8.2 SpiderMonkey Prototype 67

8.2.1 Results and Discussion 68

9 Coaching Beyond Racket and SpiderMonkey 75
9.1 Common Subexpression Elimination 75

9.2 Test Reordering . 75

9.3 Scalar Replacement . 76

9.4 Loop-Invariant Code Motion 76

9.5 Reducing Closure Allocation 76

9.6 Specialization of Polymorphic Containers 77

9.7 Anchor Pointing . 77

10 Dead Ends 79
10.1 Hidden Costs . 79

10.2 Temporal Patterns . 80

11 Related Work 81
11.1 Profilers . 81

11.2 Compiler Logging . 82

11.3 Analysis Visualization 83

11.4 Interactive Optimization 83

11.5 Rule-Based Performance Bug Detection 85

11.6 Assisted Optimization 86

11.7 Auto-Tuning . 86

11.8 Refactoring Tools . 87

x

III Feature-Specific Profiling 89

12 Weighing Language Features 91
12.1 Prototype . 92

13 Feature Corpus 93
13.1 Contracts . 93

13.2 Output . 95

13.3 Generic Sequence Dispatch 95

13.4 Type Casts and Assertions 95

13.5 Parser Backtracking . 96

13.6 Shill Security Policies 97

13.7 Marketplace Processes 97

13.8 Pattern Matching . 97

13.9 Method Dispatch . 98

13.10 Optional and Keyword Argument Functions 98

14 Profiling Simple Features 101
14.1 Inspecting the Stack with Continuation Marks 101

14.2 Feature-specific Data Gathering 103

14.3 Analyzing Feature-specific Data 104

15 Extension: Profiling Structure-Rich Features 107
15.1 Custom Payloads . 107

15.2 Analyzing Structure-Rich Features 108

16 Extension: Instrumentation Control 113
16.1 Syntactic Latent Marks 113

16.2 Functional Latent Marks 114

17 Evaluation 115
17.1 Case Studies . 115

17.1.1 Sound Synthesis Engine 115

17.1.2 Maze Generator 118

17.1.3 Shill-Based Grading Script 120

17.1.4 Marketplace-Based SSH Server 120

17.1.5 Markdown Parser 122

17.2 Plug-in Implementation Effort 122

17.3 Instrumentation Overhead 123

18 Limitations 127
18.1 Control Features . 127

18.2 Non-Observable Features 127

18.3 Diffuse features . 127

19 Feature-Specific Profiling Beyond Racket 129
19.1 Continuation Marks Beyond Racket 129

19.2 Profiling Beyond Stack Inspection 129

xi

20 Related Work 131
20.1 Traditional Profiling . 131

20.2 Vertical Profiling . 131

20.3 Alternative Profiling Views 132

20.4 Dynamic Instrumentation Frameworks 132

20.5 Domain-Specific Debugging 133

IV Closing Remarks 135

21 Conclusion 137

Bibliography 141

xii

Part I

T O O L I N G F O R T H E D I S C E R N I N G
P R O G R A M M E R

1
I N T R O D U C T I O N

For many application domains, performance is a critical requirement.
High performance programs are responsive to their users, require
modest resources, and can be used without concern as system build-
ing blocks. Low performance programs, in comparison, may cause
users to switch to the competition, impose significant resource re-
quirements, or be unsuitable for integration with other systems.

As it stands, performance engineering requires advanced, special-
ized skills for both diagnosis and treatment: working knowledge of
profilers and disassembly tools, familiarity with compiler internals
(especially optimization passes), memory hierarchies, etc. As a result,
these skills are beyond the reach of many programmers. These pro-
grammers are left at the mercy of their languages, compilers and run-
time systems. To make matters worse, many of these hard-earned
skills are not transferable across platforms, and risk obsolescence
with each new compiler or library update.

Specialized tooling can bring the benefits of performance engineer-
ing to a broad audience. The key is to mechanize the knowledge and
experience of performance experts. In this spirit, my dissertation sup-
ports the following thesis:

performance tools can use information from the compila-
tion and execution processes to provide easy-to-follow rec-
ommendations that help programmers improve the perfor-
mance of their programs with low effort and little knowl-
edge about low-level details.

The evidence for this thesis comes in the form of two novel classes
of performance tools: optimization coaches and feature-specific profilers.
Optimization coaches provide programmers with insight into the op-
timization process of compilers and help them with recommenda-
tions of program changes to enable additional optimizations. Feature-
specific profilers report how programs spend their execution time
in terms of linguistic features—i.e., features provided by program-
ming languages or libraries—rather than by program components,
e.g., lines, procedures, or modules.

Both classes of tools leverage the compilation and execution pro-
cesses to gather information: optimization coaches by instrumenting
compilers’ optimizers and feature-specific profilers by observing pro-
gram execution. Both aim to provide information accessible to non-
expert programmers: optimization coaches by providing targeted rec-
ommendations and feature-specific profilers by reducing the search
space of program changes that programmers must explore.

3

As part of my thesis work, I have implemented instances of both
classes of tools: an optimization coach for Racket (Flatt and PLT 2010)
and one for the SpiderMonkey JavaScript (ECMA International 2011)
engine, plus one feature-specific profiler for Racket. This dissertation
describes these tools in detail and reports on evaluation experiments,
both in terms of performance impact and programmer experience.

In addition to these instantiations, this work provides blueprints
for building optimization coaches and feature-specific profilers that
should apply beyond my specific implementations. The body of this
dissertation presents general, language-agnostic techniques and pro-
vides specific sketches for certain extensions and instantiations.

1.1 Background

Performance engineering as an activity has existed for almost as long
as programming has. In the early days of computing, the extreme
performance limitations of computers meant that these two activities
went hand in hand. Soon, researchers were developing empirical, sys-
tematic approaches to studying program performance (Knuth 1971).

In these early days, accurately predicting the performance of pro-
grams remained feasible. Computers were simple, programming lan-
guages were low-level, their semantics mapped to that of their host
hardware in predictable ways, and system stacks were shallow, with
programs mostly running on the bare metal.

Since then, the computing landscape has changed tremendously.
Computer architectures have become much more complex and hard
to reason about, programmers use high-level languages and frame-
works with abstractions that do not have obvious low-level map-
pings and rely on complex runtime systems, and systems now in-
clude layers upon layers of abstraction—hardware abstraction lay-
ers, virtual memory, virtualization, etc. All this additional complexity,
while invaluable for building large and complex applications, hinders
reasoning about performance. Programmers constantly, and acciden-
tally, run afoul of the unwritten rules that govern application perfor-
mance (Kamp 2010).

Clearly, programmers need tools to help them tame this complex-
ity and recover some ability to reason about—and improve—the per-
formance of their programs. Researchers and practicioners alike have
been tackling this problem for decades, with some measure of success.
Tools such as profilers (Graham et al. 1982) provide an accounting of
the execution costs of programs. Research into performance predic-
tion (Ofelt and Hennessy 2000) aims to improve the programmers’
understanding of hardware performance characteristics. Approaches
such as vertical profiling (Hauswirth et al. 2004) help programmers
see through the layers of their systems. Finally, performance style

4

guides (Fog 2012) provide programmers with generic advice on avoid-
ing pitfalls while writing their programs.

Within this landscape some key contributing factors to program
performance are left unaddressed. Specifically, existing tools offer
programmers no help in ensuring that compiler optimizations apply
to their programs, or in helping them to avoid misusing potentially
expensive linguistic features. In our experience and that of Racket
programmers, both missed optimizations and feature misuses can
significantly degrade program performance. For example, we have
observed inlining failures slowing down programs by a factor of two,
and overuse of behavioral contracts can account for over 80% of pro-
grams’ execution time. Others, such as the JavaScript and R commu-
nities, have observed similar phenomena.

In addition to not covering these two aspects of program perfor-
mance, existing tools are not suitable for use by non-expert program-
mers. Expert programmers (usually) know how to avoid performance
pitfalls, and they can use existing diagnosis tools proficiently when
they do encounter performance problems. Non-expert programmers,
in contrast, may accidentally write underperforming programs, and
they may not know how to improve them. Early experiences with
the Typed Racket optimizer showed that even experienced program-
mers struggle to write programs that trigger the optimizations they
expect—even when they are explicitly trying to please the optimizer.

These holes in the performance engineering landscape call for the
construction of tools that can help programmers, both experts but
especially non-experts, navigate the compiler optimization process
and avoid misusing expensive linguistic features.

1.2 Scope

Program optimization and tuning is a broad topic. This work does
not aim to be the final word on the topic. It rather studies some
previously-unaddressed aspects. Specifically, my thesis work is con-
cerned with performance improvements that come from the use and
non-use of compiler optimizations and linguistic features. Further-
more, this work is focused on making these performance gains acces-
sible to non-expert programmers, with low effort on their part.

In contrast, the following topics are explicitly out of the scope of
this work:

• performance gains via algorithm and data structure selection

• performance gains via system architecture

• automatic application of optimization recommendations

• maximum performance extraction from programs

• performance tooling for performance experts

5

This is not to say, however, that the ideas and techniques presented in
this dissertation are not suitable—or adaptable—for these purposes,
only that I will not be considering these topics when describing or
evaluating them.

1.3 Dissertation Outline

The bulk of this dissertation is divided in two parts, one for each
family of tools it introduces.

Part II: optimization coaching

Part II begins with chapter 2, which presents optimization coaching
in general terms and provides an overview of the architecture we
propose for such tools.

Chapter 3 provides background on the host compilers of our proto-
type coaches. Because optimization coaches cooperate with their host
compilers, some knowledge of the relevant compilers is necessary to
understand the coaches’ operation. This chapter presents the Typed
Racket, Racket and SpiderMonkey compilers with an eye towards op-
timization coaching.

Chapter 4 describes techniques for gathering optimization informa-
tion from compilers’ optimizers. It covers instrumentation techniques
suitable for ahead-of-time compilers as well as others for just-in-time
compilers. To illustrate these ideas, it provides examples taken from
our prototypes’ host compilers.

Chapter 5 discusses optimization analysis, the process which our
prototypes apply to generate actionable programmer-facing optimiza-
tion reports from raw optimization logs. This chapter presents our
techniques and heuristics for that purpose, which we group into four
categories: pruning, to avoid false positives; targeting, to direct pro-
grammers’ attention to the relevant program fragments; ranking, to
assist programmers in prioritizing their tuning efforts; and merging,
to consolidate repetitive information.

Chapter 6 describes the recommendation generation process, by
which an optimization coach augments its reports with suggestions of
program changes for programmers to follow. This chapter illustrates
the process with examples taken from each of our prototypes.

Chapter 7 covers the user interfaces of our prototype coaches. It
includes discussion of mechanisms they use to display ranking of
recommendations and of user-facing filtering mechanisms.

Chapter 8 presents the results of evaluating our two optimization
coaches. Our experiments evaluate three aspects of the coaches: the
performance impact of recommendations, the effort required to fol-
low them, and the quality of individual recommendations. Our re-
sults show that programmers can achieve significant speedups with

6

low effort by using an optimization coach. Furthermore, speedups
achieved by using our JavaScript prototype translate across all major
JavaScript engines. This chapter additionally reports on successful
user experiences with our Racket prototype.

Chapter 9 sketches how one could apply optimization coaching,
and our techniques in particular, to optimizations beyond the ones
covered by our prototypes.

Chapter 10 discusses research directions we pursued, but which
did not ultimately lead to positive results. We present them to help
future researchers avoid going down the same dead ends we did.

Part II concludes with a discussion of related work in chapter 11.
It surveys topics ranging from traditional approaches to performance
engineering, such as profiling, to recent trends in involving program-
mers in the optimization process, such as interactive optimization and
automatic performance bug detection.

Part III: feature-specific profiling

Part III opens with chapter 12, which introduces the general idea of
feature-specific profiling.

Chapter 13 presents the set of linguistic features that our proto-
type profiler supports. For each feature, it describes its use, explains
how it may impact program performance and how its costs may be
misunderstood. Finally, this chapter outlines the information our tool
provides about each feature.

Chapter 14 explains the basic operation of a feature-specific profiler.
It begins by providing background on continuation marks, the stack
inspection mechanism which is key to our prototype’s instrumenta-
tion. It then describes our proposed architecture, and presents the
roles of each component: the core sampling profiler and the feature-
specific plug-ins.

Chapter 15 describes how to extend the concepts from the previous
chapter to leverage the information and structure present in certain
features. The additional information from these rich features allows a
feature-specific profiler to provide more detailed and targeted infor-
mation to programmers.

Chapter 16 discusses another extension to the simple model, which
gives programmers control over when and where intrumentation oc-
curs. In turn, this provides control over the extent of the profiler’s
reports, as well as its overhead.

Chapter 17 presents the results of evaluating our prototype feature-
specific profiler. It reports on three aspects of the tool: the impact
of following its reports on performance, the effort required to imple-
ment feature plug-ins, and the overhead imposed by the profiler’s
instrumentation and sampling. Our experiments show that the use of

7

a feature-specific profiler can yield significant performance improve-
ments with low effort.

Chapter 18 discusses limitations of the particular approach we pro-
pose for feature-specifc profiling. In particular, it provides characteri-
zations of classes of features which our approach does not support.

Chapter 19 sketches how one could apply feature-specific profil-
ing to other language environments. It lists substitutes for the Racket
mechanisms used to implement our tool. It also presents other po-
tential instrumentation strategies which may be better suited to other
contexts and may also address some of the limitations discussed in
chapter 18.

Part III ends with a discussion of work related to feature-specific
profiling. It includes comparisons between feature-specific profiling
and other approaches to providing actionable views on profiling in-
formation.

Part IV offers concluding remarks and closes the dissertation.

1.4 Pronoun Conventions

To reflect the collaborative nature of this work,1 the rest of this dis-
sertation primarily uses first person plural prounouns. On occasion,
when expressing personal beliefs, opinions, and conjectures, the prose
uses first person singular pronouns.

1 Matthias Felleisen, Shu-yu Guo, and Sam Tobin-Hochstadt contributed to the opti-
mization coaching work. Leif Andersen and Matthias Felleisen contributed to the
feature-specific profiling work.

8

Part II

O P T I M I Z AT I O N C O A C H I N G

2
W H E N O P T I M I Z E R S FA I L

With optimizing compilers, programmers can create fast executables
from high-level code. As Knuth (1971) observed, however,

Programmers should be strongly influenced by what their
compilers do; a compiler writer in his infinite wisdom
may in fact know what is really good for the program-
mer and would like to steer him towards a proper course.
This viewpoint has some merit, although it has often been
carried to extremes in which programmers have to work
harder and make unnatural constructions just so the com-
piler writer has an easier job.

Sadly, the communication between compilers and programmers
has not improved in the intervening 40+ years. To achieve high-quality
results, expert programmers learn to reverse-engineer the compiler’s
optimization behavior by looking at the object code generated for
their programs. They can then write their programs to take advan-
tage of compiler optimizations. Other programmers remain at the
mercy of the compiler, which may or may not optimize their code
properly. Worse, if the compiler fails to apply an optimization rule, it
fails silently, and the programmer will never know.

Sometimes even experts cannot reliably predict the compiler’s be-
havior. For example, during a recent discussion1 about the perfor-
mance of a ray tracer, the authors of the Racket compiler publicly
disagreed on whether an inlining optimization had been performed,
eventually resorting to a disassembly tool to determine the answer.

Such incidents can happen regardless of language or compiler. The
original implementation of Shumway2 provided an implementation
of ActionScript’s Vector.forEach method which performed poorly.
Unbeknownst to its implementors, polymorphism in the method’s
implementation caused JavaScript engines to generate conservative,
poorly-optimized code. Eventually, the Shumway engineers reverse
engineered the compiler’s opaque optimization decisions and diag-
nosed the problem. After manually removing the polymorphism, the
method performed as expected.

Currently, programmers seeking improved performance from their
compilers turn to style guides (Fog 2012; Hagen 2006; Zakas 2010)
on how to write programs that play nicely with the optimizer. Such

1 See Racket bug report: http://bugs.racket-lang.org/old/12518
2 An open-source implementation of Adobe Flash in JavaScript.
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Shumway

11

http://bugs.racket-lang.org/old/12518
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Shumway

static guides cannot offer targeted advice about individual programs
and are instead limited to generic, program-agnostic advice.

In this part of the dissertation, we propose an alternative solution to
this problem: optimization coaching. With a coach, a compiler engages
programmers in a dialog about the optimization process, gives them
insight into its decisions, and provides actionable recommendations
of program changes to enable additional optimizations.

The rest of chapter 2 presents optimization coaching in general
terms. Chapter 3 discusses the host compilers for which we pro-
totyped optimization coaches. Chapters 4 through 7 walk through
the phases of the optimization coaching process, explaining the tech-
niques we developed for each phase. Chapter 8 presents the results of
our experiments to evaluate the effectiveness of our prototypes. Then,
chapter 9 sketches how optimization coaching may apply to optimiza-
tions beyond those we have studied so far, and chapter 10 lists some
coaching techniques which were not successful. Finally, chapter 11

compares our approach to other threads of research that share simi-
lar goals.3

2.1 A Dialog Between Compilers and Programmers

A compiler with an optimization coach “talks back” to the program-
mer. It explains which optimizations it performs, which optimizations
it misses, and suggests changes to the source that should trigger ad-
ditional optimization. Figure 1 presents our prototype optimization
coach for Racket (Flatt and PLT 2010), named Optimization Coach, in
action. Here the tool points to a specific expression where the opti-
mizer could improve the performance of the program, along with a
particular recommendation for how to achieve the improvement. As
the figure shows, a compiler with an optimization coach is no longer
a capricious master but a programmer’s assistant in search of opti-
mizations.

An optimization coach gathers information during compilation, an-
alyzes it, and presents it to programmers in an easily accessible man-
ner. More concretely, an optimization coach should report two kinds
of information:

• successes: optimizations that the compiler performed on the cur-
rent program.

• near misses: optimizations that the compiler did not apply to the
program—either due to a lack of information, or because it may
change the program’s behavior—but could apply safely if the
source program were changed in a certain way.

3 Some of the material in part II of this dissertation appeared in: Vincent St-Amour,
Sam Tobin-Hochstadt, and Matthias Felleisen. Optimization coaching. In Proc. OOP-
SLA, 2012. Some material will appear in: Vincent St-Amour and Shu-yu Guo. Opti-
mization coaching for JavaScript. In Proc. ECOOP, 2015.

12

Figure 1: Our Racket prototype in action

When possible, near miss reports should come with recommenda-
tions on how to change programs to resolve them. These modifica-
tions may simplify the compiler’s analysis or rule out corner cases,
so that the compiler may apply previously missed optimizations.

These recommendations are not required to preserve programs’
semantics. In other words, coaches may recommend changes that
would be beyond the reach of optimizing compilers, which are lim-
ited to semantics-preserving transformations. Worse, compilers are
limited to transformations which they can prove preserve semantics.
Transformations whose proofs require analysis beyond that performed
by the compiler are also off-limits. Programmers remain in control
and are free to veto any recommendation that would lead to any
changes they deem unreasonable.

Including the programmer in the optimization process comes at a
cost, however. Evaluating each recommendation takes time and effort.
Avoiding false positives—recommendations that result in little perfor-
mance benefit or that the programmer does not want to follow—and
providing easy-to-follow recommendations are the main challenges
an optimization coach faces.

2.2 Architecture

An optimization coach works by gathering information from the com-
piler’s optimizer, processing it, and presenting the results to program-
mers. Specifically, an optimization coach operates in four main steps:

1. Compiler instrumentation (chapter 4): Instrumentation code in-
side the optimizer logs optimization decisions during compi-
lation. This instrumentation distinguishes between optimization
successes, i.e., optimizations that the compiler applies to the pro-
gram, and optimization failures, i.e., optimizations that it does not
apply. These logs include enough information to reconstruct the
optimizer’s reasoning post facto.

13

2. Optimization analysis (chapter 5): After compilation, an offline
analysis processes these logs. The analysis phase is responsible
for producing high-level, human-digestible near miss reports
from the low-level events recorded in the logs. The coach option-
ally integrates information from other sources such as profilers
to perform this task.

3. Recommendation generation (chapter 6): From the near miss re-
ports, it generates recommendations of program changes that
are likely to turn these near misses into optimization successes.
These recommendations are generated from the causes of in-
dividual failures as determined during compilation and from
metrics computed during the analysis phase.

4. User interface (chapter 7): The optimization coach presents re-
ports and recommendations to programmers. The interface lever-
ages optimization analysis metrics to visualize the coach’s rank-
ings of near misses or display high-estimated-impact recom-
mendations only. The programmer reviews the recommenda-
tions and applies them if desired.

2.3 Prototypes

The following chapters illustrate optimization coaching with exam-
ples from the two instantiations that we developed: one for Racket
and one for the SpiderMonkey4 JavaScript (ECMA International 2011)
engine, which is used by the Firefox5 web browser.

The Racket prototype covers both the Racket and Typed Racket
compilers. It is available as a DrRacket (Findler et al. 2002) plug-in
and is6 part of the main Racket distribution.7 Its source is publicly
available.8 The tool is routinely used9 10 by Racket programmers to
diagnose underperforming programs.

The SpiderMonkey prototype described here is currently available
in source form11 and requires a custom version of SpiderMonkey.12

There is ongoing13 work by Shu-yu Guo, Kannan Vijayan and Jordan
Santell to include a version of the tool as part of the Firefox developer
tools suite.14

4 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
5 https://www.mozilla.org/en-US/firefox/
6 At the time of this writing.
7 Available from: http://racket-lang.org
8 https://github.com/stamourv/optimization-coach
9 http://blog.jverkamp.com/2013/04/16/adventures-in-optimization-re-typed-racket/

10 http://lists.racket-lang.org/users/archive/2015-January/065356.html
11 https://github.com/stamourv/jit-coach
12 https://github.com/stamourv/gecko-dev
13 At the time of this writing.
14 https://bugzilla.mozilla.org/show_bug.cgi?id=1143804

14

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://www.mozilla.org/en-US/firefox/
http://racket-lang.org
https://github.com/stamourv/optimization-coach
http://blog.jverkamp.com/2013/04/16/adventures-in-optimization-re-typed-racket/
http://lists.racket-lang.org/users/archive/2015-January/065356.html
https://github.com/stamourv/jit-coach
https://github.com/stamourv/gecko-dev
https://bugzilla.mozilla.org/show_bug.cgi?id=1143804

3
H O S T C O M P I L E R S

Optimization coaches must interact closely with their host compiler
to gather information about the optimization process. This chapter
provides background about the three compilers we instrumented—
Typed Racket, Racket, and SpiderMonkey—to provide context for the
techniques described in the following chapters. In addition, this chap-
ter describes the optimizations supported by our prototypes and illus-
trates their operation with examples.

3.1 The Typed Racket Compiler

The Typed Racket compiler (Tobin-Hochstadt et al. 2011) is a research
compiler that compiles Typed Racket programs to Racket programs.
It uses core Racket programs as a high-level intermediate representa-
tion. This representation is close to actual source programs, and most
source-level information is still present. Typed Racket performs opti-
mizations as source-to-source transformations, the most important of
which are type-driven specializations of generic operations.

For example, a generic use of the multiplication function can be
specialized if both its arguments are floating-point numbers, e.g., in
definitions such as this one:

(: add-sales-tax : Float -> Float)

(define (add-sales-tax price)

(* price 1.0625))

Typed Racket’s type system validates that this multiplication always
receives floating-point numbers as its arguments, and its compiler
specializes it thus:

(: add-sales-tax : Float -> Float)

(define (add-sales-tax price)

(unsafe-fl* price 1.0625))

The resulting code uses the unsafe-fl* operator, which operates on
floating-point numbers only and has undefined behavior on other in-
puts. This operation is unsafe in general, but the typechecker proves it
safe in this specific case. Similarly, when type information guarantees
that a list is non-empty, the compiler may elide checks for null:

(: get-y-coordinate :

(List Integer Integer Integer) -> Integer)

(define (get-y-coordinate 3d-pt)

(first 3d-pt))

15

Figure 2: Optimization Coach’s analysis of our example functions
(with focus on get-y-coordinate’s body)

In this case, the type specifies that the input is a three-element list.
Hence taking its first element is always safe.

Our Racket prototype—Optimization Coach—reports successes and
near misses for these type-driven specialization optimizations. Fig-
ure 2 shows how it informs the programmer that type specialization
succeeds for the above functions. When programmers click on the col-
ored region, the tool brings up a new window with extra information.
Recommendations also become available when the optimizer cannot
exploit type information. Consider the following function, which in-
dexes into a TCP packet’s payload, skipping the headers:

(: TCP-payload-ref : Bytes Fixnum -> Byte)

(define (TCP-payload-ref packet i)

; skip the TCP header

(define actual-i (+ i 20))

(bytes-ref packet actual-i))

This program typechecks, but the optimizer cannot eliminate the over-
head from the addition. Racket’s addition function implicitly pro-
motes results to bignums on overflow, which may happen for the
addition of 20 to a fixnum. Therefore, the Typed Racket compiler can-
not safely specialize the addition to fixnum-only addition. Optimiza-
tion Coach detects this near miss and reports it, as figure 3 shows. In
addition, Optimization Coach suggests a potential solution, namely,
to restrict the argument type further, ensuring that the result of the
addition stays within fixnum range.

16

Figure 3: Optimization near miss involving fixnum arithmetic

Figure 4: Confirming that the optimization failure is now fixed

17

Figure 4 shows the result of following Optimization Coach’s recom-
mendation. Once the argument type is Index,1 the optimizer inserts
a fixnum addition for +, and Optimization Coach confirms the opti-
mization.

Let us consider another optimization failure:

(define IM 139968)

(define IA 3877)

(define IC 29573)

(define last 42)

(define max 156.8)

(define (gen-random)

(set! last (modulo (+ (* last IA) IC) IM))

(/ (* max last) IM))

This code implements Lewis et al.’s (1969) pseudo-random number
generator, using mixed-type arithmetic in the process. Racket allows
mixing integers and floating-point numbers in arithmetic operations.
This combination usually results in the coercion of the integer argu-
ment to a floating-point value and the return of a floating-point num-
ber. Therefore, the author of this code may expect the last expression
of gen-random to be specialized for floating-point numbers.

Unbeknownst to most programmers, however, this code suffers
from a special case in Racket’s treatment of mixed-type arithmetic.
Integer-float multiplication produces a floating point number, unless
the integer is 0, in which case the result is the integer 0. Thus the
result of the above multiplication is a floating-point number most of
the time, but not always, making floating-point specialization unsafe.

The Typed Racket optimizer knows this fact (St-Amour et al. 2012b)
but most programmers fail to think of it when they program. Hence,
this optimization failure may surprise them and is thus worth report-
ing. Figure 5 shows how Optimization Coach explains this failure.
The programmer can respond to this recommendation with the inser-
tion of explicit coercions:

(define (gen-random)

(set! last (modulo (+ (* last IA) IC) IM))

(/ (* max (exact->inexact last))

(exact->inexact IM)))

Optimization Coach confirms that this change enables further opti-
mization.

1 A fixed-width integer type whose range is more restricted than Fixnum and is
bounded by the maximum heap size.

18

Figure 5: Optimization failure involving mixed-type arithmetic

3.2 The Racket Compiler

The Racket compiler is a mature ahead-of-time optimizing compiler
that has been in development for 20 years. It compiles Racket pro-
grams to a custom bytecode, which the Racket virtual machine then
translates to machine code just in time, at the first call to each function.
This runtime code generation does not perform significant additional
optimization.

The compiler is written in C and consists of several passes. The first
pass, our focus here, features a large number of optimizations, includ-
ing inlining as well as constant propagation, copy propagation, and
constant folding. Subsequent passes perform closure conversion (Ap-
pel and Jim 1989) and lambda lifting (Johnsson 1985).

Our Racket prototype supports inlining, which is the most impor-
tant of these optimizations. The Racket inliner is based on a design
by Serrano (1997) and is a much more sophisticated optimizer than
Typed Racket’s. Its decision process uses a variety of heuristics to
estimate whether inlining would be beneficial, the main one being in-
lining fuel. To avoid code size explosions, the inliner allocates a fixed
amount of inlining fuel to each call site of the original program. In-
lining a function at a given call site consumes an amount of fuel
proportional to the size of the inlinee. Once a call site runs out of fuel,
no further inlining is possible.

19

While effective in practice, these heuristics make the inlining pro-
cess opaque to programmers—predicting whether a given function
will be inlined is almost impossible. More complex inlining heuris-
tics, such as further benefit (Sewe et al. 2011), would only exacerbate
this problem.

Optimization Coach provides two kinds of information about inlin-
ing transformations:

• which functions are inlined and how often;

• which functions are not inlined, and why.

To illustrate, let us consider the function in from figure 6, that
checks whether a point p is within a shape s. A shape can be either
a circle, in which case the fuction calls to the inC helper function; a
square, in which case it calls inS; or a union, in which case it calls
itself recursively on the union’s components. The author of the pro-
gram introduced these functions to make the surrounding program
readable, but it would be unfortunate if this factoring were to result
in extra function calls, especially if they were to hurt the program’s
performance.

As figure 7 shows, the Racket inliner does inline in at most of its
call sites. In contrast, the inC function is not inlined to a satisfac-
tory level, as evidenced by the red highlight in figure 8. This may
be indicative of low-hanging optimization fruit. One way to resolve
the issue is to use inlining pragmas such as define-inline or begin-

encourage-inline. When we follow this advice, Optimization Coach
confirms that the inlining is now successful. Breaking up the function
into smaller pieces might also work.

3.3 The SpiderMonkey JavaScript Engine

Like other modern JavaScript engines,2 3 4 SpiderMonkey is a multi-
tiered engine that uses type inference (Hackett and Guo 2012), type
feedback (Chambers and Ungar 1990), and optimizing just-in-time
compilation (Chambers et al. 1989) based on SSA form (Cytron et al.
1991), a formula proven to be well suited for JavaScript’s dynamic
nature. Specifically, it has three tiers: the interpreter, the baseline just-
in-time (JIT) compiler, and the IonMonkey (Ion) optimizing JIT com-
piler.

In the interpreter, methods are executed without being compiled
to native code or optimized. Upon reaching a certain number of ex-
ecutions,5 the baseline JIT compiles methods to native code. Once
methods become hotter still and reach a second threshold,6 Ion com-

2 https://developers.google.com/v8/intro
3 http://www.webkit.org/projects/javascript/
4 http://msdn.microsoft.com/en-us/library/aa902517.aspx
5 At the time of this writing, 10.
6 At the time of this writing, 1000.

20

https://developers.google.com/v8/intro
http://www.webkit.org/projects/javascript/
http://msdn.microsoft.com/en-us/library/aa902517.aspx

; is p in s?

(define (in s p)

(cond

[(Circle? s) (inC s p)]

[(Square? s) (inS s p)]

[else (or (in (Union-top s) p)

(in (Union-bot s) p))]))

; is p in c?

(define (inC c p)

(define m (Circle-center c))

(<= (sqrt (+ (sqr (- (Posn-x m) (Posn-x p)))

(sqr (- (Posn-y m) (Posn-y p)))))

(Circle-r c)))

; is p in s?

(define (inS s p)

(and (<= (Square-xmin s) (Posn-x p) (Square-xmax s))

(<= (Square-ymin s) (Posn-y p) (Square-ymax s))))

Figure 6: Functions checking inclusion of points in geometric shapes

Figure 7: Optimization Coach confirming that inlining is happening
(with focus on in)

21

Figure 8: The inC function, failing to be inlined (with focus on inC)

piles them. The engine’s gambit is that most methods are short-lived
and relatively cold, especially for web workloads. By reserving heavy-
weight optimization for the hottest methods, it strikes a balance be-
tween responsiveness and performance.

3.3.1 The IonMonkey Optimizer

Because Ion performs the vast majority of SpiderMonkey’s optimiza-
tions, our work focuses on coaching those. Ion is an optimistic opti-
mizing compiler, meaning it assumes types and other observed infor-
mation gathered during baseline execution to hold for future execu-
tions, and it uses these assumptions to drive the optimization process.

Types and layout For optimization purposes, the information
SpiderMonkey observes mostly revolves around type profiling and
object layout inference. In cases where inferring types would require
a heavyweight analysis, such as heap accesses and function calls, Spi-
derMonkey uses type profiling instead. During execution, baseline-
generated code stores the result types for heap accesses and function
calls for consumption by Ion.

At the same time, the runtime system also gathers information to
infer the layouts of objects, i.e., mappings of property names to off-
sets inside objects. These layouts are referred to as “hidden classes”
in the literature. This information enables Ion to generate code for
property accesses on objects with known layout as simple memory
loads instead of hash table lookups.

The applicability of Ion’s optimizations is thus limited by the infor-
mation it observes. The observed information is also used to seed a

22

number of time-efficient static analyses, such as intra-function type
inference.

Bailouts To guard against changes in the observed profile infor-
mation, Ion inserts dynamic checks (Hölzle et al. 1992). For instance,
if a single callee is observed at a call site, Ion may optimistically in-
line that callee, while inserting a check to ensure that no mutation
changes the binding referencing the inlinee. Should such a dynamic
check fail, execution aborts from Ion-generated code and resumes in
the safe code generated by the baseline JIT.

Optimization tactics As a highly optimizing compiler, Ion
has a large repertoire of optimizations at its disposal when compiling
key operations, such as property accesses. These optimizations are
organized into optimization tactics. When compiling an operation, the
compiler attempts each known optimization strategy for that kind of
operation in order—from most to least profitable—until one applies.

A tactic’s first few strategies are typically highly specialized opti-
mizations that generate extremely efficient code, but apply only in
limited circumstances, e.g., accessing a property of a known constant
object. As compilation gets further into a tactic, strategies become
more and more general and less and less efficient, e.g., polymorphic
inline caches, until it reaches fallback strategies that can handle any
possible situation but carry a significant performance cost, e.g., call-
ing into the VM.

3.3.2 Optimization Corpus

Conventional wisdom among JavaScript compiler engineers points to
property and element accesses as the most important operations to
optimize. For this reason, our prototype focuses on these two classes
of operations. The rest of this section describes the relevant optimiza-
tions with an eye towards optimization coaching.

3.3.2.1 Property Access and Assignment

Conceptually, JavaScript objects are open-ended maps from strings to
values. In the most general case, access to an object property is at best
a hash table lookup, which, despite being amortized constant time, is
too slow in practice. Ion therefore applies optimization tactics when
compiling these operations so that it can optimize cases that do not
require the full generality of maps. We describe some of the most
important options below.

Definite slot Consider a property access o.x. In the best case,
the engine observes o to be monomorphic and with a fixed layout.
Ion then emits a simple memory load for the slot where x is stored.

23

This optimization’s prerequisites are quite restrictive. Not only must
all objects that flow into o come from the same constructor, they must
also share the same fixed layout. An object’s layout is easily perturbed,
however, for example by adding properties in different orders.

Polymorphic inline cache Failing that, if multiple types of
plain JavaScript objects7 are observed to flow to o, Ion can emit a
polymorphic inline cache (PIC) (Hölzle et al. 1991). The PIC is a self-
patching structure in JIT code that dispatches on the type and layout
of o. Initially, the PIC is empty. Each time a new type and layout of
o flows into the PIC during execution, an optimized stub is gener-
ated that inlines the logic needed to access the property x for that
particular layout of o. PICs embody the just-in-time philosophy of
not paying for any expensive operation ahead of time. This optimiza-
tion’s prerequisites are less restrictive than that of definite slots, and
it applies for the majority of property accesses that do not interact
with the domain object model (DOM).

VM call In the worst case, if o’s type is unknown to the compiler,
either because the operation is in cold code and has no profiling in-
formation, or because o is observed to be an exotic object, then Ion
can emit only a slow path call to a general-purpose runtime function
to access the property.

Such slow paths are algorithmically expensive because they must
be able to deal with any aberration: o may be of a primitive type, in
which case execution must throw an error; x may be loaded or stored
via a native DOM accessor somewhere on o’s prototype chain; o may
be from an embedded frame within the web page and require a secu-
rity check; etc. Furthermore, execution must leave JIT code and return
to the C++ VM. Emitting a VM call is a last resort; it succeeds uncon-
ditionally, requires no prior knowledge, and is capable of handling
all cases.

3.3.2.2 Element Access and Assignment

JavaScript’s element access and assignment operations are polymor-
phic and operate on various types of indexable data, such as arrays,
strings and TypedArrays. This polymorphism restricts the applicabil-
ity of optimizations; most of them can apply only when the type of
the indexed data is known in advance.

Even when values are known to be arrays, JavaScript semantics
invalidate common optimizations in the general case. For example,
JavaScript does not require arrays in the C sense, that is, it does not

7 The restriction on plain JavaScript objects is necessary because properties may be
accessed from a variety of exotic object-like values, such as DOM nodes and proxies.
Those objects encapsulate their own logic for accessing properties that is free to
deviate from the logic prescribed for plain objects by the ECMAScript standard.

24

require contiguous chunks of memory addressable by offset. Semanti-
cally, JavaScript arrays are plain objects that map indices—string rep-
resentation of unsigned integers—to values. Element accesses into
such arrays, then, are semantically (and perhaps surprisingly) equiv-
alent to property lookups and are subject to the same set of rules,
such as prototype lookups.

As with inferring object layout, SpiderMonkey attempts to infer
when JavaScript arrays are used as if they were dense, C-like arrays,
and optimize accordingly. Despite new APIs such as TypedArrays of-
fering C-like arrays directly, SpiderMonkey’s dense array optimiza-
tions remain crucial to the performance of the web.

To manage all possible modes of use of element accesses and the
optimizations that apply in each of them, Ion relies on optimization
tactics. We describe the most important optimization strategy—dense
array access—below. The PIC and VM call cases are similar to the
corresponding cases for property access. Other, specialized strategies
heavily depend on SpiderMonkey’s data representation and are be-
yond the scope of this dissertation, but are handled by the prototype.

Dense array access Consider an element access o[i]. In the
best case, if o is determined to be used as a dense array and i an in-
teger, Ion can emit a memory load or a store for offset i plus bounds
checking. For this choice to be valid, all types that flow into o must
be plain JavaScript objects that have dense indexed properties. An
object with few indexed properties spread far apart would be con-
sidered sparse, e.g., if only o[0] and o[2048] were set, o would not
be considered dense. Note that an object may be missing indexed
properties and still be considered dense. SpiderMonkey further dis-
tinguishes dense arrays—those with allocated dense storage—from
packed arrays—dense arrays with no holes between indexed proper-
ties. Ion is able to elide checking whether an element is a hole, or a
missing property, for packed arrays. Furthermore, the object o must
not have been observed to have prototypes with indexed properties,
as otherwise accessing a missing indexed property j on o would, per
specification, trigger a full prototype walk to search for j when ac-
cessing o[j].

3.3.3 A Near Miss Walkthrough

To make the above discussion more concrete, this section presents an
example near miss and discusses the output of our SpiderMonkey
prototype for it. Consider the excerpt from a splay tree implemen-
tation in figure 9. The isEmpty method may find the root_ property
either on SplayTree instances (if the insert method has been called)
or on the SplayTree prototype (otherwise). Hence, the JavaScript en-
gine cannot specialize the property access to either of these cases and

25

// constructor

function SplayTree() {};

// default value on the prototype

SplayTree.prototype.root_ = null;

SplayTree.prototype.insert = function(key, value) {

// regular value on instances

...

this.root_ = new SplayTree.Node(key, value);

...

};

SplayTree.prototype.isEmpty = function() {

// property may be either on instance or on prototype

return !this.root_;

};

Figure 9: Splay tree implementation with an optimization near miss

instead generates code that can handle both of them. The generated
code is thus much slower than necessary.

Figure 10 shows the coach’s diagnosis and recommendations of
program changes that may resolve this near miss. In our splay tree
example, the compiler cannot move root_’s default value to instances;
this would change the behavior of programs that depend on the prop-
erty being on the prototype. Programmers, in contrast, are free to do
so and may rewrite the program to the version from figure 11, which
consistently stores the property on instances, and does not suffer from
the previous near miss.

26

Figure 10: Excerpt from the coaching report for a splay tree imple-
mentation

// constructor

function SplayTree() {

// default value on instances

this.root_ = null;

};

SplayTree.prototype.insert = function(key, value) {

// regular value on instances

...

this.root_ = new SplayTree.Node(key, value);

...

};

SplayTree.prototype.isEmpty = function() {

// property always on instances

return !this.root_;

};

Figure 11: Improved splay tree constructor, without near miss

27

4
O P T I M I Z E R I N S T R U M E N TAT I O N

In order to explain an optimizer’s results to programmers, a coach
must discover what happens during optimization. One option is to re-
construct the optimizations via analysis of the compiler’s output. Do-
ing so would mimic the actions of highly-expert programmers with a
thorough understanding of the compiler—with all their obvious dis-
advantages. In addition, it would forgo all the information that the
compiler generates during the optimization phase.

Our proposed alternative is to equip the optimizer with instru-
mentation that gathers information as optimizations are performed
or rejected. Debugging tools that explain the behavior of compilers
or runtime systems (Clements et al. 2001; Culpepper and Felleisen
2010) have successfully used similar techniques in the past. Further-
more, optimization information obtained directly from the compiler
has the advantage of being ground truth. A tool that attempts to
reverse-engineer the optimization process risks imperfectly modeling
the optimizer, or falling out of sync with its development.

The goal of the instrumentation code is to generate a complete
log of the optimization decisions that the compiler makes as it com-
piles a given program. For this purpose, instrumentation code should
record both optimization successes, i.e., optimizations that were success-
fully applied and optimization failures, i.e., optimizations that were at-
tempted but failed. While most of these failures are of no interest to
the programmer, curating the log is left to a separate phase.

The rest of this chapter describes the instrumentation for Typed
Racket, Racket and SpiderMonkey.

4.1 The Typed Racket Optimizer

As mentioned, the Typed Racket compiler performs source-to-source
optimizations. These optimizations are implemented using pattern
matching and templating, e.g.:

(pattern

(+ f1:float-expr f2:float-expr)

#:with opt

#'(unsafe-fl+ f1.opt f2.opt))

Each optimization is specified with a similar pattern construct. The
only factors that affect whether a term is optimized are its shape—
in this case, an AST that represents the application of the addition
function—its type, and the type of its subterms.

29

Instrumenting the optimizer to log optimization successes is straight-
forward: we add a logging statement to each pattern describing which
optimization takes place, the code involved, its source location, and
the information that affects the optimization decision (the shape of
the term, its type and the type of its subterms):

(pattern

(+ f1:float-expr f2:float-expr)

#:with opt

(begin

(log-optimization "binary float addition" this-syntax)

#'(unsafe-fl+ f1.opt f2.opt)))

When translating the add-sales-tax and get-y-coordinates func-
tions from figure 2, (page 16), the instrumented optimizer generates
this log:

TR opt: TR-examples.rkt 5:2 (* price 1.0625)

-- Float Float -- binary float multiplication

TR opt: TR-examples.rkt 10:2 (first 3d-pt)

-- (List Integer Integer Integer)

-- pair check elimination

It thus confirms that it applies the optimizations mentioned above.
To log optimization failures, we add an additional pattern form that
catches all non-optimized additions and does not perform any opti-
mizations:

(pattern

(+ n1:expr n2:expr)

#:with opt

(begin

(log-optimization-failure "generic addition" this-syntax)

this-syntax)) ; no change

To avoid generating excessive amounts of superfluous information,
we restrict failure logging to terms that could at least conceivably be
optimized. For instance, we log additions that are not specialized, but
we do not log all non-optimized function applications.

As in the optimization success case, the logs contain the kind of
optimization considered, the term involved, its type, and the types of
its subterms. The following log entry shows evidence for the failed
optimization in the TCP-payload-ref function of figure 3 (page 17):

TR opt failure: tcp-example.rkt 5:18 (+ i 20)

-- Fixnum Positive-Byte -- generic addition

Overall, the instrumentation is fairly lightweight. Each optimiza-
tion clause is extended to perform logging in addition to optimizing;
a few catch-all clauses log optimization failures. Most importantly,
the structure of the optimizer is unchanged.

30

4.2 The Racket Inliner

As discussed in section 3.2, the Racket inliner uses multiple sources
of information when making decisions, including but not limited to
the size of inlining candidates, the remaining amount of inlining fuel,
etc. This makes it unrealistic to log all the factors that contribute to
any given optimization decision.

An additional constraint is that the inliner is a complex program,
and instrumentation should not increase its complexity. Specifically,
instrumentation should not add new paths to the inliner. Concretely,
this rules out the use of catch-all clauses.

Finally, the Racket inliner is deep enough in the compiler pipeline
that most source-level information is unavailable in the internal rep-
resentation. As a result, it becomes difficult to correlate optimization
decisions with the original program. These constraints on the avail-
able information are representative of production optimizers.

To record optimization successes, we identify all code paths that
trigger an inlining transformation and, on each of them, add code that
logs the name of the function being inlined and the location of the
original call site. It is worth noting that precise information about the
original call site may not be available; the call site may also have been
introduced by a previous optimization pass, in which case a source
location would be meaningless. In general, though, it is possible to
locate the call site with at least function-level granularity; that is, the
logger can usually determine the function body where the call site is
located.

Inlining is a sufficiently general optimization that it could conceiv-
ably apply almost anywhere. This makes defining and logging opti-
mization failures challenging. Since our ultimate goal is to enumerate
a list of optimization near misses, we need to consider only optimiza-
tion failures that directly contribute to near misses. For example, the
failure of a large function to be inlined is an optimization failure that
is unlikely to be linked to a near miss.

Consequently we consider as optimization failures only cases where
the compiler considers inlining, but ultimately decides against it. We
identify the code paths where inlining is decided against and add
logging to them. As in the case of inlining successes, we log the name
of the candidate and the call site. In addition, we also log the cause
of failure. The most likely cause of failure is the inliner running out
of fuel. If the inliner runs out of fuel for a specific instance, it is not
performed and the optimization fails. For these kinds of failures, we
also log the size of the function being considered for inlining, as well
as the remaining fuel.

Figure 12 shows an excerpt from the inliner log produced when
compiling the binarytrees benchmark from section 8.1.1.

31

mzc: no inlining, out of fuel #(for-loop 41:6)

in #(main 34:0) size=77 fuel=8

mzc: inlining #(loop 25:2) in #(check 24:0)

mzc: inlining #(loop 25:2) in #(check 24:0)

mzc: no inlining, out of fuel #(loop 25:2)

in #(check 24:0) size=28 fuel=16

mzc: inlining #(check 24:0) in #(for-loop 46:1)

mzc: no inlining, out of fuel #(check 24:0)

in #(for-loop 46:18) size=31 fuel=24

Figure 12: Inliner log from the binarytrees benchmark

4.3 The IonMonkey Optimizer

The IonMonkey optimizer radically differs from the Racket and Typed
Racket optimizers. As far as instrumentation is concerned, the main
difference is that SpiderMonkey is a JIT compiler.1 Compilation and
execution are interleaved in a JIT system; there is no clear separation
between compile-time and run-time, as there is in an ahead-of-time
(AOT) system. The latter’s separation makes it trivial for a coach’s in-
strumentation to not affect the program’s execution; instrumentation,
being localized to the optimizer, does not cause any runtime over-
head and emitting the optimization logs does not interfere with the
program’s I/O proper. In a JIT setting, however, instrumentation may
affect program execution, and a coach must take care when emitting
optimization information.

To address these challenges, our prototype coach uses SpiderMon-
key’s profiling subsystem as the basis for its intrumentation. The Spi-
derMonkey profiler, as many profilers, provides an “event” API in
addition to its main sampling-based API. The former allows the en-
gine to report various kinds of one-off events that may be of interest
to programmers: Ion compiling a specific method, garbage collection,
the execution bailing out of optimized code, etc.

This event API provides a natural communication channel between
the coach’s instrumentation inside Ion’s optimizer and the outside.
Like our Racket prototype, our SpiderMonkey prototype records op-
timization decisions and context information as the optimizer pro-
cesses code. Where our Racket prototype emits that information on
the fly, our SpiderMonkey prototype instead gathers all the informa-

1 As mentioned in section 3.2, Racket does have a just-in-time code generator, but it
does not perform significant optimizations.

32

tion pertaining to a given invocation of the compiler, encodes it as
a single profiler event and emits it all at once. The instrumentation
code executes only when the profiler is active; its overhead is there-
fore almost entirely pay-as-you-go. The instrumentation code records
information that uniquely identifies each operation affected by opti-
mization decisions, i.e., source location, type of operation and param-
eters. Additionally, it records information necessary to reconstruct
optimization decisions themselves, i.e., the sets of inferred types for
each operand, the sequence of optimization strategies attempted, the
successful attempts, the unsuccessful ones, etc.

In addition to recording optimization information, the instrumen-
tation code assigns a unique identifier to the compiled code result-
ing from each Ion invocation. This identifier is included alongside
the optimization information in the profiling event. Object code that
is instrumented for profiling carries meta-information (e.g., method
name and source location) that allows the profiler to map the samples
it gathers back to source code locations. We include the compilation
identifier as part of this meta-information, which allows the coach
to correlate profiler samples with optimization information, which in
turn enables heuristics based on profiling information as discussed
in chapter 5. This additional piece of meta-information has negligible
overhead and is present only when the profiler is active.

Figure 13 shows an excerpt from the optimization logs produced
during the compilation of one of the functions in the Richards bench-
mark from section 8.2.1.

33

optimization info for compile #13

optimizing getprop currentTcb richards.js:226:2

obj types: object[1] Scheduler:richards.js:94

trying definite slot

success

optimizing getprop run richards.js:332:2

obj types: object[4] HandlerTask:richards.js:454

WorkerTask:richards.js:419

DeviceTask:richards.js:391

IdleTask:richards.js:363

trying definite slot

failure, 4 possible object types

trying inline access

failure, access needs to go through the prototype

trying emitting a polymorphic cache

success

optimizing getprop currentTcb richards.js:187:6

obj types: object[1] Scheduler:richards.js:94

trying definite slot

success

optimizing setprop state richards.js:313:2

obj types: object[1] TaskControlBlock:richards.js:255

property types: int

value types: Int32

trying definite slot

failure, property not in a fixed slot

trying inline access

success

Figure 13: Excerpt from optimization logs for the Richards benchmark

34

5
O P T I M I Z AT I O N A N A LY S I S

To avoid overwhelming programmers with large numbers of low-
level optimization failure reports, an optimization coach must care-
fully curate and summarize its output. In particular, it must restrict
its recommendations to those that are both likely to enable further
optimizations and to be approved by programmers.

A coach uses four main classes of techniques for that purpose:
pruning, targeting, ranking and merging. Some techniques apply uni-
formly regardless of optimization or compiler, while others make
sense only for a subset. To assist its own strategies and heuristics, a
coach can also incorporate information from other performance tools
during this phase. In particular, profiling information can serve to
enhance a coach’s analyses.

This chapter discusses the techniques used by our prototypes in
general terms. An in-depth presentation of full details would be out
of place here; I invite the interested reader to consult our prototypes’
source code instead.

5.1 Pruning

Not all optimization failures are equally interesting to programmers.
For example, showing failures that do not come with an obvious
source-level solution or those due to intentional design choices would
be a waste of programmer time. Coaches therefore use heuristics to re-
move optimization failures from the coach’s reports. The remaining
optimization failures constitute near misses and are further refined
via merging.

5.1.1 Incomprehensible Failure Pruning

Some optimization failures are considered incomprehensible because
they affect code that is not present in the original program. Such code
might be introduced by macro-expansion or earlier compiler passes,
and it is thus not under the control of programmers. Reporting op-
timization failures that originate from this kind of code would be
wasteful. Optimization coaches should prune such failures from their
optimization logs.

35

5.1.2 Irrelevant Failure Pruning

Other optimization failures are considered irrelevant because the cho-
sen semantics is likely to be the desired one. For example, reporting
that an addition could not be specialized to floating-point numbers is
irrelevant if the addition is used on integers only. Presenting recom-
mendations that programmers are most likely to reject is unhelpful,
so a coach should prune these kinds of reports.

One way of detecting such failures is to compute optimization prox-
imity and prune failures that are not “close enough” to succeeding.

Some optimizations also lend themselves to domain-specific rele-
vance heuristics. For example, optimization tactics in IonMonkey of-
ten include strategies that apply in narrow cases—e.g., indexing into
values that are known to be strings, property accesses on objects that
are known to be constant, etc. These tactics are expected to fail most
of the time. Such failures are irrelevant unless the value is in fact a
string or a constant, respectively.

Irrelevant failures are not usually symptomatic of performance is-
sues and should be pruned from the logs.

5.1.3 Optimization Proximity

Optimization proximity measures how close an optimization is from
happening and is defined on an optimization-by-optimization basis.
For a particular optimization, it might be derived from the number of
program changes that would be necessary to trigger the optimization
of interest. For another, it might correspond to the number of pre-
requisites of the optimization that are not satisfied. Log entries with
close proximity are retained, others are pruned from the log.

Our Racket prototype computes optimization proximity for type
specialization optimizations. To trigger specialization, all the argu-
ments of a generic operation must be convertible to the same type,
and that type must be one for which a specialized version of the op-
eration is available. In this case, we define optimization proximity to
be the number of arguments whose types would need to change to
reach a state where optimization could happen.1

For example, addition can be specialized for Floats, but not for
Real numbers. Therefore, the combination of argument types

(+ Float Real)

is 1-close to being optimized, while this one

(+ Real Real)

is 2-close, and thus further from being optimized. Only optimization
failures within a specific proximity threshold are kept. Optimization

1 This can be seen as a “type edit distance”.

36

(: sum : (Listof Real) -> Real)

(define (sum list-of-numbers)

(if (null? list-of-numbers)

0

(+ (first list-of-numbers)

(sum (rest list-of-numbers)))))

Figure 14: A generic sum function

Coach uses a threshold of 1 for this optimization, which has worked
well in practice.

The sum function in figure 14 uses + in a generic way. The Typed
Racket optimizer does not specialize this code, creating the following
log entry:

TR opt failure: sum-example.rkt 5:6

(+ (first list-of-numbers) (sum (rest list-of-numbers)))

-- Real Real -- generic addition

The addition has a 2-close measure and is therefore ignored by Opti-
mization Coach.

It would be possible to define optimization proximity for inlining
failures, computing the metric based on the amount of remaining in-
lining fuel and the size of the potential inlinee, for example. In prac-
tice, however, this has not proven necessary; the merging techniques
described in section 5.4 provide good enough results for inlining re-
ports, which makes pruning less necessary.

Chapter 9 proposes optimization proximity metrics for various well-
known optimizations beyond the scope of our prototypes.

5.1.4 Harmless Failure Pruning

Harmless optimization failures are associated with opportunities that
are missed because other optimizations are performed. Harmless fail-
ures are pruned from the logs.

Consider a loop that is unrolled several times—eventually, unrolling
must stop. This final decision is still reported in the log as an op-
timization failure, because the optimizer considers unrolling further
but decides against it. It is a harmless failure, however, because loop
unrolling cannot go on forever.

Since Racket is a mostly-functional language, loops are expressed
as tail recursive functions; therefore, function inlining also expresses
loop unrolling. An important role of optimization analysis for the

37

Racket inliner is to determine which log entries correspond to loop
unrolling and which correspond to “traditional” inlining. This anal-
ysis can only be performed post-facto because the same code paths
apply to both forms of inlining.

Separating unrolling from inlining has two benefits. First, it allows
the coach to prune unrolling failures, as they are usually harmless.
Second, it prevents unrolling successes from counting as inlining suc-
cesses. A function that is unrolled but never inlined is problematic
and should be reported to programmers. This case can be distin-
guished from that of a function that is sometimes inlined and some-
times not only if unrollings and inlinings are considered separately.

Similarly, optimizations that cancel each other can be the source
of harmless failures. For example, it is possible to apply loop inter-
change twice, with the second transformation restoring the original
loop ordering. To avoid oscillating forever, the optimizer should not
apply the second interchange, which logging may report as a failure.

5.1.5 Partial Success Short-Circuiting

When faced with an array of optimization options, some compilers
such as IonMonkey rely on optimization tactics to organize them.
While a coach could consider each individual element of a tactic as
a separate optimization and report near misses accordingly, all of a
tactic’s elements are linked. Because the entire tactic returns as soon
as one element succeeds, its options are mutually exclusive; only the
successful option applies. To avoid overwhelming programmers with
multiple reports about the same operation and provide more action-
able results, a coach should consider all of a tactic’s options together.

While some elements of a given tactic may be more efficient than
others, it is not always reasonable to expect that all code be compiled
with the best tactic elements. For example, polymorphic property ac-
cesses cannot be optimized as well as monomorphic ones; polymor-
phism notably prevents fixed-slot lookup. Polymorphism, however, is
often desirable in a program. Recommending that programmers elim-
inate it altogether in their programs is preposterous and would lead
to programmers ignoring the tool. Clearly, considering all polymor-
phic operations to suffer from near misses is not effective.

We partition a tactic’s elements according to source-level concepts—
e.g., elements for monomorphic operations vs polymorphic opera-
tions, elements that apply to array inputs vs string inputs vs typed ar-
ray inputs, etc.—and consider picking the best element from a group
to be an optimization success, so long as the operation’s context
matches that group.

For example, the coach considers picking the best possible ele-
ment that is applicable to polymorphic operations to be a success,
as long as we can infer from the context that the operation being com-

38

piled is actually used polymorphically. Any previous failures to apply
monomorphic-only elements to this operation would be ignored.

With this approach, the coach reports polymorphic operations that
do not use the best possible polymorphic element as near misses,
while considering those that do to be successes. In addition, because
our SpiderMonkey prototype considers only uses of the best polymor-
phic elements to be successes if operations are actually polymorphic
according to their context, monomorphic operations that end up trig-
gering them are reported as near misses—as they should be.

In addition to polymorphic property operations, our SpiderMon-
key prototype applies partial success shortcircuiting to array oper-
ations that operate on typed arrays and other indexable datatypes.
For example, Ion cannot apply dense-array access for operations that
receive strings, but multiple tactic elements can still apply in the pres-
ence of strings, some more performant than others.

5.1.6 Profiling-Based Pruning

Optimization failures in infrequently executed, “cold” code do not af-
fect program performance as much as pitfalls in frequently executed,
“hot” code. Recommendations with low expected performance im-
pact offer a low return on programmer time investment. When pro-
filing information is available, an optimization coach should use it to
prune failures from cold code.

To enable this kind of pruning, a coach must compute a partition
of code units (e.g., functions) into hot and cold units from profiling
information (i.e., mappings from code units to cost). Our Racket pro-
totype accomplishes this goal as follows.

After sorting functions in the profile in decreasing order of time
cost, our prototype adds functions to the hot set starting from the
most expensive, until functions in the set account for 90% of the pro-
gram’s total running time. All other functions are considered cold.
This threshold was determined experimentally and produces small
sets in practice,2 which makes this kind of pruning quite effective.
This partitioning scheme also puts an upper bound on the perfor-
mance impact of pruned near misses via Amdahl’s law; fixing them
cannot improve program performance by more than 10%.

Our SpiderMonkey prototype does not rely on this kind of pruning.
It instead uses profiling information for ranking (see section 5.3.2),
then prunes based on ranking. Combining these two uses of profiling
information, as our Racket prototype does, would be a straightfor-
ward extension.

2 This is consistent with the Pareto principle, i.e., 10% of a program’s functions account
for 90% of its running time.

39

5.2 Targeting

For the reports of an optimization coach to be actionable, they must
point to the program location where their fix is likely to go. In many
cases, an optimization failure and its solution will occur in the same
location. In other cases, however, failures are non-local; the compiler
may fail to optimize an operation in one part of the program because
of properties of a different part of the program.

While it is not always possible to determine the location of fixes
with perfect accuracy, it is possible to get good results in practice
using heuristics based on optimization-specific domain knowledge
and the specific failure causes of individual near misses. This section
describes our heuristics.

5.2.1 Type-Driven Specialization

Optimization failures for specialization optimizations are always due
to the types of their arguments. Therefore, these failures are local;
adding assertions or coercions for problematic arguments can always
solve the problem. A coach should therefore have reports point to the
location of the failure.

Often, however, there may be other solutions that avoid assertions
or coercions—and thus avoid run-time overhead—by changing types
upstream from the relevant operation. Our Racket prototype does
not infer these solutions, leaving that inference to programmers. This
could potentially be addressed using program slicing and remains an
open research question.

5.2.2 Inlining

Inlining failures, unlike specialization failures, are non-local. They are
caused by properties of the inlining candidate, e.g., function size or
mutability. The only way programmers can control the inlining pro-
cess is through the definition of inlining candidates. Therefore, any
information that would help the user get the most out of the inliner
has to be explained in terms of the definition sites.

Some inlining failures are genuinely caused by the inlining site’s
context. For example, the inliner running out of fuel depends on the
context. Such failures, however, are a result of the optimization work-
ing as intended and are therefore harmless.

5.2.3 Property Access and Assignment

Dispatch optimizations for property operations fundamentally de-
pend on non-local information. For example, the optimizer must know
the layout of objects that flow to a property access site to determine

40

whether it can be optimized to a direct dereference. That information
is encoded in the constructor of these objects, which can be arbitrarily
far away from the property access considered for optimization.

Not all failures, however, are non-local in this manner. For example,
failing to specialize a property access that receives multiple different
types of objects is a purely local failure; it fails because the opera-
tion itself is polymorphic. This kind of failure can be solved only by
changing the operation or its context, and the nature of the solution
depends on the operation itself.

For a given near miss, the coach needs to determine whether it
could be resolved by changes at the site of the failing optimization or
whether changes to the receivers’ constructors may be required. We
refer to the former as operation near misses and to the latter as construc-
tor near misses. To reach a decision, the coach follows heuristics based
on the cause of the failure, as well as on the types that flow to the af-
fected operation. The rest of this section briefly describes two of our
heuristics.

Monomorphic operations If an optimization fails for an op-
eration to which a single receiver type flows, then that failure must
be due to a property of that type, not of the operation’s context. The
coach infers these cases to be constructor near misses.

Property addition When a property assignment operation for
property p receives an object that lacks a property p, the operation
adds the property to the object. If the same operation receives both
objects with a property p and objects without, that operation cannot
be specialized for either mode of use. This failure depends on the
operation’s context, and the coach considers it an operation near miss.

5.2.4 Element Access and Assignment

Like type specialization, element access and assignment operations
suffer only from local optimization failures, which are due to prop-
erties of their arguments. Our SpiderMonkey prototype therefore re-
ports near misses at the site of the operation.

5.3 Ranking

Some optimization failures have a larger impact on program perfor-
mance than others. To be useful, a coach must rank its reports based
on their expected performance impact to allow programmers to prior-
itize their responses. Our coaches compute a badness metric for each
near miss. Badness scores are dimensionless quantities that estimate
the performance impact of near misses. To compute them, our proto-

41

types use a combination of static estimates based on the optimization
and, when available, profiling information.

5.3.1 Static Badness

The initial badness score of a near miss is based purely on statically-
available information from the optimization log. In the absence of
profiling information, the coach reports this initial estimate directly.

Specialization near misses do not have much internal structure, and
therefore have the constant 1 as their initial badness score. This value
is arbitrary and, because badness is dimensionless, only important rel-
ative to that of other optimizations. Subsequent merging operations
(section 5.4) update badness, which allows ranking between special-
ization near misses.

The badness scores of inlining near misses are closely tied to the
results of locality merging (section 5.4.2), and their computation is
delayed until that phase. After merging, each function that the opti-
mizer attempted to inline is the subject of a single near miss, which
summarizes all the inlining attempts that were made for it. The bad-
ness score of that near miss is equal to

outright-failures + out-of-fuels´ successes

where outright-failures is the number of unavoidable failures (due,
for example, to mutation of the function’s binding), out-of-fuels is
the number of inlining attempts that failed due to a lack of fuel, and
successes is the number of successful inlinings. If the computed score
is negative, the near miss is reported as a success instead—the num-
ber of successful inlinings is greater than the number of failures.

Initial badness for property and element near misses is, like spe-
cialization near misses, the constant 1. Because our SpiderMonkey
prototype has always access to profiling information, this initial esti-
mate is not as important and is skipped.

5.3.2 Profiling-Based Badness

When profiling information is available, an optimization coach can
use it to refine its estimates of the performance impact of near misses.
Indeed, all other things being equal, we would expect a near miss in
hot code to have a larger impact than one in cold code.

Concretely, our prototypes compute the final badness score of a
near miss by multiplying the initial badness score with the profiling
weight of the surrounding function. We define the profiling weight of
a function to be the fraction of the total execution time that is spent
executing it.

The theory behind this metric is that the performance impact of
a near miss should be proportional to the time spent executing the

42

affected code, and that the execution time of the surrounding function
is a good proxy for it. More fine-grained—e.g., line- or expression-
level—profile information would improve the metric’s accuracy, but
function-level information has worked well in practice so far.

JITs and Badness State-of-the-art JIT compilers, such as Spider-
Monkey, introduce additional complexity when computing badness.
Most notably, they introduce a temporal dimension to the optimiza-
tion process. They may compile the same code multiple times as they
gather more information and possibly revise previous assumptions.
In the process, they produce different compiled versions of that code,
each of which may have a different set of near misses.

A coach needs to know which of these compiled versions execute
for a long time and which are short-lived. Near misses from compiled
versions that execute only for a short time cannot have a significant
impact on performance across the whole execution, regardless of the
number or severity of near misses, or how hot the affected function
is overall.

Because the profiler samples of our SpiderMonkey prototype in-
clude compilation identifiers, it associates each sample not only with
particular functions, but with particular compiled versions of func-
tions. This additional information enables the required distinctions
discussed above.

5.4 Merging

To provide a high-level summary of optimization issues affecting a
program, a coach should consolidate sets of related reports into single
summary reports. Different merging techniques use different notions
of relatedness.

These summary reports have a higher density of information than
individual near miss reports because they avoid repeating common
information, which may include cause of failure, solution, etc. de-
pending on the notion of relatedness. They are also more efficient in
terms of programmer time. For example, merging reports with sim-
ilar solutions or the same program location, allows programmers to
solve multiple issues at the same time.

When merging reports, a coach must respect preservation of bad-
ness which, for summary reports, is the sum of that of the merged
reports. The sum of their expected performance impacts is a good
estimate of the impact of the summary report. The increased badness
value of summary reports causes them to rank higher than their con-
stituents would separately, which increases the actionability of the
tool’s output.

43

5.4.1 Causality Merging

Some optimization events are related by causality: one optimization
can open up further optimization opportunities, or an optimization
failure may prevent other optimizations from happening. In such
cases, presenting a combined report of the related optimizations yields
denser information than reporting them individually.

Our notion of causality relies on the concept of irritant. For some
optimizations, we can “blame” a failure affecting a term on one or
several of its subterms, which we call irritants, because they may have
the wrong shape or type and thus cause optimization to fail. This
notion of irritants is also used for recommendation synthesis.

Since irritants are terms, they can themselves be the subjects of op-
timization failures, meaning they may contain irritants. These related
optimization failures form a tree-shaped structure within which fail-
ures are nodes with their irritants as children. Irritants that do not
contain irritants form the leaves of the tree; they are the initial causes
of the optimization failure. The optimization failure that is caused by
all the others becomes the root of the tree.

The entire tree can be merged into a single entry, with the root of
the tree as its subject and the leaves as its irritants. The intermediate
nodes of the tree can be safely ignored since they are not responsible
for the failure; they merely propagate it. Causality merging reduces
the number of reports and helps pinpoint the root causes of optimiza-
tion failures.

Our Racket prototype applies causality merging to specialization
near misses. Let us consider the last part of the pseudo-random num-
ber generator from section 3.1:

(/ (* max last) IM)

While max is of type Float, last and IM have type Integer. Therefore,
the multiplication cannot be specialized, which causes the type of the
multiplication to be Real. This type, in turn, causes the division to
remain generic. Here is the relevant excerpt from the logs:

TR opt failure: prng-example.rkt 11:5

(* max last)

-- Float Integer -- generic multiplication

TR opt failure: prng-example.rkt 11:2

(/ (* max last) IM)

-- Real Integer -- generic division

The subject of the multiplication entry is an irritant of the division
entry. Optimization Coach joins the two entries in a new one: the
entire division becomes the subject of the new entry with last and
IM as irritants.

44

Causality merging combines near misses that share the same solu-
tion, which allows programmers to solve multiple near misses at once.
Section 5.4.5 presents another form of merging, by-solution merging,
which also groups near misses with similar solutions, but determines
grouping differently.

5.4.2 Locality Merging

Some optimization events are related by locality: multiple optimiza-
tions are applied to one piece of code or the same piece of code trig-
gers optimizations in different places. An optimization coach should
synthesize a single log entry per cluster of optimization reports that
affect the same piece of code. Doing so helps formulate a coherent di-
agnosis about all the optimizations that affect a given piece of code.

In cases where these reports originate from the same kind of opti-
mization, e.g., multiple inlining failures affecting the same function,
the coach looks for patterns in the related reports. Reports that are
related by locality but concern unrelated optimizations can still be
grouped together, but the grouping step unions the reports without
further summarization. These groupings, while they do not infer new
information, improve the user interface by providing all the relevant
information about a piece of code in a single location. This step also
aggregates log entries that provide information too low-level to be
of use to the programmer directly. New log entries report on these
patterns and replace the low-level entries in the log.

This is the case for inlining failures. Optimization log entries from
the Racket inliner provide two main pieces of information: which
function is inlined, and at which call site it is inlined. This information
is not especially enlightening to programmers as is. For widely used
functions, however, it is likely that there is a large number of such
reports; the number of inlining reports grows with the number of call
sites of a function.

Clusters of log entries related to inlining the same function are a
prime target for locality merging. Locality merging provides an ag-
gregate view of a function’s inlining behavior. Based on the ratio of
inlining successes and failures, Optimization Coach decides whether
the function as a whole is successful with regards to inlining or not,
as section 5.3.1 explains.

Our SpiderMonkey prototype also applies locality merging to its
reports. In addition, it applies other merging techniques which can be
seen as variants of locality merging: temporal merging (section 5.4.3),
which operates like locality merging but merges across the temporal
dimension, and by-constructor merging (section 5.4.6), which uses a
notion of locality based on the solution site.

45

5.4.3 Temporal Merging

As discussed in section 5.3.2, advanced JIT compilers introduce a tem-
poral dimension to the compilation and optimization process. The
near misses that affect a given piece of code may evolve over time, as
opposed to being fixed, as in the case of an AOT compiler.

Even though a JIT compiler may optimize an operation differently
each time it is compiled, this is not always the case. It is entirely pos-
sible to have an operation be optimized identically across multiple
versions or even all of them. It happens, for instance, when recompila-
tion is due to the optimizer’s assumptions not holding for a different
part of the method or because object code is garbage collected.3

Identical near misses that originate from different invocations of
the compiler necessarily have the same solution; they are symptoms
of the same issue. Therefore, a coach merges groups of such reports
into single reports. This technique—temporal merging—can be seen
as an extension of locality merging which ignores version boundaries.

Our SpiderMonkey prototype uses temporal merging to combine
near misses that affect the same operation or constructor, originate
from the same kind of failure and have the same causes across multi-
ple compiled versions.

5.4.4 Same-Property Analysis

The next two merging techniques, which are specific to property ac-
cess near misses, depend on grouping near misses that affect the same
property. The obvious definitions of “same property,” however, do not
lead to satisfactory groupings. If we consider two properties with the
same name to be the same, the coach would produce spurious group-
ings of unrelated properties from different parts of the program, e.g.,
grouping canvas.draw with gun.draw. Using these spurious group-
ings as starting points for merging would lead to incoherent reports
that conflate unrelated near misses.

In contrast, if we considered only properties with the same name
and the same hidden class, the coach would discriminate too much
and miss some useful groupings. For example, consider the run prop-
erty of various kinds of tasks in the Richards benchmark from the
Octane4 benchmark suite, boxed in figure 15. These properties are set
independently for each kind of task and thus occur on different hid-
den classes, but they are often accessed from the same locations and
thus should be grouped by the coach. This kind of pattern occurs fre-

3 In SpiderMonkey, object code is collected during major collections to avoid hold-
ing on to object code for methods that may not be executed anymore. While such
collections may trigger more recompilation than strictly necessary, this tradeoff is
reasonable in the context of a browser, where most scripts are short-lived.

4 https://developers.google.com/octane/

46

https://developers.google.com/octane/

Scheduler.prototype.schedule = function () {

// this.currentTcb is only ever a TaskControlBlock

...

this.currentTcb = this.currentTcb.run();

...

};

TaskControlBlock.prototype.run = function () {

// this.task can be all four kinds of tasks

...

return this.task. run (packet);

...

};

IdleTask.prototype. run = function (packet) { ... };

DeviceTask.prototype. run = function (packet) { ... };

WorkerTask.prototype. run = function (packet) { ... };

HandlerTask.prototype. run = function (packet) { ... };

Figure 15: Two different logical properties with name run in the
Richards benchmark, one underlined and one boxed

quently when using inheritance or when using structural typing for
ad-hoc polymorphism.

To avoid these problems, we introduce another notion of prop-
erty equivalence, logical properties, which our prototype uses to guide
its near-miss merging. We define two concrete properties p1 and p2,
which appear on hidden classes t1 and t2 respectively, to belong to
the same logical property if they

• have the same name p, and

• co-occur in at least one operation, i.e., there exists an operation
o.p or o.p = v that receives objects of both class t1 and class t2

As figure 15 shows, the four concrete run properties for tasks co-
occur at an operation in the body of TaskControlBlock.prototype.run,
and therefore belong to the same logical property. In contrast, TaskCon-
trolBlock.prototype.run never co-occurs with the other run proper-
ties, and the analysis considers it separate; near misses that are re-
lated to it are unrelated from those affecting tasks’ run properties
and should not be merged.

47

5.4.5 By-Solution Merging

Property near misses that affect the same property and have similar
solutions are related; a coach should merge them. That is, it should
merge near misses that can be addressed either by the same program
change or by analogous changes at multiple program locations.

Detecting whether multiple near misses call for the same kind of
corrective action is a simple matter of comparing the causes of the
respective failures and their context. This mirrors the work of the
recommendation generation phase, which is described in chapter 6.
In adition, the coach should ensure that the affected properties belong
to the same logical property.

Once our SpiderMonkey prototype identifies sets of near misses
with related solutions, it merges each set into a single summary re-
port. This new report includes the locations of individual failures,
as well as the common cause of failure, the common solution and a
badness score that is the sum of those of the merged reports.

5.4.6 By-Constructor Merging

Multiple property near misses can often be solved at the same time by
changing a single constructor. For example, inconsistent property lay-
out for objects from one constructor can cause optimization failures
for multiple properties, yet all of those can be resolved by editing the
constructor. Therefore, merging constructor near misses that share a
constructor can result in improved coaching reports.

To perform this merging, our SpiderMonkey prototype identifies
which logical properties co-occur within at least one hidden class. To
this end, it reuses knowledge about which logical properties occur
within each hidden class from same-property analysis.

Because properties can be added to JavaScript objects dynamically,
i.e., not inside the object’s constructor, a property occuring within a
given hidden class does not necessarily mean that it is added by the
constructor associated with that class. This may lead to merging re-
ports affecting properties added in a constructor with others added
elsewhere. At first glance, this may appear to cause spurious merg-
ings, but it is in fact beneficial. For example, moving property ini-
tialization from the outside of a constructor to the inside often makes
object layout consistent. Reporting these near misses along with those
from properties from the constructor helps reinforce this connection.

By-constructor merging can be thought of as a variant of locality
merging that groups reports according to solution site.

48

6
R E C O M M E N D AT I O N G E N E R AT I O N

After optimization analysis, near miss reports can be used to generate
concrete recommendations. Recall that such recommendations repre-
sent program changes that eliminate optimization failures but may
also alter the behavior of the program.

To identify expressions for which to recommend changes, an opti-
mization coach should reuse the concept of irritant where available.
Recall that irritants are terms that caused optimization to fail. If these
terms were changed, the optimizer would be able to apply transfor-
mations. Irritants are thus ideal candidates for recommendations.

Determining the best program changes necessarily relies on opti-
mization specific logic. Since each optimization has its own failure
modes, general rules do not apply.

In some cases, generating recommendations is impossible, either
due to the nature of an optimization, to the cause of the failure, or to
properties of the context. Irritants are reported nonetheless; knowing
the cause of a failure may still help programmers.

6.1 Recommendations for Typed Racket

In the context of Typed Racket, Optimization Coach’s recommenda-
tions suggest changes to the types of irritants. The fixes are deter-
mined using optimization proximity. Recommendation generation for
Typed Racket is therefore a straightforward matter of connecting the
facts and presenting the result in an informative manner.

For example, when presented with the fixnum arithmetic example
from figure 3 (page 17), Optimization Coach recommends changing
the type of i to Byte or Index. In the case of the pseudo-random
number generator from figure 5 (page 19), Optimization Coach rec-
ommends changing the types of the irritants to Float to conform
with max.

Figure 16 provides examples of recommendations produced by Op-
timization Coach to accompany near misses from the Typed Racket
optimizer.

6.2 Recommendations for Inlining

Inlining is not as easy to control through changes in the source pro-
gram as Typed Racket’s type-driven optimizations. Therefore, recom-
mendations relating to inlining optimizations are less precise than
those for Typed Racket.

49

• This expression consists of all fixnum arguments but is not guar-
anteed to produce a fixnum. Therefore it cannot be safely opti-
mized. Constraining the arguments to be of Byte or Index types
may help.

• This expression has a Real type. The optimizer could optimize it
if it had type Float. To fix, change the highlighted expression(s)
to have Float type(s).

• This expression compares values of different exactnesses, which
prevents optimization. To fix, explicitly convert the highlighted
expressions to be of type Float.

• According to its type, the highlighted list could be empty. Access
to it cannot be safely optimized. To fix this, restrict the type to
non-empty lists, maybe by wrapping this expression in a check
for non-emptiness.

Figure 16: Example recommendations for Typed Racket

Since lack of fuel is the main reason for failed inlinings, reducing
the size of functions is the simplest recommendation and applies in
all cases. In some cases, it is possible to give the programmer an
estimate of how much to reduce the size of the function, using its
current size and the remaining fuel.

Another possibility is the use of inlining-related pragmas, such
as Racket’s begin-encourage-inline and define-inline, when they
are provided by the host compiler. Alternatively, for languages with
macros, an optimization coach can also recommend turning a func-
tion into a macro, i.e., inlining it unconditionally at all call sites. To
avoid infinite expansion, Optimization Coach recommends this action
only for non-recursive functions.

An optimization coach can also consider other factors, such as the
shape of the function’s body or commonly executed paths within the
function, to recommend specialized responses to common patterns.
For example, a function that includes both a short, commonly-taken
fast-path and a longer, infrequently-used slow path may benefit from
outlining the slow path. This transformation would facilitate inlining
the now smaller function and may improve the performance of the
fast path.

Figures 7 (page 21) and 8 (page 22) show examples of the Racket
prototype’s recommendations related to inlining.

50

• This property is not guaranteed to always be stored in the same
location inside objects.
Are properties initialized in different orders in different places?
If so, try to stick to the same order.
Is this property initialized in multiple places? If so, try initializ-
ing it always in the same place.
Is it sometimes on instances and sometimes on the prototype? If
so, try always putting it in the same location.

• This object is a singleton. Singletons are not guaranteed to have
properties in a fixed slot. Try making the object’s properties
global variables.

• This operation needs to walk the prototype chain to find the
property. Try putting the property in the same location for all
objects. For example, try always putting it directly on the object,
or always on its direct prototype.

• This array operation saw an index that was not guaranteed to be
an integer, and instead was an object. Try using an integer con-
sistently. If you’re already using an integer, trying doing index|0

to help the JIT recognize its type.

Figure 17: Example recommendations for SpiderMonkey

6.3 Recommendations for SpiderMonkey

The SpiderMonkey coach computes recommendations using three
main pieces of information: the inferred solution site, the cause of
the failure and the types of the operands.

The inferred solution site both determines where the recommenda-
tion points and restricts the set of actions that can be recommended.
For example, reordering fields is an action that makes sense only for
constructor reports; it cannot be applied directly at the operation site.
Similarly, recommending to make an operation monomorphic makes
sense only in the context of operation reports.

The cause of the optimization failure, as well as the types of the
expressions involved, feed into optimization-specific logic. This logic
fills out recommendation templates selected based on the failure cause
with source and type information.

Figure 17 shows example recommendations generated by our Spi-
derMonkey prototype.

51

7
U S E R I N T E R FA C E

The integration of an optimization coach into the programmer’s work-
flow requires a carefully designed tool for presenting relevant infor-
mation. This chapter describes the user interfaces of our prototypes.

7.1 Racket Prototype

Optimization Coach is a plug-in tool for DrRacket (Findler et al. 2002).
As such a tool, Optimization Coach has access to both the Racket and
Typed Racket compilers and can collect instrumentation output in a
non-intrusive fashion. At the press of a button, Optimization Coach
compiles the program, analyzes the logs, and presents its results.

As the screenshots in previous chapters show, Optimization Coach
highlights regions that are affected by either optimization successes
or near misses. To distinguish the two, green boxes highlight suc-
cesses and red boxes pinpoint areas affected by near misses. If a
region is affected by both, a red highlight is used; near misses are
more cause for concern than successes and should not be hidden.
The scale-y-coordinate function from figure 18 contains both an op-
timization success—taking the first element of its input list—and an
optimization near miss—scaling it by a floating-point factor.

The user interface uses different shades of red to express an order-
ing of near misses according to their badness score. Figure 19 shows
ordering in action; the body of add-sales-tax contains a single near
miss and is therefore highlighted with a lighter shader of red, dis-
tinct from the body of add-discount-and-sales-tax, which contains
two near misses.

Clicking on a region brings up a tool-tip that enumerates and de-
scribes the optimization events that occurred in the region. The de-
scription includes the relevant code, which may be a subset of the
region in the case of nested optimizations. It also highlights the ir-
ritants and explains the event. Finally, the window also comes with
recommendations.

Optimization Coach allows programmers to provide profiling in-
formation, which is then fed to the optimization analysis phase to en-
able its profiling-based techniques. Programmers can collect profiling
information by running their program with its entry point wrapped
in the optimization-coach-profile form provided by the tool. This
profiling wrapper enables Racket’s statistical profiler and saves the
results to a file. Optimization Coach then reads profiling information
from that file.

53

Figure 18: A function affected by both an optimization success and a
near miss

54

Figure 19: Optimization Coach ordering near misses by predicted im-
portance (with focus on add-discount-and-sales-tax); the most im-
portant near miss is in a darker shade of red and the least important
one is in a lighter shade of red

Figure 20 shows Optimization Coach’s control panel, which in-
cludes profiling-related commands, as well as view filtering options.
These filtering options control the classes of optimizations for which
to show near misses. Additional filtering options would provide pro-
grammers with finer-grained control over reporting and are an area
for future work. Potential extensions include user-specified black-
and white-lists that limit reports to specific code regions, and tunable
badness display thresholds.

Optimization Coach additionally provides a text-only mode at the
command-line, suitable for batch usage. This version provides the
same information as the graphical version, but without highlighting.

7.2 SpiderMonkey Prototype

Our prototype coach for SpiderMonkey, unlike Optimization Coach,
provides a command-line interface only.

The tool’s workflow is a two-step process. First, programmers run
their program in profiling mode, either using the SpiderMonkey pro-
filer’s graphical front-end in the Firefox development tools suite or
using a command-line interface. This profiling run produces a profile
file, which also includes the optimization instrumentation log.

55

Figure 20: The Optimization Coach control panel

Second, programmers invoke the coach1 with the profile file as in-
put. This program executes the optimization analysis and recommen-
dation generation phases, and emits reports and recommendations in
text form.

At the time of this writing, the coach presents the five near misses
with the highest badness value. This allows programmers to focus
on high-priority reports only. As they resolve these near misses, they
can repeat the coaching process if desired and receive reports for the
remaining, lower-priority near misses.

The tool presents near misses in decreasing order of badness. Ad-
ditionally, it sorts sub-components of reports, e.g., the fields in a con-
structor report, in decreasing order of badness. Figure 21 shows both
forms of sorting in action using an excerpt from the coaching report
for the DeltaBlue benchmark (discussed in section 8.2.1).

Each near miss report includes a brief description of the failure(s),
an explanation of the cause, and recommendations. In addition, it
includes source location information to allow programmers to cross-
reference reports with their source code.

The use of a command-line interface makes coaching multi-file pro-
grams straightforward; reports for a program are presented all at
once, regardless of their file of origin. In contrast, our Racket pro-
totype supports coaching one file at a time because it is tied to Dr-
Racket’s one-file-at-a-time editing model. This is not, however, a gen-
eral limitation of graphical interfaces for coaching.

At the time of this writing, there is ongoing work at Mozilla to in-
tegrate optimization coaching to the Firefox development tools suite,
driven by Shu-yu Guo. Developing an easy-to-use browser interface
for an optimization coach is still an open problem.

1 A command-line program written in Racket.

56

badness: 5422

for object type: singleton

affected properties:

WEAKEST (badness: 2148)

REQUIRED (badness: 1640)

STRONG_DEFAULT (badness: 743)

PREFERRED (badness: 743)

NORMAL (badness: 147)

This object is a singleton.

Singletons are not guaranteed to have properties in a fixed slot.

Try making the object's properties globals.

--

badness: 2533

for object types:

ScaleConstraint:deltablue.js:452

EditConstraint:deltablue.js:308

StayConstraint:deltablue.js:290

EqualityConstraint:deltablue.js:511

affected property: addToGraph

locations:

deltablue.js:158:2 (badness: 2533)

This operation needs to walk the prototype chain to find the property.

Try putting the property in the same location for all objects.

For example, try always putting it directly on the object, or always

on its direct prototype.

--

badness: 1753

for object types:

Variable:deltablue.js:534

ScaleConstraint:deltablue.js:452

EditConstraint:deltablue.js:308

StayConstraint:deltablue.js:290

EqualityConstraint:deltablue.js:511

affected property: execute

locations:

deltablue.js:773:4 (badness: 1747)

deltablue.js:261:26 (badness: 6)

This operation needs to walk the prototype chain to find the property.

Try putting the property in the same location for all objects.

For example, try always putting it directly on the object, or always

on its direct prototype.

Figure 21: Coaching reports for the DeltaBlue benchmark (excerpt)

57

8
E VA L U AT I O N

For an optimization coach to be useful, it must provide actionable
recommendations that improve the performance of a spectrum of
programs. To validate this claim about our prototypes, we conducted
three experiments on each of them. First, to measure the effectiveness
of recommendations, we measured their impact on program perfor-
mance. Second, to estimate the effort required to follow recommen-
dations, we recorded the size and nature of code changes. Third, to
measure the effect of optimization analysis, we looked at the quality
of those recommendation, both in terms of usefulness and actionabil-
ity. This chapter shows the results of these experiments.

8.1 Racket Prototype

We evaluated our Racket prototype on a series of programs of various
sizes and origins. These range from small benchmarks from the Com-
puter Language Benchmark Game1 to full applications. Some of these
programs are standard benchmarks, others are used inside the Racket
standard library, while others yet were contributed by Optimization
Coach users. Figure 22 lists the size of each program and provides
brief descriptions. The full set of programs is available online.2

We performed our experiments as follows.3 We ran our Racket pro-
totype on each program and modified them by following the tool’s
recommendations, so long as those reports were truly actionable. That
is, we rejected reports that did not suggest a clear course of action or
would break a program’s interface, as a programmer using the tool
would do. In addition, we identified and rolled back recommenda-
tions that decreased performance, like a programmer would do. Fi-
nally, to simulate a programmer looking for “low-hanging fruit,” we
ran the coach only once on each program.4

Performance Impact We measured execution time of each pro-
gram before and after applying recommendations. For six of the pro-
grams, we also had access to versions that had been hand-optimized
by expert Racket programmers starting from the same baseline pro-

1 http://benchmarksgame.alioth.debian.org
2 http://www.ccs.neu.edu/home/stamourv/dissertation/oc-racket-benchmarks.tgz
3 With the exception of the perlin-noise and simplex-noise programs, whose method-

ology is described below.
4 Re-running the coach on a modified program may cause the coach to provide differ-

ent recommendations. Therefore, it would in principle be possible to apply recom-
mendations up to some fixpoint.

59

http://benchmarksgame.alioth.debian.org
http://www.ccs.neu.edu/home/stamourv/dissertation/oc-racket-benchmarks.tgz

gram. In all cases, all three versions—baseline, coached, and hand-
optimized—use the same algorithms. For these programs, we also
measured how close the performance of the coached versions were
from that of the hand-tuned versions.

Our plots show results normalized to the pre-coaching version of
each program with error bars marking 95% confidence intervals. All
our results represent the mean of 30 executions on a 6-core 64-bit x86

Debian GNU/Linux system with 12GB of RAM, using Racket version
6.1.1.6 (January 2015). We use execution times as our results, lower is
better.

Programmer Effort As a proxy for programmer effort, we mea-
sured the number of lines changed in each program while following
recommendations. We also recorded qualitative information about
the nature of these changes.

Recommendation Quality To evaluate the usefulness of indi-
vidual recommendations, we classified recommendations into four
categories:

• positive recommendations led to an increase in performance,

• negative recommendations led to a decrease in performance,

• neutral recommendations did not lead to an observable change
in performance, and

• undesirable reports suggested changes that would break the pro-
gram’s intended behavior. Programmers can reject them easily.

Ideally, a coach should give only positive recommendations. Nega-
tive recommendations require additional work on the part of the pro-
grammer to identify and reject. Reacting to neutral recommendations
is also a waste of programmer time, and thus their number should
be low, but because they do not harm performance, they need not
be explicitly rejected by programmers. Undesirable recommendations
decrease the signal-to-noise ratio of the tool, but they can individu-
ally be dismissed pretty quickly by programmers. A small number
of undesirable recommendations therefore does not contribute signif-
icantly to the programmer’s workload. Large numbers of undesirable
recommendations, however, would be cause for concern.

8.1.1 Results and Discussion

The results of our performance experiments are in figure 23. We ob-
serve significant5 speedups for all but one of the programs we stud-
ied, ranging from 1.03ˆ to 2.75ˆ.

5 We consider speeedups to be significant when the confidence intervals of the base-
line and coached versions do not overlap.

60

Benchmark Size Description
(SLOC)

binarytrees 51 Allocation and GC benchmark
cantor 18 Cantor pairing and unpairing functions

heapsort 71 Heapsort sorting algorithm
mandelbrot 48 Rendering the Mandelbrot set

moments 72 Compute statistical moments of a dataset
nbody 166 Orbit simulation for the Jovian planets

ray-tracer 3,199 Ray tracer
pseudoknot 3,427 Nucleic acid 3D structure computation

video 860 Differential video codec
perlin-noise 175 Perlin noise generator

simplex-noise 231 Simplex noise generator

Figure 22: Racket benchmark descriptions

For the six programs where we can compare with hand-optimized
versions, following recommendations can usually yield about half the
improvement an expert can extract—after hours of work, for some of
these programs. In the case of the moments benchmark, the perfor-
mance of the coached version matches that of the hand-optimized
version. In all cases, the hand-optimized versions include all the opti-
mizations recommended by Optimization Coach.

Following recommendations is a low-effort endeavor. The maxi-
mum number of lines changed is 28, for the pseudoknot program.
For all but 3 of the 11 programs, under 10 lines had to be changed.
The quality of recommendations is also generally good. In all 11 pro-
grams, the coach produced only one negative recommendation, for
pseudoknot, which resulted in a 0.95ˆ slowdown.

Neutral and undesirable recommendations account for a signifi-
cant proportion of the recommendations only in the ray-tracer pro-
gram. The high number of overall recommendations for this program
is not surprising, given its relative size. In depth analysis of those rec-
ommendations is available below. In general, recommendations that
were classified as neutral had lower badness scores than positive rec-
ommendations in the same program. This suggests that our ranking
heuristics are accurate.

The rest of this section presents detailed results for each program,
comparing the recommended changes to those performed by experts
where applicable.

binarytrees Optimization Coach does not provide any recom-
mendations for this program. The coached version is therefore identi-
cal to the baseline. Prior to introducing the current definition of bad-

61

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)

binarytrees

binarytrees

binarytrees

binarytrees

binarytrees

binarytrees

binarytrees

binarytrees

binarytrees
cantor
cantor
cantor
cantor
cantor
cantor
cantor
cantor
cantor

heapsort

heapsort

heapsort
heapsort

heapsort
heapsort

heapsort

heapsort
heapsort

mandelbrot

mandelbrot

mandelbrot

mandelbrot

mandelbrot

mandelbrot

mandelbrot

mandelbrot

mandelbrot

moments

moments

moments
moments

moments
moments

moments

moments
moments

nbody
nbody
nbody
nbody
nbody
nbody
nbody
nbody
nbody

ray-tracer

ray-tracer

ray-tracer
ray-tracer

ray-tracer
ray-tracer

ray-tracer

ray-tracer
ray-tracer

pseudoknot

pseudoknot

pseudoknot

pseudoknot

pseudoknot

pseudoknot

pseudoknot

pseudoknot

pseudoknot
video
video
video
video
video
video
video
video
video

perl in
-noise

perl in
-noise

perl in
-noise

perl in
-noise

perl in
-noise

perl in
-noise

perl in
-noise

perl in
-noise

perl in
-noise

simplex-noise

simplex-noise

simplex-noise

simplex-noise

simplex-noise

simplex-noise

simplex-noise

simplex-noise

simplex-noise
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

Baseline Coached Hand-Optimized

Figure 23: Benchmarking results for Racket

Benchmark Lines changed
(SLOC)

Added Deleted Edited

binarytrees 0 0 0

cantor 2 1 6

heapsort 0 0 5

mandelbrot 1 1 1

moments 0 0 9

nbody 0 0 1

ray-tracer 0 2 2

pseudoknot 24 1 3

video 1 0 2

perlin-noise 4 1 12

simplex-noise 4 1 19

Figure 24: Size of changes following recommendations

62

Benchmark Recommendation impact
(# recommendations)

Positive Negative Neutral Undesirable

binarytrees 0 0 0 0

cantor 3 0 0 0

heapsort 1 0 0 0

mandelbrot 1 0 0 0

moments 3 0 3 0

nbody 1 0 0 0

ray-tracer 2 0 12 30

pseudoknot 1 1 0 0

video 2 0 0 0

perlin-noise 4 0 0 0

simplex-noise 7 0 2 0

Figure 25: Summary of recommendation quality

ness for inlining near misses,6 however, the coach would produce one
such report. Acting on that report led to a slowdown of 0.98ˆ. With
the new definition, this near miss is instead considered a success,
which does not call for programmer action. This provides favorable
evidence for the usefulness of our current definition of badness.

The performance gains observed in the hand-optimized versions
come almost entirely from a single optimization: a switch from struc-
tures to vectors, which have a lower allocation overhead.

cantor This benchmark heavily exercises arithmetic operations.
The straightforward implementation involves both exact rational arith-
metic and complex number result types. The first recommendation
suggests using integer division instead of regular division to avoid
exact rationals. Since the original program truncates values to inte-
gers before returning them, this change in semantics did not affect
the results of the program. The second recommendation involves re-
placing a use of the generic sqrt function, which may return complex
results, with a real-number only equivalent. Finally, the coach also
recommends inlining a helper function. All three recommendations
lead to performance improvements, with a total speedup of 2.75ˆ.

The expert-optimized version uses floating-point numbers instead
of integers to benefit from additional specialization and unboxing op-
timizations, which do not apply to integer computations. This trans-
formation radically affects the semantics of the program. This pro-
gram performs Cantor pairing and unpairing, which relies on exact
integer semantics. For large inputs, floating-point imprecision can

6 The previous definition only counted optimization failures, not successes.

63

cause the hand-optimized version to compute incorrect answers. The
inputs used by the benchmark were not large enough to trigger this
behavior, and thus the expert did not introduce any bugs in this par-
ticular case. This change remains undesirable in the general case, and
Optimization Coach does not recommend it.

heapsort This implementation of heapsort is written in Typed
Racket and already benefits from type-driven optimizations. Opti-
mization Coach recommends restricting a variable from type Real

to Float, which requires a few upstream type changes as well. This
change resulted in a 1.12ˆ speedup. Manual vector bounds-check
elimination explains the remaining performance gains in the hand-
optimized version.

mandelbrot The hand-optimized version benefits from two ma-
jor optimizations: the manual inlining of a helper function too large
to be inlined by the optimizer and the manual unrolling and special-
ization of an inner loop. Optimization Coach detects that the helper
function is not being inlined and recommends using a macro to force
inlining, which is exactly what the expert did. This change results in
a speedup of 1.09ˆ. Optimization Coach does not recommend manu-
ally unrolling the loop; its recommendation generation process does
not extend to unrolling.

Furthermore, the author of the hand-optimized version also man-
ually specialized a number of arithmetic operations. This duplicated
work that the Typed Racket optimizer already performed—as Opti-
mization Coach confirmed by reporting optimization successes. The
hand-optimized version did feature some specialized fixnum opera-
tions that Typed Racket was not able to specialize, but those did not
produce a noticeable effect on performance.

To improve the quality of the profiling information fed to the coach,
we replaced two tail calls in the original benchmark with non-tail calls.
These changes had no measurable impact on the performance of the
program.

moments The baseline version of this mostly-numeric program
uses types with low optimization potential. The coach points to a
number of operations that failed to be optimized because of those,
all of which can be traced back to six variables whose types are too
conservative. Adding two type coercions and replacing an operation
with a more precise equivalent allowed us to refine the types of all
six, which led to a speedup of 1.07ˆ. Those were the same changes
the expert performed on the hand-optimized version.

As with the mandelbrot benchmark, we replaced one tail call with a
non-tail call to improve the quality of the profiling information. This
change also had no measurable impact on performance.

64

nbody Optimization Coach identifies an expression where Typed
Racket must conservatively assume that sqrt may produce complex
numbers, leading to an optimization failure. This is the same kind of
near miss as the one from the cantor program. We applied the same
solution, namely replacing that use of sqrt by flsqrt. This change
led to a 1.17ˆ improvement.

The rest of the performance improvements in the hand-optimized
version are due to replacing structures and lists with vectors, as in the
binarytrees benchmark. In addition, the author of the hand-optimized
version also replaced another instance of sqrt by flsqrt. This sec-
ond replacement, however, did not actually have a noticeable impact
on performance. Optimization Coach’s profiling-based pruning rec-
ognized that the failure was located in cold code, and pruned the
corresponding optimization failure from the logs.

ray-tracer This program is a ray tracer used to render logos and
icons for DrRacket and the Racket website. It was written by Neil
Toronto, an experienced Racket programmer. It supports a wide va-
riety of features, such as refraction, multiple highlight and reflection
modes, and text rendering. Over time, most icons in the Racket code-
base have been ported to use this ray tracer, and it eventually became
a bottleneck in the Racket build process. Its author spent significant
time and effort7 to improve its performance. To determine whether
an optimization coach would have helped him, we attempted to opti-
mize the original version of the ray tracer ourselves using Optimiza-
tion Coach. For our measurements, we rendered a 600 ˆ 600 pixel
logo using each version of the ray tracer.

Optimization Coach identified two helper functions that Racket
failed to inline. We followed its recommendations by turning the
two functions into macros. The changes were local and did not re-
quire knowledge of the code base. Dr. Toronto had independently
performed the same changes, which were responsible for most of the
speedups over his original ray tracer. Optimization Coach success-
fully identified the same sources of the performance bugs as a Racket
expert and provided solutions, making a strong case for the effective-
ness of optimization coaching.

Dr. Toronto, being an expert Typed Racket user, had already writ-
ten his code in a way that triggers type-driven specialization. The
coach therefore did not find room for improvement there. We classi-
fied specialization-related recommendations as undesirable because
they would have required restricting the public interface of the ray
tracer to floating-point inputs instead of generic real numbers. These
changes would have broken the ray tracer’s interface.

7 Leading to the mailing list discussion mentioned in chapter 2 (page 11).

65

pseudoknot We used a version of the pseudoknot (Hartel et al.
1996) program originally written by Marc Feeley. This program com-
putes the 3D structure of a nucleic acid from its primary structure and
a set of constraints. The baseline version of this program is already
highly optimized; there are few optimizations left for Optimization
Coach to recommend.

The tool suggests inlining two functions: dgf-base and pseudoknot-

constraint?. Inlining the first resulted in a 0.95ˆ slowdown. Inlining
the second produced a 1.03ˆ speedup. The change involved convert-
ing the function to a macro, and modifying its calling context to use
it in a first-order fashion. Forty additional optimization failures were
pruned by Optimization Coach’s profiling-based pruning.

This scenario highlights the importance of pruning in reducing
the transformation space the programmer has to explore—trying out
multiple combinations of recommendations is much more feasible
when the tool presents only a small number of recommendations.

video This application is a simple video chat client, written by
Tony Garnock-Jones, who worked hard to make the chat program
efficient, meaning most performance low-hanging fruit had already
been picked. We focused our effort on the simple differential video
coder-decoder (codec) which is the core of the client. To measure the
performance of each version of the codec, we timed the decoding of
600 pre-recorded video frames. The code mostly consists of bitwise
operations on pixel values.

The decoding computation is spread across several helper func-
tions. Optimization Coach confirmed that Racket inlines most of these
helper functions, avoiding extra function call overhead and enabling
other optimizations. However, two of them, kernel-decode and clamp-

pixel, were either not inlined to a satisfactory level or not inlined
at all. We followed these two recommendations, turning both helper
functions into macros. Each change was local and did not require
understanding the behavior of the function or its role in the larger
computation.

perlin-noise This program is a Perlin noise8 generator written
by John-Paul Verkamp.9 Unhappy with the performance of his pro-
gram, Mr. Verkamp asked for help on the mailing list.10 Following
the resulting discussion, he used Optimization Coach to find opti-
mization opportunities, and blogged about the process.11

The baseline version of this program used for our experiments cor-
responds to the original version of his program, and the coached ver-

8 Specifically, pseudo-randomly generated images often used for procedural genera-
tion of content in video games.

9 http://blog.jverkamp.com/2013/04/11/perlin-and-simplex-noise-in-racket/
10 http://lists.racket-lang.org/users/archive/2013-April/057245.html
11 http://blog.jverkamp.com/2013/04/16/adventures-in-optimization-re-typed-racket/

66

http://blog.jverkamp.com/2013/04/11/perlin-and-simplex-noise-in-racket/
http://lists.racket-lang.org/users/archive/2013-April/057245.html
http://blog.jverkamp.com/2013/04/16/adventures-in-optimization-re-typed-racket/

sion corresponds to the final version he derived, on his own, using
Optimization Coach. Following the coach’s recommendations led to
a speedup of 2.26ˆ.

The changes all involved replacing types with low optimization po-
tential with types with higher potential, which enabled type-driven
specialization. This process involved converting the internals of the
noise generator to always use floating-point numbers (instead of op-
erating on real numbers), and providing an adapter function to satisfy
clients that use the generator with non-floating-point inputs.

simplex-noise Like the Perlin noise generator, this program is
also due to John-Paul Verkamp. The two programs were, in fact, de-
veloped together. Our experimental methodology was the same for
the two programs.

Following Optimization Coach’s recommendations resulted in a
1.53ˆ speedup. The changes followed the same patterns as those for
the Perlin noise generator.

8.2 SpiderMonkey Prototype

To evaluate our SpiderMonkey prototype, we used a subset of the
widely-used Octane benchmark suite. Our experimental protocol was
the same as for the Racket prototype, with the following exceptions.

First, we applied the five top-rated recommendations only—which
are those shown by the tool. As with the Racket experiments, we
rolled back negative recommendations.12

Second, because a web page’s JavaScript code is likely to be ex-
ecuted by multiple engines, we used three of the major JavaScript
engines: SpiderMonkey13, Chrome’s V8

14 and Webkit’s JavaScript-
Core15. For the impact of individual recommendations, however, we
measured only the performance on SpiderMonkey.

Third, the Octane suite measures performance in terms of an Octane
Score which, for the benchmarks we discuss here, is inversely propor-
tional to execution time.16 Therefore, our plots show normalized Oc-
tane scores, and higher results are better. To eliminate confounding
factors due to interference from other browser components, we ran
our experiments in standalone JavaScript shells.

Our chosen subset of the Octane suite focuses on benchmarks that
use property and array operations in a significant manner. It excludes,

12 This methodology differs from that used in the published version of this work (St-
Amour and Guo 2015), for which we did not roll back negative recommendations.
Consequently, the results presented here differ slightly from the published version.

13 Revision f0f846d875acaced6ce9c9af484096ed2670eef1 (September 2014).
14 Version 3.30.5 (October 2014).
15 Version 2.4.6 (September 2014).
16 The Octane suite also includes benchmarks whose scores are related to latency in-

stead of execution time, but we did not use those for our experiments.

67

Benchmark Size Description
(SLOC)

Richards 538 OS simulation
DeltaBlue 881 Constraint solver
RayTrace 903 Ray tracer

Splay 422 Splay tree implementation
NavierStokes 415 2D Navier-Stokes equation solver

PdfJS 33,053 PDF reader
Crypto 1,698 Encryption and decryption benchmark
Box2D 10,970 2D physics engine

Figure 26: Octane benchmark descriptions

for example, the Regexp benchmark because it exercises nothing but
an engine’s regular expression subsystem. Coaching these programs
would not yield any recommendations with our current prototype. It
also excludes machine-generated programs from consideration. The
output of, say, the Emscripten C/C++ to JavaScript compiler17 is not
intended to be read or edited by humans; it is therefore not suitable
for coaching.18 In total, the set consists of eight programs: Richards,
DeltaBlue, RayTrace, Splay, NavierStokes, PdfJS, Crypto and Box2D. The
full set of programs is available online.19 Figure 26 provides size in-
formation and a brief description for each program. Unlike for our
Racket experiments, these baseline programs are already tuned by
hand. It is therefore impossible to compare the coach against plain
and tuned versions.

8.2.1 Results and Discussion

As figure 27 shows, following the coach’s recommendations leads to
significant speedups on six of our eight benchmarks when run on
SpiderMonkey. These speedups range from 1.01ˆ to 1.17ˆ. For the
other two, we observe no significant change; in no case do we observe
a slowdown.

The results are similar for the other engines: on both V8 (figure 28)
and JavaScriptCore (figure 29), we observe speedups on two and
four benchmarks, respectively, ranging from 1.02ˆ to 1.20ˆ. These
speedups differ from those observed using SpiderMonkey, but are of
similar magnitude. These results provide evidence that, even though

17 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Emscripten
18 It would, however, be possible to use coaching to improve the code generation of

Emscripten or other compilers that target JavaScript, such as Shumway. This is a
direction for future work.

19 http://www.ccs.neu.edu/home/stamourv/dissertation/oc-js-benchmarks.tgz

68

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Emscripten
http://www.ccs.neu.edu/home/stamourv/dissertation/oc-js-benchmarks.tgz

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

RichardsRichardsRichardsRichardsRichardsRichardsRichardsRichardsRichards DeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlue RayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTrace SplaySplaySplaySplaySplaySplaySplaySplaySplay NavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokes PdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJS CryptoCryptoCryptoCryptoCryptoCryptoCryptoCryptoCrypto Box2DBox2DBox2DBox2DBox2DBox2DBox2DBox2DBox2D
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

1.21.21.21.21.21.21.21.21.2

Baseline Coached

Figure 27: Benchmarking results on SpiderMonkey

coaching recommendations are derived from the optimization pro-
cess of a single engine, they can lead to cross-engine speedups.

Keeping in mind that JavaScript engines are tuned to perform well
on those benchmark programs,20 we consider these results promising.
We conjecture that our prototype (or an extension of it) could yield
even larger speedups on other, regular programs.

Figure 30 presents our results for the effort dimension. For all pro-
grams, the total number of lines changed is at most 33. Most of these
changes are also fairly mechanical in nature—moving code, search
and replace, local restructuring. Together, these amount to modest
efforts on the programmer’s part.

Figure 31 presents the results of studying the usefulness of recom-
mendations. We classified 17 out of 35 reports as positive, and only
one as negative. We classified 12 reports as undesirable, which we
consider acceptably low. As discussed above, those reports can be
dismissed quickly and do not impose a burden. The remainder of the
section presents the recommendations for individual benchmarks.

Richards The coach provides three reports. Two of those point
out an inconsistency in the layout of TaskControlBlock objects. Fig-
ure 32 shows one of them. The state property is initialized in two
different locations, which causes layout inference to fail and prevents
optimizations when retrieving the property. Combining these two as-

20 http://arewefastyet.com

69

http://arewefastyet.com

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

RichardsRichardsRichardsRichardsRichardsRichardsRichardsRichardsRichards DeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlue RayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTrace SplaySplaySplaySplaySplaySplaySplaySplaySplay NavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokes PdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJS CryptoCryptoCryptoCryptoCryptoCryptoCryptoCryptoCrypto Box2DBox2DBox2DBox2DBox2DBox2DBox2DBox2DBox2D
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

1.21.21.21.21.21.21.21.21.2

Baseline Coached

Figure 28: Benchmarking results on V8

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

No
rm

al
iz

ed
 s

co
re

 (h
ig

he
r i

s
be

tte
r)

RichardsRichardsRichardsRichardsRichardsRichardsRichardsRichardsRichards DeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlueDeltaBlue RayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTraceRayTrace SplaySplaySplaySplaySplaySplaySplaySplaySplay NavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokesNavierStokes PdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJSPdfJS CryptoCryptoCryptoCryptoCryptoCryptoCryptoCryptoCrypto Box2DBox2DBox2DBox2DBox2DBox2DBox2DBox2DBox2D
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

1.21.21.21.21.21.21.21.21.2

Baseline Coached

Figure 29: Benchmarking results on JavaScriptCore

70

Benchmark Lines changed
(SLOC)

Added Deleted Edited

Richards 1 5 0

DeltaBlue 6 3 24

RayTrace 10 11 0

Splay 3 3 0

NavierStokes 0 0 4

PdfJS 2 1 0

Crypto 2 0 1

Box2D 8 0 0

Figure 30: Size of changes following recommendations

Benchmark Recommendation impact
(# recommendations)

Positive Negative Neutral Undesirable

Richards 2 0 0 1

DeltaBlue 2 1 1 1

RayTrace 5 0 0 0

Splay 2 0 1 2

NavierStokes 0 0 1 0

PdfJS 0 0 1 4

Crypto 4 0 0 1

Box2D 2 0 0 3

Figure 31: Summary of recommendation quality

71

badness: 24067

for object type: TaskControlBlock:richards.js:255

affected properties:

state (badness: 24067)

This property is not guaranteed to always be in the same location.

Are properties initialized in different orders in different places?

If so, try to stick to the same order.

Is this property initialized in multiple places?

If so, try initializing it always in the same place.

Is it sometimes on instances and sometimes on the prototype?

If so, try using it consistently.

Figure 32: Inconsistent property order in the Richards benchmark

// before coaching

if (queue == null) {

this.state = STATE_SUSPENDED;

} else {

this.state = STATE_SUSPENDED_RUNNABLE;

}

// after coaching

this.state =

queue == null ? STATE_SUSPENDED : STATE_SUSPENDED_RUNNABLE;

Figure 33: Making object layout consistent in the Richards benchmark

signments into one, as figure 33 shows, solves the issue and leads to
a speedup of 1.03ˆ on SpiderMonkey. The third report points to an
operation that is polymorphic by design; it is undesirable.

DeltaBlue Two of the five reports have a modest positive impact.
The first involves replacing a singleton object’s properties with global
variables to avoid dispatch; it is the first report in figure 21 (page
57). The second recommends duplicating a superclass’s method in its
subclasses, making them monomorphic in the process.

These changes may hinder modularity and maintainability in some
cases. They clearly illustrate the tradeoffs between performance and
software engineering concerns, which coaching tends to bring up.
Which of those is more important depends on context, and the de-
cision of whether to follow a recommendation must remain in the

72

programmer’s hands. With a coach, programmers at least know where
these tradeoffs may pay off by enabling additional optimization.

One of the recommendations (avoiding a prototype chain walk)
yields a modest slowdown of about 1%. We rolled it back. This re-
port has the lowest badness score of the five. We expect programmers
tuning their programs to try out these kinds of negative recommen-
dations and revert them after observing slowdowns.

RayTrace All five of the coach’s reports yield performance im-
provements, for a total of 1.17ˆ on SpiderMonkey, 1.09ˆ on V8 and
1.20ˆ on JavaScriptCore. The proposed changes include reordering
property assignments to avoid inconsistent layouts, as well as replac-
ing a use of prototype.js’s class system with built-in JavaScript objects
for a key data structure. All these changes are mechanical in nature
because they mostly involve moving code around.

Splay This program is the same as the example in section 3.3.3.
Of the five reports, three recommend moving properties from a pro-
totype to its instances. These properties are using a default value on
the prototype and are sometimes left unset on instances, occasionally
triggering prototype chain walks. The fix is to change the constructor
to assign the default value to instances explicitly. While this change
may cause additional space usage, the time/space tradeoff is worth-
while and leads to speedups on all three engines. Two of the three
changes yield speedups, with the third having no noticeable effect.

NavierStokes The coach provides a single recommendation for
this program. It points out that some array accesses are not guaran-
teed to receive integers as keys. Enforcing this guarantee by bitwise
or’ing the index with 0, as is often done in asm.js codebases, solves
this issue but does not yield noticeable performance improvements.
It turns out that the code involved only accounts for only a small
portion of total execution time.

PdfJS One of the reports recommends initializing two properties
in the constructor, instead of waiting for a subsequent method call to
assign them, because the latter arrangement results in inconsistent ob-
ject layouts. As with the recommendation for the NavierStokes bench-
mark, this one concerns cold code21 and does not lead to noticeable
speedups.

We were not able to make changes based on the other four recom-
mendations, which may have been due to our lack of familiarity with

21 PdfJS’s profile is quite flat in general, suggesting that most low-hanging fruit has
already been picked, which is to be expected from such a high-profile production
application.

73

this large codebase. Programmers more familiar with PdfJS’s internals
may find these reports more actionable.

Crypto Four reports are actionable and lead to speedups. Three
of the four concern operations that sometimes add a property to an
object and sometimes assign an existing one, meaning that they there-
fore cannot be specialized for either use. Initializing those properties
in the constructor makes the above operations operate as assignments
consistently, which solves the problem. The last positive recommen-
dation concerns array accesses; it is similar to the one discussed in
conjunction with the NavierStokes benchmark, with the exception that
this one yields speedups.

Box2D Two reports recommend consistently initializing proper-
ties, as with the PdfJS benchmark. Applying those changes yields a
speedup of 1.07ˆ on SpiderMonkey. The other three recommenda-
tions are not actionable due to our cursory knowledge of this large
codebase. As with PdfJS, programmers knowledgeable about Box2D’s
architecture may fare better.

For reference, the Octane benchmark suite uses a minified version
of this program. As discussed above, minified programs are not suit-
able for coaching so we used a non-minified, but otherwise identical,
version of the program.

74

9
C O A C H I N G B E Y O N D R A C K E T A N D
S P I D E R M O N K E Y

The general idea of optimization coaching—and some of the specific
techniques decribed in previous chapters—should apply beyond the
optimizations covered by our two prototypes. In this chapter, we dis-
cuss several standard optimizations and describe how optimization
coaching may apply. For each optimization, we explain its purpose
and prerequisites. We then propose a way of detecting near misses of
this kind of optimization. Finally, we sketch ideas for how a program-
mer could react to a near miss.

9.1 Common Subexpression Elimination

Common expression elimination (Muchnick 1997 §13.1) is only valid
if the candidate expressions do not depend on variables that may be
mutated.

An optimization coach can detect cases where an expression is com-
puted multiple times—and is a candidate for common subexpression
elimitation—but a reference to a mutated variable prevents the opti-
mization from happening. The optimization coach could recommend
that the programmer reconsider mutating the relevant variable.

9.2 Test Reordering

Conditionals with multiple conjuncts can be optimized by perform-
ing the less expensive tests (e.g., integer comparisons) before more ex-
pensive ones (e.g., unknown function calls). This optimization (Much-
nick 1997 §12.3) is valid only if the reordered tests are pure.

An optimization coach could identify near misses by counting the
number of impure tests. Specifically, the lower the ratio of impure
tests to the total number of tests, the closer the optimizer is to trig-
gering the reordering. To further rank missed optimizations, an opti-
mization coach can take into account the size of the body of the condi-
tional when computing its badness metric. The cost of the condition
matters more for small conditionals. When reporting near misses, the
coach can recommend making the problematic tests pure or reorder-
ing them manually.

75

9.3 Scalar Replacement

A scalar replacement optimization (Muchnick 1997 §20.3) breaks up
aggregates, e.g., structures or tuples, and stores each component sep-
arately. Like inlining, scalar replacement is mostly useful because it
opens up further optimization possibilities and reduces allocation.
Optimizers perform scalar replacement only when the target aggre-
gate does not escape.

The Typed Racket optimizer performs scalar replacement on com-
plex numbers. Our prototype for Racket reports when and where the
optimization triggers, but it does not currently detect near misses or
provide recommendations.

An optimization coach could use the ratio of escaping use sites to
non-escaping use sites of the aggregate as a possible optimization
proximity metric. This metric can be refined by considering the size
of the aggregate: breaking up larger aggregates may enable more opti-
mizations than breaking up smaller ones. When it does discover near
misses, the optimization coach can recommend eliminating escaping
uses or manually breaking up the aggregate.

9.4 Loop-Invariant Code Motion

A piece of code is loop-invariant (Muchnick 1997 §13.2) if all reaching
definitions of variables in the piece of code come from outside the
loop. If one or more relevant definitions come from inside the loop,
the optimization does not apply.

A potential proximity metric for loop-invariant code motion would
measure how many problematic assignments in the body of the loop
could potentially be avoided. This can be refined by also considering
the ratio of assignments and references inside the loop for problem-
atic variables. Variables that are used often and mutated rarely may
be more easily made loop-invariant than those that are mutated of-
ten. When presenting such near misses, the optimization coach could
recommend avoiding the problematic assignments or performing the
code motion manually. Assignments to loop index variables cannot
be avoided, however; attempting to make them loop-invariant would
defeat the purpose of using a loop. Such necessary assignments can
be recognized and should not count towards the optimization prox-
imity metric.

9.5 Reducing Closure Allocation

Efficient treatment of closures is a key optimization for languages that
support higher-order functions. When a compiler decides whether—
and where—to allocate closures, it takes into account a number of
factors (Adams et al. 1986). A closed function requires only a code

76

pointer. A non-escaping function can have its environment allocated
on the stack, which avoids heap allocation. In the worst case, closures
must be allocated on the heap.

An optimization coach could warn programmers when the com-
piler needs to allocate closures on the heap. For instance, storing a
function in a data structure almost always forces it to be allocated
on the heap. An optimization coach can remind programmers of that
fact, and encourage them to avoid storing functions in performance-
sensitive code.

To reduce the number of false positives, the optimization coach
can discard reports that correspond to common patterns where heap
allocation is desired, such as functions that mutate variables from
their lexical context.

9.6 Specialization of Polymorphic Containers

Polymorphic containers, such as lists, usually require a uniform rep-
resentation for their contents in order for operations such as map to
operate generically. In some cases, however, a specialized represen-
tation, e.g., a list of unboxed floating-point numbers, can be more
efficient. Leroy (1992) and Shao and Appel (1995) propose optimiza-
tions that allow specialized representations to be used where possible
and to fall back on uniform representations when not. To avoid ex-
cessive copying when converting between representations, these op-
timizations are typically applied only when the element types are
sufficiently small. For example, a list of 4-tuples may be specialized,
but not a list of 5-tuples.

An optimization coach could communicate to programmers which
datatypes are not specialized and report how much they need to be
shrunk—or split up—to enable optimization.

9.7 Anchor Pointing

Anchor pointing (Allen and Cocke 1972)—also known in the Haskell
world as the case-of-case transformation (Peyton Jones 1996)—rewrites
nested conditionals of the form

(if (if test1 then1 else1)

then2 else2)

to this form

(if test1

(if then1 then2 else2)

(if else1 then2 else2))

which potentially exposes additional optimization opportunities.

77

This transformation may lead to code duplication—just as with
inlining—and may generate extra closures for join points. Whether
it is worth performing depends on the optimizations it enables, and
compilers must resort to heuristics. As with inlining, an optimization
coach can report cases where this transformation is possible but ulti-
mately not performed, along with the cause of the failure.

78

10
D E A D E N D S

The previous chapters describe successful coaching techniques. Along
the way, we also implemented other techniques that ultimately did
not prove to be useful and that we removed from our prototypes.
These techniques either produced reports that did not lead program-
mers to solutions or pointed out optimization failures that did not
actually impact performance.

In the interest of saving other researchers from traveling down the
same dead ends, this chapter describes two kinds of reports that we
studied without success: hidden costs and temporal patterns.

10.1 Hidden Costs

We investigated having our Racket prototype report operations with
hidden costs in addition to reporting optimization near misses. Such
operations have performance characteristics that are easily misunder-
stood and may depend on their context, their mode of use, etc. Misus-
ing, or overusing, such operations may harm program performance.

Examples of such operations that we looked into are:

• structure allocation, which can be significantly more expensive
than vector allocation in some cases;

• exact rational arithmetic, which may use unbounded amounts of
memory and can be introduced accidentally and silently in pro-
grams, in ways that may not be detectable by observing final
results only;

• implicit parameter dereference, which may cause functions to con-
sult their context redundantly;

• and generic sequence dispatch, which allows polymorphic han-
dling of sequence-like datatypes, e.g. lists, vectors and hash-
tables, at the cost of run-time dispatch.

Because operations with hidden costs are often desirable—or even
necessary—despite their cost, and because they are problematic only
in hot code, they may cause a coach to generate numerous false pos-
itives. In contrast, optimization failures are more often symptomatic
of actual performance issues, and fixing them usually requires light
program changes. Integrating profiling information, as discussed in
section 5.3.2, does alleviate the problem somewhat, but not entirely.
The number of false positives remained high.

79

Optimization Coach optionally displays hidden costs. In practice,
this option has mostly been used when auditing performance-critical
programs to ensure they do not use any potentially expensive fea-
tures. For this use case, false positives are not as problematic.

Treating operations with hidden costs as an accounting problem—
a class of problems that profiling handles well—as opposed to a per-
formance issue detection problem served as inspiration for feature-
specific profiling, which is the topic of part III of this dissertation.

10.2 Temporal Patterns

As discussed in section 5.4.3, JIT compilers introduce a temporal di-
mension to the optimization process. We investigated whether detect-
ing optimization success/failure patterns across this temporal dimen-
sion could produce actionable reports. Specifically, we looked into
two classes of patterns: regressions and flip-flops. None of our attempts
at finding such patterns yielded actionable reports, but there may be
other kinds of temporal patterns that we overlooked that would.

Regression Reports A regression occurs when an operation
that was optimized well during one compilation failed to be opti-
mized as well during a later compilation. This pattern occurred only
rarely in the JavaScript programs we studied, and when it did, it was
either inevitable, e.g., a call site becoming polymorphic as a result of
observing a sentinel value in addition to its usual receiver type, or
did not point to potential improvements.

Flip-Flop Reports As mentioned, SpiderMonkey discards ob-
ject code and type information during major collections. When this
happens, the engine must start gathering type information and com-
piling methods from scratch. In some cases, the new type information
may lead the engine to be optimistic in a way that was previously
invalidated, then forgotten during garbage collection, leading to ex-
cessive recompilation. Engine developers refer to this process of oscil-
lating between optimistic and conservative versions as flip-flopping.

For example, consider a method that almost always receives inte-
gers as arguments, but sometimes receives strings as well. Ion may
first optimize it under the first assumption, then back out of this deci-
sion after receiving strings. After garbage collection, type information
is thrown away and this process starts anew. As a result, the method
may be recompiled multiple times between each major collection.

Engine developers believe that this behavior can cause significant
performance issues, mostly because of the excessive recompilation.
While we observed instances of flip-flopping in practice, modifying
the affected programs to eliminate these recompilations often required
significant reengineering and did not yield observable speedups.

80

11
R E L AT E D W O R K

Optimization coaching assists programmers with finding missed opti-
mizations and gives suggestions on how to enable them. This chapter
briefly surveys other efforts that pursue optimization using program-
mer assistance.

11.1 Profilers

When they encounter performance issues, programmers often reach
for a profiler (Graham et al. 1982). Profilers answer the question

Which pieces of the program have a high cost?

where that cost may be expressed in terms of execution time, space,
I/O, or other metrics such as cache misses. Programmers must still
determine which parts of a program have an abnormally high cost
before they can address performance issues.

Optimization coaches answer a different question, namely

Which pieces could be optimized further?

and the answers identify the location of potential code improvements.
Profilers also do not interpret their results or provide recommen-

dations, both of which are key goals of optimization coaches. The
Zoom1 system-wide profiler is an exception, providing hints to pro-
grammers about how to replace possibly slow operations. However,
Zoom describes these operations at the assembly level, which makes
it challenging for programmers—especially for non-experts—to act
on these recommendations using a high-level language.

Note, though, that profilers can point to a broader range of per-
formance issues than optimization coaches. For example, a profiler
would report code that runs for a long time due to an inefficient algo-
rithm, which an optimization coach could not detect.

Finally, for profilers to produce meaningful results, they need to
run programs with representative input, but performance-heavy in-
puts may appear only after deployment, at which point fixing per-
formance bugs becomes significantly more expensive than during de-
velopment. In contrast, optimization coaches for AOT compilers can
operate entirely statically, and do not require representative inputs.
Optimization coaches for JIT compilers, however, share this limitation
of profilers.

To summarize, the two classes of tools cover different use cases and
are complementary.

1 http://www.rotateright.com/zoom.html

81

http://www.rotateright.com/zoom.html

11.2 Compiler Logging

From an implementation perspective, the simplest way to inform pro-
grammers about the optimizer’s behavior on their programs is to pro-
vide them with logs recording optimization decisions.

Several compilers provide optimization logging. GCC (The Free
Software Foundation 2012) supports the -ftree-vectorizer-verbose

flag for its vectorizer, for example. Similarly, GHC (The GHC Team
2011) provides the -ddump-rule-firings flag that lists the rewriting
rules that it applies to its input program.

In addition to logging optimization successes, Common Lisp com-
pilers such as SBCL (The SBCL Team 2012) and LispWorks (Lisp-
Works Ltd. 2013) also report some optimization failures, such as fail-
ures to specialize generic operations or to allocate objects on the stack.
The Cray XMT C and C++ compilers (Cray inc. 2011) report both
successful optimimizations and parallelization failures.2 Steele (1981)
describes an “accountable” source-to-source transformation system,
which reports both transformations it applies and those it fails to.3

JIT inspector (Hackett 2013) and IRHydra (Egorov 2014) report sim-
ilar kinds of information, as well as other optimization-related events
such as dynamic deoptimizations. JIT inspector reports optimizations
performed by IonMonkey, while IRHydra operates with the V8 and
Dart compilers. These two tools, unlike the compilers listed above,
provide user interfaces that are separate from their associated compil-
ers, which makes them easier to use by programmers.

The Open Dylan IDE (Dylan Hackers 2015, chapter 10) reports op-
timizations such as inlining and dispatch optimizations using high-
lights in the IDE’s workspace. Its use of highlights is similar to that
of our Racket prototype.

The FeedBack compiler (Binkley et al. 1998), based on lcc (Fraser
and Hanson 1995), improves on raw logging by visualizing the opti-
mizations it applies to programs. It was primarily designed to help
students and compiler writers understand how specific optimizations
work. Implicitly, it also informs programmers of the optimizations
applied to their programs. The Feedback Compiler’s visualizations
illustrate two optimizations: a stepper-like interface that replays com-
mon subexpression elimination events and a graphical representation
of array traversals affected by iteration space reshaping (Wolfe 1986).

In all these cases, the information provided is similar to the re-
sult of the logging phase of an optimization coach, without any rank-
ing, pruning or merging. Expert programmers knowledgeable about
compiler internals may find this information actionable and use it
as a starting point for their tuning efforts. In constrast, optimization
coaches target programmers who may not have the necessary knowl-

2 Thanks to Preston Briggs for the pointer.
3 Thanks to Guy Steele for the pointer.

82

edge and expertise to digest such raw information, and do so by pro-
viding recommendations that only require source-level knowledge.

Furthermore, due to the lack of pruning or ranking, using these
tools is time consuming even for experts. They must manually deter-
mine which reports are actionable, and manually prioritize those.

11.3 Analysis Visualization

A large number of tools exist for visualizing analysis results, of which
MrSpidey (Flanagan et al. 1996) is an early example. Some of these
tools focus on helping programmers understand and debug their pro-
grams; others help compiler writers understand and debug analyses.

A recent effort additionally aims to help programmers optimize
their programs. Lhoták’s work (Lhoták et al. 2004; Shaw 2005) in-
troduces a plug-in for the Eclipse IDE that displays the results of
static analyses computed by Soot (Vallée-Rai et al. 2000), an opti-
mization framework for Java bytecode. While most of these visualiza-
tions are targeted at compiler researchers or students learning compil-
ers, their visualization (Shaw (2005), page 87) of Soot’s array bounds
check analysis (Qian et al. 2002) informs programmers about prov-
ably safe array accesses. Similarly, their visualization of loop invari-
ants (Shaw (2005), page 99) highlights expressions that, according to
Soot’s analysis, can safely be hoisted out of the loop by the compiler.

Although these visualizations are relevant for programmers con-
cerned with optimization, they differ from those of an optimization
coach in two major ways. First, they report the results of an analysis,
not those of the optimizer. The two are closely related, but analysis
information is only a proxy for the decisions of the optimizer. Fur-
thermore, as implemented, the plug-in uses its own instance of Soot
(Shaw (2005), page 15), that may not reflect the analyses performed
by the compiler.

Second, while Lhoták’s tool reports potentially unsafe array ac-
cesses, and explains which bounds are to blame, it does not attempt
to distinguish between expected failures and near misses. In contrast
to an optimization coach, it also fails to issue recommendations point-
ing to the code that needs to change to eliminate the bounds check.

11.4 Interactive Optimization

Interactive optimization systems allow programmers to assist opti-
mizers, which allows them to perform optimizations optimizers could
not perform on their own. Some of these systems allow users to over-
ride the results of analysis, and some support applying arbitrary user-
supplied transformations during compilation.

The Parascope system provides an editor that displays the results
of dependence analysis for programmers to inspect (Cooper et al.

83

1993). It further allows programmers to override overly conservative
analysis results. Programmers can, for example, mark specific depen-
dences discovered by dependence analysis as infeasible. These depen-
dences are then ignored by the compiler when determining whether
optimizations are safe to perform, which allows it to perform opti-
mizations it could not otherwise. The editor also assists programmers
by applying source-to-source parallelization and dependence satisfac-
tion transformations at their request.

SUIF Explorer (Liao et al. 1999) is an interactive parallelization tool
that allows programmers to bring in domain knowledge to assist
the SUIF system’s interprocedural parallelization. This combination
makes parallelization both less error-prone than doing it manually,
and more broadly applicable than relying solely on fully automatic
techniques.

Like an optimization coach, SUIF explorer was designed to be easy
to use by programmers who may lack knowledge about program
analysis or compiler interals. The tool accomplishes this by provid-
ing a “wizard”-style interface—the parallelization guru—that guides
programmers throught the parallelization process, and by using pro-
gram slicing (Weiser 1981) to direct programmers’ attention to the
relevant code only.

The HERMIT (Farmer et al. 2012) GHC plugin provides an inter-
active shell that allows programmers to visualize and apply transfor-
mations to the internal representation of programs as they are being
compiled. This allows programmers to apply optimizations that may
be too specialized to be useful in a general-purpose compiler, but may
be worthwhile for specific programs. Programmers specify transfor-
mations using rewriting rules, which HERMIT then applies to GHC’s
internal representation.

VISTA (Zhao et al. 2002) is an interactive code improvement tool
that targets embedded system developers. It leverages user interac-
tion to help compilers make use of specific architectural features
that would be hard for compilers to exploit on their own—e.g., zero-
overhead loop buffers or modular address arithmetic—or to optimize
for application-specific size or power consumption goals. Like HER-
MIT, VISTA allows programmers to visualize intermediate compila-
tion stages and apply custom transformations during optimization.

Interactive optimization systems, while very flexible and powerful,
are only really suitable for use by expert programmers. With the ex-
ception of SUIF explorer, using the above systems require familiarity
with some combination of program analysis, compiler intermediate
representations, and optimization. SUIF explorer is significantly bet-
ter in that regard, but still requires its users to be knowledgeable
about parallel programming.

Such systems, especially those that allow programmers to override
analysis results or perform arbitrary transformations, may invalidate

84

safety guarantees provided by their host compiler, causing unsound
optimizations in the process. Optimization coaches may also encour-
age programmers to make incorrect changes to their programs but,
because the modified programs must still go through the compiler,
changes cannot break the compiler’s internal invariants, and there-
fore cannot introduce unsoundness. This also holds for source-to-
source interactive optimization systems.

Finally, all of the above tools target different domains from opti-
mization coaches, and are therefore complementary.

11.5 Rule-Based Performance Bug Detection

Several tools use rule-based approaches to detect code patterns that
may be symptomatic of performance bugs. This section describes rule-
based tools that are closely related to optimization coaching.

Jin et al. (2012) extract source-based rules from known performance
bugs in existing applications, then use these rules to detect new per-
formance bugs in other applications. These rules encode API misuses
and algorithmic issues that were responsible for performance woes.
Their tool provides recommendations based on the existing manual
fixes that resolved the original bugs. Their work focuses on algorith-
mic and API-related performance bugs and is complementary to op-
timization coaching.

JITProf (Gong et al. 2014) is a dynamic analysis tool for JavaScript
that detects code patterns that JavaScript JIT compilers usually do
not optimize well. The tool looks for six dynamic patterns during
program execution, such as inconsistent object layouts and arithmetic
operations on the undefined value, and reports instances of these pat-
terns to programmers.

The JITProf analysis operates independently from the host engine’s
optimizer; its patterns constitute a model of a typical JavaScript JIT
compiler. As a result, JITProf does not impose any maintenance bur-
den on engine developers, unlike a coach whose instrumentation
must live within the engine itself. Then again, this separation may
cause the tool’s model to be inconsistent with the actual behavior of
engines, either because the model does not perfectly match an en-
gine’s heuristics, or because engines may change their optimization
strategies as their development continues. In contrast, an optimiza-
tion coach reports ground truth by virtue of getting its optimization
information from the engine itself.

By not being tied to a specific engine, JITProf’s reports are not bi-
ased by the implementation details of that particular engine. Our ex-
periments show, however, that engines behave similarly enough in
practice that a coach’s recommendations, despite originating from a
specific engine, lead to cross-engine performance improvements (sec-
tion 8.2.1).

85

Chen et al. (2014) present a tool that uses static analysis to detect
performance anti-patterns that result from the use of object-relational
mapping in database-backed applications. The tool detects these anti-
patterns using rules that the authors synthesized from observing ex-
isting database-related performance bugs. To cope with the large num-
ber of reports, the tool estimates the performance impact of each anti-
pattern, and uses that information to prioritize reports. This is similar
to the use of ranking by optimization coaches.

11.6 Assisted Optimization

A number of performance tools are aimed at helping programmers
optimize specific aspects of program performance. This section dis-
cusses the ones most closely related to this work.

Kremlin (Garcia et al. 2011) is a tool that analyses program exe-
cutions and generates recommendations concerning parallelization
efforts. Like an optimization coach, Kremlin issues program-specific
recommendations. Kremlin requires representative input to produce
meaningful results, which exposes it to the same limitations as pro-
filers. Finally, Kremlin is a special-purpose tool; it is unclear whether
the underlying techniques would apply to other domains.

Similarly, Larsen et al. (2012) present an interactive tool that helps
programmers parallelize their programs. Like an optimization coach,
their tool relies on compiler instrumentation to reconstruct the op-
timization process—specifically automatic parallelization—and dis-
cover the causes of parallelization failures. Like Kremlin, Larsen et
al.’s tool is specifically designed for parallelization.

Precimonious (Rubio-González et al. 2013) is a tool that helps pro-
grammers balance precision and performance in floating-point com-
putations. It uses dynamic program analysis to discover floating-point
variables that can be converted to use lower-precision representations
without affecting the overall precision of the program’s results. The
tool then recommends assignments of precisions to variables that pro-
grammers can apply. This workflow is similar to that of an optimiza-
tion coach, but applied to a different domain.

Xu et al. (2010) present a tool that detects data structures that are ex-
pensive to compute, but that the program either does not use, or only
uses a small portion of. Based on the tool’s reports, programmers can
replace the problematic structures with more lightweight equivalents
that only store the necessary data. The tool relies on a novel program
slicing technique to detect those low-utility data structures.

11.7 Auto-Tuning

Auto-tuning tools (Frigo and Johnson 2005; Püschel et al. 2004; Wha-
ley and Dongarra 1998) automatically adapt programs to take advan-

86

tage of specific characteristics of their execution environment—e.g.,
hardware or operating system—or of their inputs—e.g., size or ma-
trix shape—and improve their performance.

Like optimization coaches, these tools improve program perfor-
mance via transformations that traditional optimizing compilers do
not perform. Auto-tuning tools perform these transformations auto-
matically, while optimization coaches rely on programmers to ap-
prove and apply them.

Each of these tools is specialized for a specific domain, e.g., Fourier
transforms or linear algebra. To apply auto-tuning to a new domain,
one must write a new tool, which is a significant endeavor. In con-
strast, optimization coaches are domain-agnostic.

11.8 Refactoring Tools

Some refactoring tools, in addition to performing transformations at
the programmer’s request, can also look for transformation opportu-
nities on their own. They can then either apply the transformations
directly, or request action from the programmer.

The workflow for these tools resembles that of an optimization
coach: the tool identifies an opportunity for improvement, and the
program is edited to incorporate it. The difference between refactor-
ing tools and optimization coaches lies in who transforms the pro-
gram. Some refactoring tools can perform transformations automati-
cally, while optimization coaches rely on programmer action.

Refactoring tools with detection capabilities tend to focus on a par-
ticular domain—parallel data structures (Dig et al. 2009), API usage
patterns (Holmes and Murphy 2005), code smells (Nongpong 2012),
or access-control in web applications (Son et al. 2013), for example—
and are complementary to optimization coaches. Adding automatic
refactoring support to optimization coaches while keeping program-
mers in control is an open problem.

87

Part III

F E AT U R E - S P E C I F I C P R O F I L I N G

12
W E I G H I N G L A N G U A G E F E AT U R E S

Many linguistic features1 come with difficult-to-predict performance
costs. First, the cost of a specific use of a feature depends on its con-
text. For instance, use of reflection may not observably impact the
execution time of some programs but may have disastrous effects on
others. Second, the cost of a feature also depends on its mode of use;
a higher-order type coercion tends to be more expensive than a first-
order coercion (see chapter 13).

When cost problems emerge, programmers often turn to perfor-
mance tools such as profilers. A profiler reports costs, e.g., time or
space costs, in terms of location, which helps programmers focus on
frequently executed code. Traditional profilers, however, do little to
help programmers find the cause of their performance woes or po-
tential solutions. Worse, some performance issues may have a unique
cause and yet affect multiple locations, spreading costs across large
swaths of the program. Traditional profilers fail to produce actionable
observations in such cases.

To address this problem, we propose feature-specific profiling, a tech-
nique that reports time spent in linguistic features. Where a tradi-
tional profiler may break down execution time across modules, func-
tions, or lines, a feature-specific profiler assigns costs to instances
of features—a specific type coercion, a particular software contract,
or an individual pattern matching form—whose actual costs may be
spread across multiple program locations.

Feature-specific profiling complements the view of a conventional
profiler. In many cases, this orthogonal view makes profiling informa-
tion actionable. Because these profilers report costs in terms of spe-
cific features, they point programmers towards potential solutions,
e.g., using a feature differently or avoiding it in a particular context.

The following chapters introduce the idea of feature-specific pro-
filing and illustrate it using examples from our Racket-based pro-
totype. Chapter 13 describes the features that we chose to support.
Chapter 14 outlines the architecture of our framework, provides back-
ground on its instrumentation technique, and explains how to profile
structurally simple features. Chapters 15 and 16 describe two exten-
sions to the basic framework, to profile structurally rich features, and
to control instrumentation, respectively. Then, chapter 17 presents
evaluation results, chapter 18 discusses limitations of our approach,

1 With “linguistic feature” we mean the constructs of a programming language itself,
combinator-style DSLs such as those common in the Haskell world, or “macros”
exported from libraries, such as in Racket or Rust.

91

and chapter 19 sketches how feature-specific profiling would apply
beyond our prototype. Finally, chapter 20 discusses related work.2

12.1 Prototype

Our prototype tool is available from the Racket package catalog,3 and
its source is also publicly available.4 Leif Andersen contributed to the
development of recent versions of the prototype.

Our feature-specific profiler has successfully been used, among oth-
ers, to diagnose and resolve performance issues in gradually typed
programs (Takikawa et al. 2015).

2 Some of the material in part III of this dissertation appeared in Vincent St-Amour,
Leif Andersen, and Matthias Felleisen. Feature-specific profiling. In Proc. CC, 2015.

3 https://pkgs.racket-lang.org/
4 https://github.com/stamourv/feature-profile

92

https://pkgs.racket-lang.org/
https://github.com/stamourv/feature-profile

13
F E AT U R E C O R P U S

In principle, a feature-specific profiler should support all the features
that a language offers or that the author of a library may create.
This section presents the Racket features that our prototype feature-
specific profiler supports, which includes features from the standard
library, and from three third-party libraries. The choice is partially
dictated by our underlying instrumentation technology, which can
deal with linguistic features whose dynamic extent obeys a stack-like
behavior.

The list introduces each feature and outlines the information the
profiler provides about each. We have identified the first six features
below as causes of performance issues in existing Racket programs.
Marketplace processes hinder reasoning about performance while not
being expensive themselves. The remaining constructs are considered
expensive and are often first on the chopping block when program-
mers optimize programs, but our tool does not discover a significant
impact on performance in ordinary cases. A feature-specific profiler
can thus dispel the myths surrounding these features by providing
measurements.

13.1 Contracts

Behavioral software contracts are a linguistic mechanism for express-
ing and dynamically enforcing specifications. They were introduced
in Eiffel (Meyer 1992) and have since spread to a number of platforms
including Python, JavaScript, .NET and Racket.

When two components—e.g., modules or classes—agree to a con-
tract, any value that flows from one component to the other must
conform to the specification. If the value satisfies the specification,
program execution continues normally. Otherwise, an exception is
raised. Programmers can write contracts using the full power of the
host language. Because contracts are checked dynamically, however,
computationally intensive specifications can have a significant impact
on program performance.

For specifications on objects (Strickland and Felleisen 2010), struc-
tures (Strickland et al. 2012) or closures (Findler and Felleisen 2002),
the cost of checking contracts is non-local. The contract system de-
fers checking until methods are called or fields are accessed, which
happens after crossing the contract boundary. To predict how often a
given contract is checked, programmers must understand where the
contracted value may flow. Traditional profilers attribute costs to the

93

driver.rkt

(require "http-client.rkt" "crawler.rkt")

(define fetch (make-fetcher "fetcher/1.0"))

(define crawl (make-crawler fetch))

... (crawl "racket-lang.org") ...

http-client.rkt

(provide

(contract-out

[make-fetcher (-> user-agent? (-> safe-url? html?))]))

(define (make-fetcher user-agent) (lambda (url) ...))

(define (safe-url? url) (member url whitelist))

Figure 34: Contract for an HTTP client

location where contracts are checked, leaving it to programmers to
trace those costs to specific contracts.

Figure 34 shows an excerpt from an HTTP client library. It provides
make-fetcher, which accepts a user agent and returns a function that
performs requests using that user agent. The HTTP client accepts only
those requests for URLs that are on a whitelist, which it enforces with
the underlined contract. The driver module creates a crawler that
uses a fetching function from the http-client module. The crawler
then calls this function to access web pages, triggering the contract
each time. Because checking happens while executing crawler code,
a traditional profiler attributes contract costs to crawl, but it is the
contract between http-client and driver that is responsible.

Because of the difficulty of reasoning about the cost of contracts,
performance-conscious programmers often avoid them. This, how-
ever, is not always possible. First, the Racket standard library uses
contracts pervasively to preserve its internal invariants and provide
helpful error messages. Second, many Racket programs combine un-
typed components written in Racket with components written in
Typed Racket. To preserve the invariants of typed components, Typed
Racket inserts contracts at boundaries between typed and untyped
components (Tobin-Hochstadt and Felleisen 2006). Because these con-
tracts are necessary for Typed Racket’s safety and soundness, they
cannot be avoided.

To provide programmers with an accurate view of the costs of con-
tracts and their actual sources, our profiler provides several contract-
related reports and visualizations.

94

13.2 Output

Programs that interact heavily with files, the console or the network
may spend a significant portion of their running time in the I/O sub-
system. In these cases, optimizing the program’s computation is of
limited usefulness; instead programmers must be aware of I/O costs.

Our tool profiles the time programs spend in Racket’s output sub-
system and traces it back to individual output function1 call sites.

13.3 Generic Sequence Dispatch

Racket’s for loops operate on any sequence datatype. This includes
built-in types such as lists, vectors, hash-tables and strings as well
as user-defined datatypes that implement the sequence interface. For
example, the first loop in figure 35 checks for the existence of all files
contained in source-files, regardless of which type of sequence it
is. While this genericity encourages code reuse, it introduces runtime
dispatch. For loops whose bodies do not perform much work, the
overhead from dispatch can dwarf the cost of the loop’s actual work.

To alleviate this cost, programmers can manually specialize their
code for a specific type of sequence by providing type hints to itera-
tions forms. The second loop in figure 35 uses the in-list type hint
and is only valid if source-files is a list; it throws an exception if
source-files is, e.g., a vector. This eliminates dispatch overhead, but
is not always desirable from a software engineering perspective. Nev-
ertheless, specializing sequences is often one of the first changes ex-
perienced Racket programmers perform when optimizing programs.

Our feature-specific profiler reports which iteration forms spend
significant time in sequence dispatch to pinpoint which uses would
benefit most from specialization. The use of our feature-specific pro-
filer rejects the prejudice that sequence dispatch is always expensive.

13.4 Type Casts and Assertions

Typed Racket, like other typed languages, provides type casts as
an “escape hatch”. They can help programmers get around the con-
straints of the type system. Figure 36 shows one case where such
an escape hatch is necessary. The program reads (what it expects to
be) a list of numbers from standard input. Because users can type
in anything they want, the call to read is not guaranteed to return
a list of numbers, meaning its result must be cast to get around the
typechecker.

Like Java’s casts, Typed Racket’s casts are safe. Runtime checks en-
sure that a cast’s target is of a compatible type, otherwise it throws

1 Racket, like Scheme before it, uses the notion of ports to unify different kinds of
output, such as files or sockets, and use the same functions for all of them.

95

(define source-files ...)

(for ([file source-files]) ; generic

(unless (file-exists? file)

(error "file does not exist" file)))

(for ([file (in-list source-files)]) ; specialized

(unless (file-exists? file)

(error "file does not exist" file)))

Figure 35: Generic and specialized sequence operations

(: mean : (Listof Number) Ñ Number)

(define (mean l) (/ (sum l) (length l)))

(mean (cast (read) (Listof Number)))

Figure 36: Taking the mean of a user-provided list of numbers

an exception. As a result, casts can have a negative impact on perfor-
mance. It can be especially problematic for casts to higher-order types
that must wrap their target, causing extra indirections and imposing
an overhead similar to that of higher-order contracts.

Typed Racket also provides type assertions as a lighter-weight but
less powerful alternative to casts. Assertions also perform dynamic
checks but do not support higher-order types and therefore cannot
introduce wrapping. Because of this lack of wrapping, assertions are
usually preferable to casts when it comes to performance.

Our feature-specific profiler reports time spent in each cast and
assertion site in the program.

13.5 Parser Backtracking

The Parsack parsing library2 provides a disjunction operator that at-
tempts to parse alternative non-terminals in sequence. The operator
backtracks in each case unless the non-terminal successfully matches.
When the parser backtracks, however, any work it did for matching
that non-terminal does not contribute to the final result and is wasted.

Hence, ordering non-terminals within disjunctions to reduce back-
tracking, e.g., by putting infrequently matched non-terminals at the

2 https://github.com/stchang/parsack

96

https://github.com/stchang/parsack

end, can significantly improve parser performance. Our feature-specific
profiler reports time spent on each disjunction branch from which the
parser ultimately backtracks.

13.6 Shill Security Policies

The Shill language (Moore et al. 2014) restricts how scripts can use
system resources according to user-defined security policies. Shill en-
forces policies dynamically, by interposing dynamic checks on each
security-sensitive operation. These checks incur run-time overhead.

Because Shill is implemented as a Racket extension, it is an ideal
test case for our feature-specific profiler. Our tool succeeds in report-
ing time spent enforcing each policy.

13.7 Marketplace Processes

The Marketplace library (Garnock-Jones et al. 2014) allows program-
mers to express concurrent systems functionally as trees of sets of
processes grouped within task-specific virtual machines (VMs)3 that
communicate via a publish and subscribe mechanism. Marketplace
is especially suitable for building network services; it has been used
as the basis of an SSH (Ylönen and Lonvick 2006) server (see sec-
tion 17.1.4) and a DNS (Mockapteris 1987) server. While organizing
processes in a hierarchy of VMs has clear software engineering ben-
efits, deep VM nesting hinders reasoning about performance. Worse,
different processes often execute the same code, but because these
processes do not map to threads, traditional profilers may attribute
all the costs to one location.

Our feature-specific profiler overcomes both of these problems. It
provides process accounting for their VMs and processes and maps
time costs to individual processes, e.g., the authentication process for
an individual SSH connection, rather than the authentication code
shared among all processes. For VMs, it reports aggregate costs and
presents their execution time broken down by children.

13.8 Pattern Matching

Racket sports an expressive and extensible pattern matcher (Tobin-
Hochstadt 2011); users can write pattern-matching plug-ins to imple-
ment, e.g., custom views on data structures or new types of binding
patterns.

Racket programmers often worry that pattern matching introduces
more predicate tests and control transfers than handwritten code

3 These VMs are process containers running within a Racket OS-level process. The
relationship with their more heavyweight cousins such as VirtualBox, or the JVM, is
one of analogy only.

97

would, resulting in less efficient programs. In reality, Racket’s pat-
tern matching library uses a sophisticated pattern compiler (Le Fes-
sant and Maranget 2001) that normally generates highly efficient code.
However, some features of the pattern matcher, such as manual back-
tracking, carry additional costs and must be used with caution.

Our feature-specific profiler reports time spent in individual pat-
tern matching forms, excluding time in the user-provided form bod-
ies. With the pattern matching plug-in, we confirm that uses of pat-
tern matching usually run efficiently.

13.9 Method Dispatch

On top of its functional core, Racket supports object-oriented pro-
gramming with first-class classes (Flatt et al. 2006). In comparison
to function calls, though, method calls have a reputation for being
expensive.

In practice, the overhead of method calls is usually dwarfed by
the cost of the work inside method bodies. Since most operations,
even those inside method bodies, are performed using function calls,
method dispatch is not as omnipresent in Racket as in most object-
oriented languages. As a consequence, it is rarely a bottleneck in
Racket programs.

Our tool profiles the time spent performing method dispatch for
each method call site, reporting the rare cases where dispatch costs
are significant.

13.10 Optional and Keyword Argument Functions

Like many languages, Racket offers functions that support optional
positional arguments as well as keyword-based non-positional argu-
ments. These features allow for transparently extending APIs with-
out breaking backwards compatibility, and for writing highly config-
urable interfaces.4

Figure 37 provides two examples of API extension. The member?

function, which checks whether a value is contained in a list, option-
ally takes an equality function for list elements. Racket’s sort func-
tion accepts an optional #:key keyword argument, which specifies the
part of the elements that should be used for comparison.

To support these additional modes, the Racket compiler provides a
special function call protocol, distinct from and far less efficient than
the regular protocol. As a result, some Racket programmers are reluc-
tant to use optional and keyword argument functions in performance-
sensitive code.

4 The serve/servlet function—one of the main entry points of the Racket web server
(Krishnamurthi et al. 2007)—supports 27 optional keyword arguments, which con-
trol various aspects of web server configuration.

98

(define books

(list war-and-peace les-misérables don-quixote))

> (member? anna-karenina books)

#f

> (member? anna-karenina books same-author?)

#t

> (sort books > #:key book-page-number)

(list

(book "Les Misérables" "Victor Hugo" 1488)

(book "War and Peace" "Leo Tolstoy" 1440)

(book "Don Quixote" "Miguel de Cervantes" 1169))

Figure 37: Example use of optional and keyword arguments

The reality is less bleak than imagined. The special protocol is only
necessary when calling “unknown”5 functions with optional or key-
word arguments. In all other cases, uses of the protocol can be elim-
inated statically. Unknown uses account for only a small portion of
all uses of optional and keyword argument functions, and the special
protocol is therefore rarely a problem in practice.

To inform programmers about the true cost of optional and key-
word argument functions, our feature-specific profiler reports time
spent performing the special function call protocol for individual
functions.

5 Unknown functions are typically functions used in a higher-order way or those
bound to mutated variables.

99

14
P R O F I L I N G S I M P L E F E AT U R E S

Because programmers may create new features, our profiler consists
of two parts: the core framework and feature-specific plug-ins. The
core is a sampling profiler with an API that empowers the implemen-
tors of linguistic features to create plug-ins for their creations.

The core part of our profiler employs a sampling-thread architec-
ture to detect when programs are executing certain pieces of code.
When a programmer turns on the profiler, the program spawns a sep-
arate sampling thread, which inspects the stack of the main thread
at regular intervals. Once the program terminates, an offline analysis
deals with the collected stack information, looking for feature-specific
stack markers and producing programmer-facing reports.

The feature-specific plug-ins exploit this core by placing markers
on the control stack that are unique to their construct. Each marker
indicates when a feature executes its specific code. The offline anal-
ysis can then use these markers to attribute specific slices of time
consumption to a feature.

For our Racket-based prototype, the plug-in architecture heavily
relies on Racket’s continuation marks (Clements et al. 2001), an API
for stack inspection. Since this API differs from stack inspection pro-
tocols in other languages, the first section of this chapter provides
background on continuation marks. The second explains how the im-
plementer of a feature uses continuation marks to interact with the
profiler framework for structurally simple constructs. The last section
presents the offline analysis.

14.1 Inspecting the Stack with Continuation Marks

Any program may use continuation marks to attach key-value pairs
to stack frames and retrieve them later. Racket’s API provides two
main operations:

• (with-continuation-mark key value expr), which attaches
(key, value) to the current stack frame and evaluates expr.

• (current-continuation-marks [thread]), which walks the stack
and retrieves all key-value pairs from the stack of an optionally
specified thread, which defaults to the current thread. This al-
lows one thread to inspect the stack of another.

Programs can also filter marks to consider only those with relevant
keys using

101

; Tree = Number | [List Number Tree Tree]

; paths : Tree -> [Listof [Listof Number]]

(define (paths t)

(cond

[(number? t)

(list (cons t (continuation-mark-set->list

(current-continuation-marks)

'paths)))]

[else

(with-continuation-mark 'paths (first t)

(append (paths (second t)) (paths (third t))))]))

> (paths '(1 (2 3 4) 5))

'((3 2 1) (4 2 1) (5 1))

Figure 38: Recording paths in a tree with continuation marks

• (continuation-mark-set->list marks key), which returns the
list of values with that key contained in marks.

Outside of these operations, continuation marks do not affect a pro-
gram’s semantics.1

Figure 38 illustrates the working of continuation marks with a func-
tion that traverses binary trees and records paths from leaves to the
root. Whenever the function reaches an internal node, it leaves a con-
tinuation mark recording that node’s value. When it reaches a leaf, it
collects those marks, adds the leaf to the path and returns the com-
pleted path.

Continuation marks are extensively used in the Racket ecosystem,
notably for the generation of error messages in DrRacket (Findler et al.
2002), an algebraic stepper (Clements et al. 2001), the DrRacket debug-
ger, for thread-local dynamic binding (Dybvig 2009), and for excep-
tion handling. Serializable continuations in the PLT web server (Mc-
Carthy 2010) are also implemented using continuation marks.

The built-in Racket statistical profiler, written by Eli Barzilay, relies
on continuation marks and sampling. We reused some of the tech-
niques it uses in the process of building our feature-specific profiling
prototype.

1 Continuation marks also preserve proper tail call behavior.

102

(define-syntax (assert stx)

(syntax-case stx ()

[(assert v p) ; the compiler rewrites this to:

(quasisyntax

(let ([val v] [pred p])

(with-continuation-mark

'TR-assertion (unsyntax (source-location stx))

(if (pred val) val (error "assertion")))))]))

Figure 39: Instrumentation of assertions (excerpt)

14.2 Feature-specific Data Gathering

During program execution, feature plug-ins leave feature markers on
the stack. The core profiler gathers these markers concurrently, using
a sampling thread.

Marking The author of a feature-specific plug-in must change
the implementation of the feature so that instances mark themselves
with feature marks. These marks allow the profiler to observe whether
a thread is currently executing code related to a feature. It suffices to
wrap the relevant code with with-continuation-mark.

Figure 39 shows an excerpt from the instrumentation of Typed
Racket assertions. The underlined conditional is responsible for per-
forming the actual assertion. The feature mark’s key should uniquely
identify the feature. In this case, we use the symbol 'TR-assertion as
key. Unique choices avoid false reports and interference by distinct
plug-ins. By using distinct keys for each feature, plug-ins compose
naturally. As a consequence, our feature-specific profiler can present
a unified report to users; it also implies that users need not select in
advance the constructs they deem problematic.

The mark value—or payload—can be anything that identifies the
instance of the feature to which the cost should be assigned. In fig-
ure 39, the payload is the source location of a specific assertion, which
allows the profiler to compute the cost of individual assertions.

Writing such plug-ins is simple and involves only non-instrusive,
local code changes, but it does require access to the implementation
of the feature of interest. Because it does not require any specialized
profiling knowledge, however, it is well within the reach of the au-
thors of linguistic constructs.

Antimarking Features are seldom “leaves” in a program; fea-
ture code usually runs user code whose execution time may not have
to count towards the time spent in the feature. For example the pro-

103

(define-syntax (lambda/keyword stx)

(syntax-case stx ()

[(lambda/keyword formals body)

; the compiler rewrites this to:

(quasisyntax

(lambda (unsyntax (handle-keywords formals))

(with-continuation-mark

'kw-opt-protocol (unsyntax (source-location stx))

(; parse keyword arguments

; compute default values

; ...

(with-continuation-mark

'kw-opt-protocol 'antimark

body)))))])) ; body is use-site code

Figure 40: Use of antimarks in instrumentation

filer must not count the time spent in function bodies towards the
function call protocol for keyword arguments.

To solve this problem, a feature-specific profiler expects antimarks
on the stack. Such antimarks are continuation marks with a distin-
guished value that delimit a feature’s code. Our protocol dictates that
the continuation mark key used by an antimark be the same as that
of the feature it delimits and that they use the 'antimark symbol as
payload. Figure 40 illustrates the idea with code that instruments a
simplified version of Racket’s optional and keyword argument proto-
col. In contrast, assertions do not require antimarks because no non-
feature code executes inside the marked region.

The analysis phase recognizes antimarks and uses them to cancel
out feature marks. Time is attributed to a feature only if the most
recent mark is a feature mark. If it is an antimark, the program is
currently executing user code, which should not be counted.

Sampling During program execution, a sampling thread period-
ically collects and stores continuation marks from the main thread,
along with timestamps. The sampling thread has knowledge of the
keys used by feature marks and collects marks for all features at once.

14.3 Analyzing Feature-specific Data

After the program execution terminates, the core profiler analyzes the
data collected by the sampling thread to produce a cost report.

104

Cost assignment The profiler uses a standard sliding window
technique to assign a time cost to each sample. The time cost of a
sample is the sum of the duration of the time interval between it
and its predecessor and that of the one between it and its successor,
divided by two. Only samples with a feature mark as the most recent
mark contribute time towards features.

Payload grouping As explained in section 14.2, payloads iden-
tify individual feature instances. Our accounting algorithm groups
samples by payload and adds up the cost of each sample; the sums
correspond to the cost of each feature instance. Our profiler then gen-
erates reports for each feature, using payloads as keys and time costs
as values.

Report composition Finally, after generating individual feature
reports, our profiler combines them into a unified report. Features ab-
sent from the program or too inexpensive to ever be sampled are
pruned to avoid clutter. The report lists features in descending order
of cost and does likewise for instances within feature reports.

Figure 41 shows a feature profile for a Racket implementation of
the FizzBuzz2 program with an input of 10,000,000. Most of the ex-
ecution time is spent printing numbers not divisible by either 3 or
5 (line 16), which includes most natural numbers. About a second is
spent in generic sequence dispatch; the range function produces a list,
but the for iteration form accepts all sequences and must therefore
process its input generically.

2 http://imranontech.com/2007/01/24/

105

http://imranontech.com/2007/01/24/

10 (define (fizzbuzz n)

11 (for ([i (range n)])

12 (cond

13 [(divisible i 15) (printf "FizzBuzz\n")]

14 [(divisible i 5) (printf "Buzz\n")]

15 [(divisible i 3) (printf "Fizz\n")]

16 [else (printf "„a\n" i)])))

17

18 (feature-profile

19 (fizzbuzz 10000000))

Output accounts for 68.22% of running time

(5580 / 8180 ms)

4628 ms : fizzbuzz.rkt:16:24

564 ms : fizzbuzz.rkt:15:24

232 ms : fizzbuzz.rkt:14:24

156 ms : fizzbuzz.rkt:13:24

Generic sequences account for 11.78% of running time

(964 / 8180 ms)

964 ms : fizzbuzz.rkt:11:11

Figure 41: Feature profile for FizzBuzz

106

15
E X T E N S I O N : P R O F I L I N G S T R U C T U R E - R I C H
F E AT U R E S

The basic architecture assumes that the placement of a feature and the
location where it incurs run-time costs are the same or in one-to-one
correspondence. In contrast to such structurally simple features, others
cause time consumption in many different places or several different
instances of a construct may contribute to a single cost center. We
refer to the latter two kinds of linguistic features as structurally rich.

While the creator of a structurally rich feature can use a basic plug-
in to measure some aspects of its cost, it is best to adopt a different
strategy for evaluating such features. This section shows how to go
about such an adaptation. Section 17.2 illustrates with an example
how to migrate from a basic plug-in to one appropriate for a struc-
turally rich feature.

15.1 Custom Payloads

Instrumentation for structure-rich features uses arbitrary values as
mark payloads instead of locations.

Contracts Our contract plug-in uses blame objects as payloads.
A blame object explains contract violations and pinpoints the faulty
party; every time an object traverses a higher-order contract boundary,
the contract system attaches a blame object. Put differently, a blame
object holds enough information—the contract to check, the name of
the contracted value, and the names of the components that agreed to
the contract—to reconstruct a complete picture of contract checking
events. The contract system creates blame objects as part of its regular
operation, and uses those to generate error messages.

Marketplace processes The Marketplace plug-in uses process
names as payloads. Since current-continuation-marks gathers all the
marks currently on the stack, the sampling thread can gather core
samples.1 Because Marketplace VMs are spawned and transfer control
using function calls, these core samples include not only the current
process but also all its ancestors—its parent VM, its grandparent, etc.

Parser backtracking The Parsack plug-in combines three val-
ues into a payload: the source location of the current disjunction, the
index of the active branch within the disjunction, and the offset in

1 In analogy to geology, a core sample includes marks from the entire stack.

107

the input where the parser is currently matching. Because parsing a
term may require recursively parsing sub-terms, the Parsack plug-in
gathers core samples that allow it to attribute time to all active non-
terminals.

While storing rich payloads is attractive, plug-in writers must avoid
excessive computation or allocation when constructing payloads. Even
though the profiler uses sampling, payloads are constructed every
time feature code is executed, whether or not the sampler observes it.

15.2 Analyzing Structure-Rich Features

Programmers usually cannot directly digest information generated
via custom payloads. If a feature-specific plug-in uses such payloads,
its creator should implement an analysis pass that generates user-
facing reports.

Contracts The goal of the contract plug-in is to report which
pairs of parties impose contract checking, and how much the check-
ing costs. Hence, the analysis aims to provide an at-a-glance overview
of the cost of each contract and boundary.

To this end, our analysis generates a module graph view of contract
boundaries. This graph shows modules as nodes, contract bound-
aries as edges and contract costs as labels on edges. Because typed-
untyped boundaries are an important source of contracts, the module
graph distinguishes typed modules (in green) from untyped modules
(in red). To generate this view, our analysis extracts component names
from blame objects. It then groups payloads that share pairs of par-
ties and computes costs as discussed in section 14.3. The middle part
of figure 42 shows the module graph for a program that constructs
two random matrices and multiplies them. This code resides in an un-
typed module, but the matrix functions of the math library reside in
a typed module. Hence linking the client and the library introduces
a contract boundary between them.

In addition to the module graph, our feature-specific profiler pro-
vides two other views as well. The bottom portion of figure 42 shows
the by-value view, which provides fine-grained information about the
cost of individual contracted values. The boundary view provides the
same information as the by-value view, but grouped graphically by
component. It is useful when identifying functions or components
that could benefit from being moved across a boundary.

Marketplace Processes The goal of feature-specific analysis
for Marketplace processes is to assign costs to individual processes
and VMs, as opposed to the code they execute. Marketplace feature

108

(define (random-matrix)

(build-matrix 200 200

(lambda (i j) (random))))

(feature-profile

(matrix* (random-matrix) (random-matrix)))

Contracts account for 47.35% of running time

(286 / 604 ms)

188 ms : build-matrix

(-> Int Int (-> any any any) Array)

88 ms : matrix-multiply-data

(-> Array Array (values any any any any any

(-> any))))

10 ms : make-matrix-multiply

(-> Int Int Int (-> any any any) Array)

Figure 42: Module graph and by-value views of a contract boundary

109

==
Total Time Self Time Name Local%
==
100.0% 32.3% ground

(tcp-listener 5999 ::1 53588) 33.7%
tcp-driver 9.6%
(tcp-listener 5999 ::1 53587) 2.6%
[...]

33.7% 33.7% (tcp-listener 5999 ::1 53588)
2.6% 2.6% (tcp-listener 5999 ::1 53587)
[...]

Figure 43: Marketplace process accounting (excerpt)

marks use the names of processes and VMs as payloads, which allows
the plug-in to distinguish separate processes executing the same code.

Our analysis uses full core samples to attribute costs to VMs based
on the costs of their children. These core samples record the entire
ancestry of processes in the same way the call stack records function
calls. We exploit that similarity and reuse standard edge profiling
techniques to attribute costs to the entire ancestry of a process.

Figure 43 shows the accounting from a Marketplace-based echo
server. The first entry of the profile shows the ground VM, which
spawns all other VMs and processes. The rightmost column shows
how execution time is split across the ground VM’s children. Of note
are the processes handling requests from two clients. As reflected in
the profile, the client on port 53588 is sending ten times as much input
as the one on port 53587.

Parser backtracking The feature-specific analysis for Parsack
determines how much time is spent backtracking for each branch of
each disjunction. The source locations and input offsets in the payload
allows the plug-in to identify each unique visit that the parser makes
to each disjunction during parsing.

We detect backtracking as follows. Because disjunctions are ordered,
the parser must have backtracked from branches 1 through n ´ 1

once it reaches the nth branch of a disjunction. Therefore, whenever
the analysis observes a sample from branch n of a disjunction at a
given input location, it attributes backtracking costs to the preced-
ing branches. It computes that cost from the samples taken in these
branches at the same input location. As with the Marketplace plug-in,
the Parsack plug-in uses core samples and edge profiling to handle
the recursive structure of the parsing process.

Figure 44 shows a simple parser that first attempts to parse a se-
quence of bs followed by an a, and in case of failure, backtracks in
order to parse a sequence of bs. The bottom portion of figure 44

110

26 (define $a (compose $b (char #\a)))

27 (define $b (<or> (compose (char #\b) $b)

28 (nothing)))

29 (define $s (<or> (try $a) $b))

30

31 (feature-profile (parse $s input))

Parsack Backtracking

====================================

Time (ms / %) Disjunction Branch

====================================

2076 46% ab.rkt:29:12 1

Figure 44: A Parsack-based parser and its backtracking profile

shows the output of the feature-specific profiler when running the
parser on a sequence of 9,000,000 bs. It confirms that the parser had
to backtrack from the first branch after spending almost half of the
program’s execution attempting it. Swapping the $a and $b branches
in the disjunction eliminates this backtracking.

111

16
E X T E N S I O N : I N S T R U M E N TAT I O N C O N T R O L

As described so far, plug-ins insert continuation marks regardless of
whether a programmer wishes to profile or not. We refer to this mode
of operation as active marking. For features where individual instances
perform a significant amount of work, such as contracts, the overhead
of feature marks is usually not significant (section 17.3). For other
features, such as fine-grained console output where the aggregate
cost of individually inexpensive instances is significant, the overhead
of marks can be problematic. In such situations, programmers want
to control when marks are applied on a by-execution basis.

In addition, programmers may also want to control where mark
insertion takes place to avoid reporting costs in code that they cannot
modify or wish to ignore. For instance, reporting that some function
in the standard library performs a lot of pattern matching is useless
to most programmers; they cannot fix it.

To establish control over the when and where of continuation marks,
our framework introduces the notion of latent marks. A latent mark
is an annotation that can be turned into an active mark by a pre-
processor or a compiler pass. We distinguish between syntactic latent
marks for use with features implemented using meta-programming
and functional latent marks for use with library or runtime functions.

16.1 Syntactic Latent Marks

Syntactic latent marks exist as annotations on the intermediate repre-
sentation (IR) of programs. To add a latent mark, the implementation
of a feature leaves tags1 on the residual program’s IR instead of di-
rectly inserting feature marks. These tags are discarded after compi-
lation and thus have no run-time effect on the program. Other meta-
programs or the compiler can observe latent marks and turn them
into active marks.

Our implementation uses Racket’s compilation handler mechanism
to interpose the activation pass between macro-expansion and the
compiler’s front end with a command-line flag that enables the com-
pilation handler. The compilation handler then traverses the input
program, replacing any syntactic latent mark it finds with an active
mark. Because latent marks are implicitly present in programs, no
library recompilation is necessary. The programmer must merely re-
compile the code to be profiled.

1 We use Racket’s syntax-property mechanism, but any IR tagging mechanism works.

113

This method applies only to features implemented using meta-
programming. Because Racket relies heavily on syntactic extension,
most of our plug-ins use syntactic latent marks.

16.2 Functional Latent Marks

Functional latent marks offer an alternative to syntactic latent marks.
Instead of tagging the programmer’s code, a compiler pass recognizes
calls to feature-related functions and rewrites the programmer’s code
to wrap such calls with active marks. The definition of plug-ins that
use functional latent marks must therefore include the list of func-
tions that the activation pass should recognize. To avoid counting the
evaluation of arguments to feature-related functions towards their fea-
ture, the activation pass adds antimarks around arguments.

Like syntactic latent marks, functional latent marks require recom-
pilation of profiled programs that use the relevant functions. They do
not, however, require recompiling libraries that provide feature-related
functions, which makes them appropriate for functions provided as
runtime primitives. Our plug-in for output profiling uses functional
latent marks.

Because the activation pass activates functional latent marks at call
sites, only first-order uses are counted towards feature time. Higher-
order uses are not visible to the profiler. An alternative, wrapper-
based implementation—conceptually similar to that of higher-order
contracts—would enable profiling higher-order uses.

114

17
E VA L U AT I O N

Our evaluation addresses two promises concerning feature-specific
profiling: that measuring in a feature-specific way supplies useful in-
sights into performance problems, and that it is easy to implement
new plug-ins. This chapter first presents case studies that demon-
strate how feature-specific profiling improves the performance of pro-
grams. Then it reports on the amount of effort required to implement
plug-ins.

To reduce observer effect, profilers should not add significant over-
head to programs. Section 17.3 presents the results from our overhead
measurements.

All the execution time results in this chapter are the mean of 30

executions on a 6-core 64-bit Debian GNU/Linux system with 12GB
of RAM, with the exception of results for the grade benchmark. Be-
cause Shill runs only on FreeBSD, results for grade are from a 6-
core FreeBSD system with 6GB of RAM. On both systems, we used
Racket version version 6.1.1.6 (January 2015). Our plots show error
bars marking 95% confidence intervals.

17.1 Case Studies

To be useful, a feature-specific profiler must accurately identify spe-
cific uses of features that are responsible for significant performance
costs in a given program. Furthermore, an ideal profiler must provide
actionable information, that is, its reports must point programmers to-
wards solutions. Ideally, it also provides negative information, i.e., it
confirms that some constructs need not be investigated.

We present five case studies suffering from the overhead of specific
features. Each subsection describes a program, summarizes the feed-
back from the feature-specific profiler, and explains the changes that
directly follow from the report. Figure 45 summarizes the features
present in each of the case studies. Figure 46 presents the results of
comparing execution times before and after the changes. The full set
of programs is available online.1

17.1.1 Sound Synthesis Engine

Our first case study is a sound synthesis engine that I wrote in 2012.
The engine uses arrays provided by Racket’s math library to repre-
sent sound signals. It consists of a mixer module that handles most of

1 http://www.ccs.neu.edu/home/stamourv/dissertation/fsp-case-studies.tgz

115

http://www.ccs.neu.edu/home/stamourv/dissertation/fsp-case-studies.tgz

Program Size Problem feature(s) Negative Infomation
(SLOC)

synth 452 Contracts Output,
generic sequences

maze 758 Output Casts
grade 330 Security policies -
ssh 3,762 Contracts, Generic sequences,

marketplace processes pattern matching
markdown 4,058 Backtracking Pattern matching

Figure 45: Feature usage by case study

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)

synthsynthsynthsynthsynthsynthsynthsynthsynth mazemazemazemazemazemazemazemazemaze gradegradegradegradegradegradegradegradegrade sshsshsshsshsshsshsshsshssh markdownmarkdownmarkdownmarkdownmarkdownmarkdownmarkdownmarkdownmarkdown
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

Before After

Figure 46: Execution time after profiling and improvements

116

===

Self time Source location

===

[...]

23.6% math/typed-array-transform.rkt:207:16

22.5% basic-lambda9343 (unknown source)

17.8% math/untyped-array-pointwise.rkt:43:39

14.0% synth.rkt:86:2

[...]

Figure 47: Traditional profile for the synthesizer (excerpt)

Contracts account for 73.77% of running time

(17568 / 23816 ms)

6210 ms : Array-unsafe-proc

(-> Array (-> (vectorof Int) any))

3110 ms : array-append*

(->* ((listof Array)) (Int) Array)

2776 ms : unsafe-build-array

(-> (vectorof Int) [...] Array)

[...]

Generic sequences account for 0.04% of running time

(10 / 23816 ms)

10 ms : wav-encode.rkt:51:16

Figure 48: Feature profile for the synthesizer (excerpt)

the interaction with the math library, as well as a number of special-
ized synthesis modules that interface with the mixer, such as function
generators, sequencers, and a drum machine. The math library uses
Typed Racket, and a contract boundary separates it from the untyped
synthesis engine. To profile the synthesis engine, the program is run
to synthesize ten seconds of music.2

Figure 47 shows an excerpt from the output of Racket’s traditional
statistical profiler, listing the functions in which the program spends
most of its time. Two of those, accounting for around 40% of total
execution time, are in the math library. Such profiling results suggest
two potential improvements: optimizing the math library or avoiding
it altogether. Either solution would be a significant undertaking.

Figure 48 shows a different view of the same execution, provided
by our feature-specific profiler. According to the feature profile, al-

2 It synthesizes the opening of Lipps Inc.’s 1980 disco hit Funkytown, specifically.

117

Figure 49: Module graph view for the synthesizer

most three quarters of the program’s execution time is spent check-
ing contracts, the most expensive being attached to the math library’s
array functions. Consequently, any significant performance improve-
ments must come from reducing the use of those generated contracts.
Optimizing the math library itself, as hinted at by the original profile,
may not yield an improvement. Because contract checking happens
at the typed-untyped boundary, moving code across the boundary to
reduce the frequency of crossings may improve matters.

For this, a programmer turns to the module graph view in figure 49

provided by our feature-specific analysis for contracts. According to
this view, almost half the total execution time lies between the un-
typed interface to the math library used by the mixer module (in red)
and the typed portions of the library (in green). This suggests a con-
version of the mixer module to Typed Racket. This conversion, a 15-
minute effort,3 improves the performance by 1.95ˆ.

Figure 48 also shows that generic sequence operations, while often
expensive, do not impose a significant cost in this program despite
being used pervasively. Manually specializing sequences would be a
waste of time. Similarly, since the report does not feature file output
costs, optimizing how the generated signal is emitted as a WAVE
file—which is currently done naively—would also be useless.

17.1.2 Maze Generator

Our second case study employs a Typed Racket version of a maze
generator whose original version is due to Olin Shivers. The program
generates a maze on a hexagonal grid, ensures that it is solvable, and
prints it.

3 I demonstrated this conversion at RacketCon 2013. A video is available online at
http://www.youtube.com/watch?v=D7uPm3J-o6g

118

http://www.youtube.com/watch?v=D7uPm3J-o6g

Output accounts for 55.31% of running time

(1646 / 2976 ms)

386 ms : maze.rkt:730:2

366 ms : maze.rkt:731:2

290 ms : maze.rkt:732:2

[...]

Figure 50: Feature profile for the maze generator (excerpt)

; BEFORE

730 (display (if sw #\\ #\space))

731 (display (if s #_ #\space))

732 (display (if se #\/ #\space))

; AFTER

(display

(cond [(and sw s se) "_/"]

[(and sw s (not se)) "_ "]

[(and sw (not s) se) "\\ /"]

[(and sw (not s) (not se)) "\\ "]

[(and (not sw) s se) " _/"]

[(and (not sw) s (not se)) " _ "]

[(and (not sw) (not s) se) " /"]

[(and (not sw) (not s) (not se)) " "]))

Figure 51: Fusing output operations in the maze generator

Figure 50 shows the top portion of the output of our feature-specific
profiler. According to the feature profile, 55% of the execution time
is spent performing output. Three calls to display, each responsible
for printing part of the bottom of hexagons, stand out as especially
expensive. Printing each part separately results in a large number
of single-character output operations. This report suggests fusing all
three output operations into one, as figure 51 shows. Following this
advice results in a 1.39ˆ speedup.

Inside an inner loop, a dynamic type assertion enforces an invariant
that the type system cannot guarantee statically. Even though this
might raise concerns with a cost-conscious programmer, the profile
reports that the time spent in the cast is negligible.

119

17.1.3 Shill-Based Grading Script

Our third case study involves a Shill script that tests students’ OCaml
code; it is due to Scott Moore.

According to the feature profile, security policy enforcement ac-
counts for 68% of execution time. Overhead from calling external
programs causes most of that slowdown. The script calls out to three
external programs, one being OCaml and the other two being text
manipulation utilities.

Reimplementing the two text manipulation utilities in Shill avoids
crossing security boundaries, which reduces the time spent in policy
enforcement. This change results in a 1.57ˆ increase in performance.

17.1.4 Marketplace-Based SSH Server

Our fourth case study involves an SSH server4 written using the Mar-
ketplace library. To exercise it, a driver script starts the server, con-
nects to it, launches a Racket read-eval-print-loop on the host, eval-
uates the arithmetic expression (+ 1 2 3 4 5 6), disconnects and
terminates the server.

As figure 52 shows, our feature-specific profiler brings out two use-
ful facts. First, two spy processes—the tcp-spy process and the boot
process of the ssh-session VM—account for over 25% of the execu-
tion time. In Marketplace, spies are processes that observe others for
logging purposes. The SSH server spawns these spy processes even
when logging is ignored, resulting in unnecessary overhead.

Second, contracts account for close to 67% of the running time. The
module view, of which figure 53 shows an excerpt, reports that the
majority of these contracts lie at the boundary between the typed
Marketplace library and the untyped SSH server. We can selectively
remove these contracts in one of two ways: by adding types to the
SSH server or by disabling typechecking in Marketplace.

Disabling spy processes and type-induced contracts5 results in a
speedup of 4.41ˆ. In addition to these two areas of improvement, the
feature profile also provides negative information: pattern matching
and generic sequences, despite being used pervasively, account for
only a small fraction of the server’s running time.

4 https://github.com/tonyg/marketplace-ssh
5 This change has since been integrated into the Marketplace library.

120

https://github.com/tonyg/marketplace-ssh

Marketplace Processes
===
Total Time Self Time Name Local%
===
100.0% 3.8% ground

ssh-session-vm 51.2%
tcp-spy 19.9%
(tcp-listener 2322 ::1 44523) 19.4%
[...]

51.2% 1.0% ssh-session-vm
ssh-session 31.0%
(#:boot-process ssh-session-vm) 14.1%
[...]

19.9% 19.9% tcp-spy
7.2% 7.2% (#:boot-process ssh-session-vm)
[...]

Contracts account for 66.93% of running time
(3874 / 5788 ms)

1496 ms : add-endpoint
(-> pre-eid? role? [...] add-endpoint?)

1122 ms : process-spec
(-> (-> any [...]) any)

[...]

Pattern matching accounts for 0.76% of running time
(44 / 5788 ms)

[...]

Generic sequences account for 0.35% of running time
(20 / 5788 ms)

[...]

Figure 52: Profiling results for the SSH server (excerpt)

Figure 53: Module graph view for the SSH server (excerpt)

121

Parsack Backtracking

===

Time (ms / %) Disjunction Branch

===

5809.5 34% markdown/parse.rkt:968:7 8

366.5 2% parsack/parsack.rkt:449:27 1

313.5 2% markdown/parse.rkt:670:7 2

[...]

Pattern matching accounts for 0.04% of running time

(6 / 17037 ms)

6 ms : parsack/parsack.rkt:233:4

Figure 54: Profiling results for the Markdown parser (excerpt)

17.1.5 Markdown Parser

Our last case study involves a Parsack-based Markdown parser,6 due
to Greg Hendershott. To profile the parser, we ran it on 1,000 lines of
sample text.7

As figure 54 shows, backtracking from three branches took notice-
able time and accounted for 34%, 2%, and 2% of total execution
time, respectively. Based on the tool’s report, we moved the prob-
lematic branches further down in their enclosing disjunction, which
produced a speedup of 1.40ˆ.

For comparison, Parsack’s author, Stephen Chang, manually opti-
mized the same version of the Markdown parser using ad-hoc, low-
level instrumentation and achieved a speedup of 1.37ˆ. Using our
tool, Leif Andersen, with no knowledge of the parser’s internals, was
able to achieve a similar speedup in only a few minutes of work.

The feature-specific profiler additionally confirmed that pattern
matching accounted for a negligible amount of the total running time.

17.2 Plug-in Implementation Effort

Writing feature-specific plug-ins is a low-effort endeavor. It is easily
within reach for the authors of linguistic libraries because it does
not require advanced profiling knowledge. To support this claim, we
start with anecdotal evidence from observing the author of the Mar-
ketplace library implement feature-specific profiling support for it.

Mr. Garnock-Jones, an experienced programmer, implemented the
plug-in himself, with myself acting as interactive documentation of

6 https://github.com/greghendershott/markdown
7 The input is an excerpt from "The Time Machine" by H.G. Wells.

122

https://github.com/greghendershott/markdown

Feature Instrumentation LOC Analysis LOC

Contracts 183 672

Output 11 -
Generic sequence dispatch 18 -
Type casts and assertions 37 -
Parser backtracking 18 60+506

Shill security policies 23 -
Marketplace processes 7 9+506

Pattern matching 18 -
Method dispatch 12 -
Optional and keyword arguments 50 -

Figure 55: Instrumentation and analysis LOC per feature

the framework. Implementing the first version of the plug-in took
about 35 minutes. At that point, Mr. Garnock-Jones had a working
process profiler that performed the basic analysis described in sec-
tion 14.3. Adding feature-specific analysis took an additional 40 min-
utes. Less experienced library authors may require more time for a
similar task. Nonetheless, we consider this amount of effort to be
quite reasonable.

For the remaining features, we report the number of lines of code
for each plug-in in figure 55. The third column reports the number of
lines of domain-specific analysis code. The basic analysis is provided
as part of the framework. The line counts for Marketplace and Par-
sack count the portions of Racket’s edge profiler that are re-linked
into the plug-ins separately. They account for 506 lines. With the ex-
ception of contract instrumentation—which covers multiple kinds of
contracts and is spread across the 16,421 lines of the contract system—
instrumentation is local and non-intrusive.

17.3 Instrumentation Overhead

Our feature-specific profiler imposes an acceptably low overhead on
program execution. For a summary, see figure 56, which reports over-
head measurements.

We use the programs listed in figure 57 as benchmarks. They in-
clude three of the case studies from section 17.1,8 two programs that
make heavy use of contracts (lazy and ode), and six programs from the
Computer Language Benchmarks Game9 that use features supported
by our prototype. The full set of programs is available online.10

The first column of figure 56 corresponds to programs executing
without any feature marks and serves as our baseline. The second

8 We performed the other two case studies after our overhead experiments.
9 http://benchmarksgame.alioth.debian.org

10 http://www.ccs.neu.edu/home/stamourv/dissertation/fsp-overhead.tgz

123

http://benchmarksgame.alioth.debian.org
http://www.ccs.neu.edu/home/stamourv/dissertation/fsp-overhead.tgz

column reports results for programs that include only marks that are
active by default: contract marks and Marketplace marks. This bar
represents the default mode for executing programs without profiling.
The third column also includes all activated latent marks. The fourth
column includes all of the above as well as the overhead from the
sampling thread;11 it is closest to the user experience when profiling.

With all marks activated, the overhead is lower than 6% for all but
two programs, synth and maze, where it accounts for 16% and 8.5%
respectively. The overhead for marks that are active by default is only
noticeable for two of the four programs that include such marks, synth
and ode, and account for 16% and 4.5% respectively. Total overhead,
including sampling, ranges from 3% to 33%.

Based on these experiments, we conclude that the overhead from in-
strumentation is quite reasonable in general. The one exception, the
synth benchmark, involves a large quantity of contract checking for
cheap contracts, which is the worst case scenario for contract instru-
mentation. Further engineering effort could lower this overhead. The
overhead from sampling is similar to that of state-of-the-art sampling
profilers as reported by Mytkowicz et al. (2010).

Threat to validity We identify one threat to validity. Because
instrumentation is localized to feature code, its overhead is also lo-
calized. This may cause feature execution time to be overestimated.
Because these overheads are low in general, we conjecture this prob-
lem to be insignificant in practice. In contrast, sampling overhead is
uniformily12 distributed across a program’s execution and should not
introduce such biases.

11 We use green threads provided by the Racket runtime system for sampling.
12 This assumes random sampling, which we did not verify.

124

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)
No

rm
al

iz
ed

 ti
m

e
(lo

we
r i

s
be

tte
r)

No
rm

al
iz

ed
 ti

m
e

(lo
we

r i
s

be
tte

r)

synthsynthsynthsynth
synthsynthsynthsynthsynth maze

maze
mazemaze
mazemaze
maze
mazemaze sshsshsshsshsshsshsshsshssh lazylazylazylazylazylazylazylazylazy odeodeodeodeodeodeodeodeode

chameneos
chameneos
chameneos
chameneos
chameneos
chameneos
chameneos
chameneos
chameneos

meteor
meteor
meteormeteor
meteormeteor
meteor
meteor
meteor

nbody
nbody
nbodynbody
nbodynbody
nbody
nbodynbody

k-nucleotide

k-nucleotide

k-nucleotide
k-nucleotide

k-nucleotide
k-nucleotide

k-nucleotide

k-nucleotide
k-nucleotide

regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch
regexmatch

reversefile
reversefile
reversefile
reversefile
reversefile
reversefile
reversefile
reversefile
reversefile

000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

1.21.21.21.21.21.21.21.21.2

No marks Active marks only

All marks All marks + sampling

Figure 56: Instrumentation and sampling overhead

Benchmark Description Features

synth Sound synthesizer Contracts, output,
generic sequences,
keyword protocol

maze Maze generator Output, casts
ssh SSH server Contracts, output,

generic sequences, casts,
marketplace processes,
pattern matching,
keyword protocol

lazy Computer vision algorithm Contracts
ode Differential equation solver Contracts
chameneos Concurrency game Pattern matching
meteor Meteor puzzle Pattern matching
nbody N-body problem Casts
k-nucleotide K-nucleotide frequencies Generic sequences
regexmatch Matching phone numbers Casts, pattern matching
reversefile Reversing the lines of a file Output

Figure 57: Benchmark descriptions

125

18
L I M I TAT I O N S

Our particular approach to feature-specific profiling applies only to
certain kinds of linguistic constructs. This chapter describes cases that
our feature-specific profiler should but cannot support. Those limita-
tions are not fundamental to the idea of feature-specific profiling and
could be addressed by different approaches to data gathering.

18.1 Control Features

Because our instrumentation strategy relies on continuation marks, it
does not support features that interfere with marks. This rules out
non-local control features that unroll the stack, discarding continua-
tion marks along the way. This makes our approach unsuitable for
measuring the cost of, e.g., exception raising.

18.2 Non-Observable Features

The sampler must be able to observe a feature in order to profile it.
This rules out uninterruptible features, e.g., struct allocation or FFI
calls, which do not allow the sampling thread to be scheduled dur-
ing their execution. Other obstacles to observability include sampling
bias (Mytkowicz et al. 2010) and instances that execute too quickly to
be reliably sampled.

18.3 Diffuse features

Some features, such as garbage collection, have costs that are dif-
fused throughout the program. This renders mark-based instrumenta-
tion impractical. An event-based approach, such as Morandat et al.’s
(2012), would fare better.

127

19
F E AT U R E - S P E C I F I C P R O F I L I N G B E Y O N D R A C K E T

The previous chapters provide evidence that feature-specific profil-
ing is both feasible and useful in the context of Racket. This chapter
sketches how the idea could be applied beyond Racket, and briefly
discusses ongoing efforts in that direction.

19.1 Continuation Marks Beyond Racket

The key components of the framework described in the previous
chapters are a sampling thread and feature marks. Therefore, to in-
stantiate the framework in another language, both components must
be expressible. Sampling threads only require multi-threading sup-
port and timers, both of which are commonplace in mainstream pro-
gramming languages.

Continuation marks, in contrast, are not as widespread. In addition
to Racket, they have been implemented in the context of Microsoft’s
CLR (Pettyjohn et al. 2005) and JavaScript (Clements et al. 2008). Both
of these implementations are sufficient to express feature marks.

Clement’s dissertation (2006) argues that continuation marks are
easy to add to existing language implementations. Transitively, this
would make it easy to instantiate our framework. At the time of this
writing, there is ongoing work by Leif Andersen to implement con-
tinuation marks for the R language,1 with the goal of subsequently
implementing a feature-specific profiler.

In the absence of continuation marks per se, other related features
may be subtitutable instead. For example, stack reflection mecha-
nisms such as those provided by Smalltalk systems should suffice
to implement feature marks. Similarly, the stack introspection used
by the GHCi debugger (Marlow et al. 2007) may also be suitable.

19.2 Profiling Beyond Stack Inspection

While our proposed framework relies on feature marks and sampling
for its instrumentation, other profiling approaches could be substi-
tuted instead.

Event-based profiling looks particularly promising. By event-based
profiling, we mean emitting events—e.g., log messages—whenever
some event of interest occurs, along with a timestamp. In the context
of feature-specific profiling, these events of interest would be entering
and leaving feature code and would replace the use of feature marks.

1 http://www.r-project.org/

129

http://www.r-project.org/

Antimarking would be trivially supported by emitting exit and entry
events before and after entering and exiting user code, respectively.
Aside from the computation of time costs, which would become even
more straightforward than with our sampling-based approach, the
analysis side of the framework would remain unchanged.

Because most languages provide logging libraries or equivalents,
this approach should make feature-specific profiling broadly acces-
sible. In addition, an event-based approach would address all three
limitations described in chapter 18, which our framework inherits
from sampling-based profiling.

An event-based approach, however, may impose a higher overhead
than a sampling-based approach. Logging, for example, may involve
allocating a message and adding it to an internal buffer. In turn, the
latter operation may require synchronization if the logging system
can operate across multiple threads. These operations are likely to
be more expensive than pushing a key-value pair on the stack. Fur-
thermore, like marking but unlike sampling, this overhead would be
incurred every time feature code is entered and exited. An analog to
latent marks may help reduce this overhead when the profiler is not in
use, but the problem otherwise remains. Dynamic analyses that rely
on exhaustive instrumentation face similar problems; an event-based
feature-specific profiler may be able to reuse solutions designed for
that domain context (Ha et al. 2009).

Of course, it should be possible to implement a feature-specific
profiler that uses continuation marks and sampling for some features
and events for others. This would allow plug-in authors to pick the
instrumentation strategy that is best suited for their feature.

Hauswirth et al.’s software performance monitors (Hauswirth et al.
2004) are another alternative to sampling. Software performance mon-
itors are analogous to hardware performance monitors but record
software-related performance events. These monitors could also pos-
sibly be used to implement feature-specific profiling by tracking the
execution of feature code.

130

20
R E L AT E D W O R K

Programmers already have access to a wide variety of performance
tools that are complementary to feature-specific profilers. This section
compares our work to those approaches that are closely related.

20.1 Traditional Profiling

Profilers have been successfully used to diagnose performance is-
sues for decades. They most commonly report on the consumption
of time, space and I/O resources. Traditional profilers group costs
according to program organization, be it static—e.g., per function—
or dynamic—e.g., per HTTP request. Feature-specific profilers group
costs according to linguistic features and specific feature instances.

Each view is useful in different contexts. For example, a feature-
specific profiler’s view is most useful when non-local feature costs
make up a significant portion of a program’s running time. Tradi-
tional profilers may not provide actionable information in such cases.

Furthermore, by identifying costly features, feature-specific profil-
ers point programmers towards potential solutions, namely correct-
ing feature usage. In contrast, traditional profilers often report costs
without helping find solutions. Conversely, traditional profilers may
detect a broader range of issues than feature-specific profilers, such as
inefficient algorithms, which are invisible to feature-specific profilers.

Traditional profilers that report costs in terms of dynamic program
organization can provide precise accounting in cases where multi-
ple instances of specific pre-selected features, e.g., threads, share the
same code. This is similar to the accounting provided by a feature-
specific profiler for features that follow this cost allocation pattern,
such as Marketplace processes. These traditional profilers, however,
support a fixed set of such features, selected by the tools’ authors. In
contrast, feature-specific profilers can be extended by library authors
to support any such feature.

20.2 Vertical Profiling

A vertical profiler (Hauswirth et al. 2004) attempts to see through the
use of high-level language features. It therefore gathers information
from multiple layers—hardware performance counters, operating sys-
tem, virtual machine, libraries—and correlates them into a gestalt of
program performance.

131

Vertical profiling focuses on helping programmers understand how
the interaction between layers affects their program’s performance.
By comparison, feature-specific profiling focuses on helping them un-
derstand the cost of features per se. Feature-specific profiling also
presents information in terms of features and feature instances, which
is accessible to non-expert programmers, whereas vertical profilers re-
port low-level information, which requires a thorough understanding
of the compiler and runtime system.

20.3 Alternative Profiling Views

A number of profilers offer alternative views to the traditional attribu-
tion of time costs to program locations. Most of these views focus on
particular aspects of program performance and are complementary to
the view offered by a feature-specific profiler. We briefly mention re-
cent pieces of relevant work that provide alternative profiling views.

Singer and Kirkham (2008) use the notion of concepts (Biggerstaff
et al. 1994)—programmer-annotated program portions that are re-
sponsible for a given task—to assign costs when profiling programs.
Because programmers must identify concepts on their own, they must
have prior hypotheses regarding which portions of their programs are
likely to be expensive and must therefore be profiled. In contrast, with
feature-specific profiling, language and library authors annotate the
code relevant to particular features, which frees programmers from
having to know what may or may not be expensive.

Listener latency profiling (Jovic and Hauswirth 2011) helps pro-
grammers tune interactive applications by reporting high-latency op-
erations, as opposed to operations with long execution times.

Tamayo et al. (2012) present a tool that provide programmers with
information on the cost of database operations in their programs and
helps them optimize multi-tier applications.

Chang and Felleisen (2014) introduce a profiling-based tool that re-
ports “laziness potential”, a measure of how much a given expression
would benefit from being evaluated lazily.

20.4 Dynamic Instrumentation Frameworks

Dynamic instrumentation frameworks such as ATOM (Srivastava and
Eustace 1994), PIN (Patil et al. 2004), Javana (Maebe et al. 2006) or
Valgrind (Nethercote and Seward 2007) serve as the basis for profilers
and other kinds of performance tools. These frameworks resemble the
use of continuation marks in our framework and could potentially be
used to build feature-specific profilers. These frameworks are much
more heavy-weight than continuation marks and, in turn, allow more
thorough instrumentation, e.g., of the memory hierarchy, of hardware

132

performance counters, etc., and they have not been used to measure
the cost of linguistic features.

20.5 Domain-Specific Debugging

Chiş et al. (2014) introduce the idea of moldable debugging. A moldable
debugger allows programmers to extend it with domain-specific plug-
ins, which in turn enable debugging at the level of domain concepts,
as opposed to generic implementation-level concepts such as func-
tions and lines of code. These plug-ins may provide domain-specific
views and operations to be accessible when certain activation condi-
tions are met during debugging.

Chiş et al. present a prototype moldable debugger for the Pharo
Smalltalk system and extend it with plug-ins for four different do-
mains: unit testing, synchronous notifications, parser generation, and
browser scripting.

Domain-specific debugging shares goals with feature-specific pro-
filing, namely that tools should provide information at the abstraction
level at which programmers think about their programs, i.e., linguis-
tic features or domain concepts. The two approaches, however, target
different activities—debugging and profiling, respectively—and are
complementary.

From an architectural perspective, the two approaches are also sim-
ilar. Both are structured around a framework that is extensible using
feature/domain-specific plug-ins.

133

Part IV

C L O S I N G R E M A R K S

21
C O N C L U S I O N

Specialized tools can successfully bring the benefits of performance
engineering to an audience of non-expert programmers. This disser-
tation demonstrates this thesis with two classes of such tools: opti-
mization coaches and feature-specific profilers.

Optimization coaching In high-level languages, the perfor-
mance of programs depends heavily on whether compilers optimize
them well. Optimizing compilers are black boxes, however, whose
inner workings are opaque to most programmers, who remain at
their mercy and may end up with underperforming programs with-
out warning and without obvious solutions.

Optimization coaches open up these black boxes and provide pro-
grammers with insight into the optimization process. Coaches further
help programmers harness their compilers’ optimizers with recom-
mendations that make programs more amenable to optimization.

The construction of optimization coaches relies on general princi-
ples: optimization logging (chapter 4), optimization analysis (chap-
ter 5), and recommendation generation (chapter 6). Within the scope
of these principles, we identified general concepts and techniques
which apply beyond our specific instantiations: optimization failures,
near misses, irritants, pruning, targeting, ranking, and merging. Fur-
thermore, we have identified profiling information as a key additional
source of information that critically complements a coach’s metrics
and heuristics.

We have confirmed the applicability of these principles by building
two prototype coaches: one for the Racket and Typed Racket com-
pilers, and another for the SpiderMonkey JavaScript engine. A tool
derived from the latter prototype is about to be released as part of
Firefox. The existence of two distinct prototypes provides evidence
for the generality of these principles.

Our experiments with these prototypes show that, using an opti-
mization coach, programmers can improve the performance of their
programs significantly. We observed speedups of up to 2.75ˆ. Fur-
thermore, these speedups are achievable with simple, non-intrusive
program changes. The most significant changes we recorded con-
sisted of modifying 33 lines of code. And finally, none of these changes
required any actual knowledge about the implementation of the opti-
mization process.

137

Feature-specific profiling Misuse of features provided by
languages and libraries is a significant source of performance issues
in practice. This problem is exacerbated by the fact that modern pro-
gramming languages are fundamentally extensible. Any programmer
may introduce additional features via new library APIs or, in some
languages, even provide new syntactic forms altogether. This state of
affairs calls for tools that not only report costs in terms of existing
linguistic features, but can also be extended to support new features
as programmers introduce them.

Feature-specific profilers are such tools. By reporting the costs that
originate from individual feature instances, feature-specific profilers
can uncover the source of distributed costs, that is, instances of fea-
tures which spread their costs across large swaths of the program.
Furthermore, this focus on features reduces the solution search space
programmers must explore; only program changes that affect the use
of a problematic feature can address the costs that it engenders.

Generally speaking, feature-specific profiling relies on a coopera-
tion between feature plug-ins and a core profiler. Plug-ins are respon-
sible for recording, during execution, when the code related to a par-
ticular feature is executing. They can perform this task in one of mul-
tiple ways, for example by leaving markers on the control stack—as
our prototype does—or by emitting entry and exit events. The core
profiler is responsible for observing the information produced by fea-
ture plug-ins, for instance using sampling, tallying the time spent in
each feature, and producing reports for programmers. This separa-
tion of responsibilities allows for an extensible collection of plug-ins,
which can be added as new features are implemented in languages
or libraries.

We have instantiated this blueprint to build a prototype feature-
specific profiler for Racket. Our experience using it to diagnose day-
to-day performance issues, as well as our experiments, show success-
ful results. We have observed performance improvements of close to
5ˆ as a result of addressing feature misuses pointed out by our tool.

Outlook The ideas and techniques behind optimization coaching
and feature-specific profiling should apply beyond the specific instan-
tiations presented in this dissertation. We imagine that our experi-
ences may inspire others to create similar tools for their languages,
compilers, and libraries of choice. Indeed, the techniques described
in this dissertation can serve as a starting point.

There is much work to be done beyond our initial forays into op-
timization coaching and feature-specific profiling. For instance, the
optimizations and features we studied are but a small subset of those
programmers use. Further work is needed to confirm whether opti-
mization coaching can apply to other commonly-used optimizations
such as common subexpression elimination or loop-invariant code

138

motion. Similarly, we have yet to see whether feature-specific profil-
ing applies to other features in common use, such as exception han-
dling. We also do not know whether feature-specific profiling is use-
ful beyond Racket, though preliminary results from Leif Andersen’s
work on bringing it to the R language are promising.

More generally, our methodology of gathering information from
compilers and runtime systems and involving programmers in the op-
timization process should generalize to other performance engineer-
ing topics, beyond compiler optimization and linguistic feature usage.
One could imagine using a similar paradigm to involve programmers
in system-level aspects of program performance—perhaps by record-
ing information at the operating system level to advise programmers
on virtual memory usage, or by gathering data from the network
stack to recommend more efficient network usage patterns—or to as-
sist them in reducing the power consumption of their programs—
for example by identifying code responsible for excessive processor
wakeups.

Outside of performance engineering, programmers could benefit
from targeted advice and higher-level reporting in other aspects of
programming as well. Writing secure programs, for instance, requires
just as much hard-earned expertise—if not more—than writing effi-
cient programs. Tools that mechanize the knowledge and experience
of security experts, and rely on compile- or run-time instrumentation
to fill in program-specific information, could go a long way towards
helping programmers avoid security pitfalls. Other program require-
ments such as robustness and portability are similarly hard to fulfill,
and programmers could potentially benefit from tool assistance to
achieve them.

Automated tools and programmers have different and complemen-
tary strengths. Tools can handle large quantities of information and
analyze them to look for many different properties. Programmers
are aware of the context their programs operate in, and they can
exercise judgement as to whether particular changes make sense in
that context. Only by combining these strengths—e.g., via the use
of programmer-assisted tools—can we effectively tackle the complex
challenges of software development.

139

B I B L I O G R A P H Y

Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak,
and James Philbin. ORBIT: an optimizing compiler for Scheme. In Proc.
Symp. on Compiler Construction, pp. 219–233, 1986.

Frances E. Allen and John Cocke. A catalogue of optimizing transformations.
Design and Optimization of Compilers, pp. 1–30, 1972.

Andrew Appel and Trevor Jim. Continuation-passing, closure-passing style.
In Proc. Symp. on Principles of Programming Languages, pp. 293–302, 1989.

Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Program un-
derstanding and the concept assignment problem. Commun. ACM 37(5),
pp. 72–82, 1994.

David Binkley, Bruce Duncan, Brennan Jubb, and April Wielgosz. The Feed-
Back compiler. In Proc. International Works. on Program Comprehension, pp.
198–206, 1998.

Craig Chambers and David Ungar. Iterative type analysis and extended
message splitting. Lisp and Symbolic Computation 4(3), pp. 283–310, 1990.

Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation
of SELF. In Proc. Conf. Object-Oriented Programming Systems, Languages,
and Applications, pp. 49–70, 1989.

Stephen Chang and Matthias Felleisen. Profiling for laziness. In Proc. Symp.
on Principles of Programming Languages, pp. 349–360, 2014.

Tse-Hun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mo-
hammed Nasser, and Parminder Flora. Detecting performance anti-
patterns for applications developed using object-relational mapping. In
Proc. International Conf. on Software Engineering, pp. 1001–1012, 2014.

Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. The moldable debugger: A
framework for developing domain-specific debuggers. In Proc. Conf. on
Software Language Engineering, pp. 102–121, 2014.

John Clements. Portable and High-Level Access to the Stack with Continuation
Marks. PhD dissertation, Northeastern University, 2006.

John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an alge-
braic stepper. In Proc. European Symp. on Programming, pp. 320–334, 2001.

John Clements, Ayswarya Sundaram, and David Herman. Implementing
continuation marks in JavaScript. In Proc. Scheme and Functional Program-
ming Works., pp. 1–10, 2008.

Keith D. Cooper, Mary W. Hall, Robert T. Hood, Ken Kennedy, Kathryn S.
McKinley, John M. Mellor-Crummey, Linda Torczon, and Scott K. War-
ren. The ParaScope parallel programming environment. Proc. of the IEEE
81(2), pp. 244–263, 1993.

Cray inc. Cray XMT™ Performance Tools User’s Guide. 2011.

Ryan Culpepper and Matthias Felleisen. Debugging hygienic macros. Sci-
ence of Computer Programming 75(7), pp. 496–515, 2010.

141

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and
the control dependence graph. Transactions of Programming Languages and
Systems 13(4), pp. 451–490, 1991.

Danny Dig, Cosmin Radoi, Mihai Tarce, Marius Minea, and Ralph John-
son. ReLooper: Refactoring for loop parallelism. University of Illinois,
2142/14536, 2009.

R. Kent Dybvig. Chez Scheme Version 8 User’s Guide. Cadence Research Sys-
tems, 2009.

Dylan Hackers. Getting Started with the Open Dylan IDE. 2015.
http://opendylan.org/documentation/getting-started-ide/
GettingStartedWithTheOpenDylanIDE.pdf

ECMA International. ECMAScript® Language Specification. Standard ECMA-
262, 2011.

Vyacheslav Egorov. IRHydra Documentation. 2014. http://mrale.ph/
irhydra/

Andrew Farmer, Andy Gill, Ed Komp, and Neil Schulthorpe. The HERMIT
in the machine. In Proc. Haskell Symp., pp. 1–12, 2012.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shri-
ram Krishnamurthi, Paul Steckler, and Matthias Felleisen. DrScheme:
a programming environment for Scheme. J. of Functional Programming
12(2), pp. 159–182, 2002.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order
functions. In Proc. International Conf. on Functional Programming, pp. 48–
59, 2002.

Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie
Weirich, and Matthias Felleisen. Catching bugs in the web of program
invariants. In Proc. Conf. on Programming Language Design and Implemen-
tation, pp. 23–32, 1996.

Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with
classes, mixins, and traits. In Proc. Asian Conf. on Programming Languages
and Systems, pp. 270–289, 2006.

Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-1, 2010.
http://racket-lang.org/tr1/

Agner Fog. Software optimization resources. 2012. http://www.agner.org/
optimize/

Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler: De-
sign and Implementation. Addison-Wesley, 1995.

Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proc. of the IEEE, Special issue on “Program Generation, Optimiza-
tion, and Platform Adaptation” 93(2), pp. 216–231, 2005.

Saturnino Garcia, Donghwan Jeon, Chris Louie, and Michael Bedford Taylor.
Kremlin: Rethinking and rebooting gprof for the multicore age. In Proc.
Conf. on Programming Language Design and Implementation, pp. 458–469,
2011.

Tony Garnock-Jones, Sam Tobin-Hochstadt, and Matthias Felleisen. The net-
work as a language construct. In Proc. European Symp. on Programming,
pp. 473–492, 2014.

142

http://opendylan.org/documentation/getting-started-ide/GettingStartedWithTheOpenDylanIDE.pdf
http://opendylan.org/documentation/getting-started-ide/GettingStartedWithTheOpenDylanIDE.pdf
http://mrale.ph/irhydra/
http://mrale.ph/irhydra/
http://racket-lang.org/tr1/
http://www.agner.org/optimize/
http://www.agner.org/optimize/

Liang Gong, Michael Pradel, and Koushik Sen. JITProf: Pinpointing
JIT-unfriendly JavaScript code. University of California at Berkeley,
UCB/EECS-2014-144, 2014.

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof: a
call graph execution profiler. In Proc. Symp. on Compiler Construction, pp.
120–126, 1982.

Jungwoo Ha, Matthew Arnold, Stephen M. Blackburn, and Kathryn S.
McKinley. A concurrent dynamic analysis framework for multicore hard-
ware. In Proc. Conf. Object-Oriented Programming Systems, Languages, and
Applications, pp. 155–174, 2009.

Brian Hackett. JIT Inspector Add-on for Firefox. 2013. https://addons.mozilla.
org/en-US/firefox/addon/jit-inspector/

Brian Hackett and Shu-yu Guo. Fast and precise type inference for
JavaScript. In Proc. Conf. on Programming Language Design and Implemen-
tation, pp. 239–250, 2012.

William von Hagen. The Definitive Guide to GCC. Apress, 2006.

Pieter H. Hartel, Marc Feeley, Martin Alt, Lennart Augustsson, Peter Bau-
mann, Marcel Beemster, Emmanuel Chailloux, Christine H. Flood, Wolf-
gang Grieskamp, John H. G. van Groningen, Kevin Hammond, Bogumił
Hausman, Melody Y. Ivory, Richard E. Jones, Jasper Kamperman, Peter
Lee, Xavier Leroy, Rafael D. Lins, Sandra Loosemore, Niklas Röjemo,
Manuel Serrano, Jean-Pierre Talpin, Jon Thackray, Stephen Thomas,
Pum Walters, Pierre Weis, and E.P. Wentworth. Benchmarking imple-
mentations of functional languages with “pseudoknot” a float-intensive
benchmark. J. of Functional Programming 6(4), pp. 621–655, 1996.

Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind. Ver-
tical profiling: Understanding the behavior of object-oriented applica-
tions. In Proc. Conf. Object-Oriented Programming Systems, Languages, and
Applications, pp. 251–269, 2004.

Reid Holmes and Gail C. Murphy. Using structural context to recommend
source code examples. In Proc. International Conf. on Software Engineering,
pp. 117–125, 2005.

Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In Proc.
European Conf. on Object-Oriented Programming, pp. 21–38, 1991.

Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code
with dynamic deoptimization. In Proc. Conf. on Programming Language
Design and Implementation, pp. 32–43, 1992.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Un-
derstanding and detecting real-world performance bugs. In Proc. Conf.
on Programming Language Design and Implementation, pp. 77–88, 2012.

Thomas Johnsson. Lambda lifting: Transforming programs to recursive
equations. In Proc. Functional Programming Languages and Computer Ar-
chitecture, pp. 190–203, 1985.

Milan Jovic and Matthias Hauswirth. Listener latency profiling: Measuring
the perceptible performance of interactive Java applications. Science of
Computer Programming 19(4), pp. 1054–1072, 2011.

Poul-Henning Kamp. You’re doing it wrong: Think you’ve mastered the art
of server performance? Think again. ACM Queue 8(6), 2010.

143

https://addons.mozilla.org/en-US/firefox/addon/jit-inspector/
https://addons.mozilla.org/en-US/firefox/addon/jit-inspector/

Donald E. Knuth. An empirical study of FORTRAN programs. Software—
Practice and Experience 1, pp. 105–133, 1971.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy, Paul T.
Graunke, Greg Pettyjohn, and Matthias Felleisen. Implementation and
use of the PLT Scheme web server. Higher-Order and Symbolic Computing
20(4), pp. 431–460, 2007.

Per Larsen, Razya Ladelsky, Jacob Lidman, Sally A. McKee, Sven Karlsson,
and Ayal Zaks. Parallelizing more loops with compiler guided refactor-
ing. In Proc. International Conf. on Parallel Processing, pp. 410–419, 2012.

Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In Proc.
International Conf. on Functional Programming, pp. 26–37, 2001.

Xavier Leroy. Unboxed objects and polymorphic typing. In Proc. Symp. on
Principles of Programming Languages, pp. 177–188, 1992.

Peter A. W. Lewis, A. S. Goodman, and J. M. Miller. A pseudo-random
number generator for the System/360. IBM Systems Journal 8(2), pp. 136–
146, 1969.

Jennifer Lhoták, Ondřej Lhoták, and Laurie J. Hendren. Integrating the Soot
compiler infrastructure into an IDE. In Proc. Conf. on Compiler Construc-
tion, pp. 281–297, 2004.

Shih-Wei Liao, Amer Diwan, Robert P. Bosch Jr., Anwar Ghuloum, and
Monica S. Lam. SUIF Explorer: An interactive and interprocedural par-
allelizer. In Proc. Symp. on Principles and Practice of Parallel Programming,
pp. 37–48, 1999.

LispWorks Ltd. LispWorks© 6.1 Documentation. 2013.

Jonas Maebe, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere. Ja-
vana: A system for building customized Java program analysis tools. In
Proc. Conf. Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 153–168, 2006.

Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. A lightweight
interactive debugger for Haskell. In Proc. Haskell Works., pp. 13–24, 2007.

Jay McCarthy. The two-state solution: Native and serializable continuations
accord. In Proc. Conf. Object-Oriented Programming Systems, Languages,
and Applications, pp. 567–582, 2010.

Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.

Paul V. Mockapteris. Domain names—implementation and specification.
IETF RFC 1035, 1987.

Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. SHILL:
A secure shell scripting language. In Proc. Symp. on Operating Systems
Design and Implementation, pp. 183–199, 2014.

Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. Evaluating the
design of the R language. In Proc. European Conf. on Object-Oriented Pro-
gramming, pp. 104–131, 2012.

Stephen S. Muchnick. Advanced Compiler Design and Implementation. Morgan-
Kaufmann, 1997.

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.
Evaluating the accuracy of Java profilers. In Proc. Conf. on Programming
Language Design and Implementation, pp. 187–197, 2010.

144

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proc. Conf. on Programming
Language Design and Implementation, pp. 89–100, 2007.

Kwankamol Nongpong. Integrating "Code Smells" Detection with Refactoring
Tool Support. PhD dissertation, University of Wisconsin-Milwaukee, 2012.

David Ofelt and John L. Hennessy. Efficient performance prediction for
modern microprocessors. In Proc. International Conf. on Measurement and
Modeling of Computer Systems, pp. 229–239, 2000.

Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and
Anand Karunanidhi. Pinpointing representative portions of large Intel®
Itanium® programs with dynamic instrumentation. In Proc. Symp. on
Microarchitecture, pp. 81–92, 2004.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and
Matthias Felleisen. Continuations from generalized stack inspection. In
Proc. International Conf. on Functional Programming, pp. 216–227, 2005.

Simon L Peyton Jones. Compiling Haskell by program transformation: A
report from the trenches. In Proc. European Symp. on Programming, pp.
18–44, 1996.

Markus Püschel, José M. F. Moura, Bryan Singer, Jianxin Xiong, Jeremy
Johnson, David Padua, Manuela Veloso, and Robert W. Johnson. Spiral:
A generator for platform-adapted libraries of signal processing applica-
tions. J. of High Performance Computing Applications 18(1), pp. 21–45, 2004.

Feng Qian, Laurie J. Hendren, and Clark Verbrugge. A comprehensive ap-
proach to array bounds check elimination for Java. In Proc. Conf. on Com-
piler Construction, pp. 325–342, 2002.

Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Dem-
mel, William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and
David Hough. Precimonious: Tuning assistant for floating-point preci-
sion. In Proc. Conf. for High Performance Computing, Networking, Storage
and Analysis, pp. 1–12, 2013.

Manuel Serrano. Inline expansion: When and how. In Proc. International
Symp. on Programming Language Implementation and Logic Programming,
pp. 143–147, 1997.

Andreas Sewe, Jannik Jochem, and Mira Mezini. Next in line, please! In Proc.
Works. on Virtual Machines and Intermediate Languages, pp. 317–328, 2011.

Zhong Shao and Andrew Appel. A type-based compiler for standard ML.
In Proc. Conf. on Programming Language Design and Implementation, pp.
116–129, 1995.

Jennifer Elizabeth Shaw. Visualisation Tools for Optimizing Compilers. MS dis-
sertation, McGill University, 2005.

Jeremy Singer and Chris Kirkham. Dynamic analysis of Java program con-
cepts for visualization and profiling. Science of Computer Programming
70(2-3), pp. 111–126, 2008.

Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. Fix me up: Repairing
access-control bugs in web applications. In Proc. Symp. on Network and
Distributed System Security, 2013.

Amitabh Srivastava and Alan Eustace. ATOM: a system for building cus-
tomized program analysis tools. In Proc. Conf. on Programming Language
Design and Implementation, pp. 196–205, 1994.

145

Vincent St-Amour, Leif Andersen, and Matthias Felleisen. Feature-specific
profiling. In Proc. Conf. on Compiler Construction, pp. 49–68, 2015.

Vincent St-Amour and Shu-yu Guo. Optimization coaching for JavaScript.
In Proc. European Conf. on Object-Oriented Programming, 2015.

Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. Optimiza-
tion coaching: Optimizers learn to communicate with programmers. In
Proc. Conf. Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 163–178, 2012a.

Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and Matthias
Felleisen. Typing the numeric tower. In Proc. International Symp. on Prac-
tical Aspects of Declarative Languages, pp. 289–303, 2012b.

Barbara Sue Kerne Steele. An Accountable Source-to-Source Transformation Sys-
tem. MS dissertation, Massachusetts Institute of Technology, 1981.

T. Stephen Strickland and Matthias Felleisen. Contracts for first-class classes.
In Proc. Dynamic Languages Symp., pp. 97–112, 2010.

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and
Matthew Flatt. Chaperones and impersonators: Run-time support for
reasonable interposition. In Proc. Conf. Object-Oriented Programming Sys-
tems, Languages, and Applications, pp. 943–962, 2012.

Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce Findler, Matthew
Flatt, Sam Tobin-Hochstadt, and Matthias Felleisen. Towards practical
gradual typing. In Proc. European Conf. on Object-Oriented Programming,
2015.

Juan M. Tamayo, Alex Aiken, Nathan Bronson, and Mooly Sagiv. Under-
standing the behavior of database operations under program control. In
Proc. Conf. Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 983–996, 2012.

The Free Software Foundation. GCC 4.7.0 Manual. 2012.
The GHC Team. The Glorious Glasgow Haskell Compilation System User’s Guide,

Version 7.4.1. 2011.
The SBCL Team. SBCL 1.0.55 User Manual. 2012.
Sam Tobin-Hochstadt. Extensible pattern matching in an extensible lan-

guage. arXiv:1106.2578 [cs.PL], 2011.

Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage refactoring:
From scripts to programs. In Proc. DLS, pp. 964–974, 2006.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt,
and Matthias Felleisen. Languages as libraries. In Proc. Conf. on Program-
ming Language Design and Implementation, pp. 132–141, 2011.

Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice
Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the
Soot framework: is it feasible? In Proc. Conf. on Compiler Construction, pp.
18–34, 2000.

Mark Weiser. Program slicing. In Proc. International Conf. on Software Engi-
neering, pp. 439–449, 1981.

R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra
software. In Proc. High Performance Networking and Computing, pp. 1–27,
1998.

146

Michael Wolfe. Loop skewing: The wavefront method revisited. J. of Parallel
Programming 15(4), pp. 279–293, 1986.

Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schon-
berg, and Gary Sevitsky. Finding low-utility data structures. In Proc.
Conf. on Programming Language Design and Implementation, pp. 174–186,
2010.

Tatu Ylönen and Chris Lonvick. The Secure Shell (SSH) protocol architec-
ture. IETF RFC 4251, 2006.

Nicholas C. Zakas. High Performance JavaScript. O’Reilly, 2010.

Wankang Zhao, Baosheng Cai, David Whalley, Mark W. Bailey, Robert van
Engelen, Xin Yuan, Jason D. Hiser, Jack W. Davidson, Kyle Gallivan, and
Douglas L. Jones. VISTA: A system for interactive code improvement. In
Proc. Languages, Compilers, and Tools for Embedded Systems and Software and
Compilers for Embedded Systems, pp. 155–164, 2002.

147

	Abstract
	Acknowledgments
	Contents
	Tooling for the Discerning Programmer
	1 Introduction
	1.1 Background
	1.2 Scope
	1.3 Dissertation Outline
	1.4 Pronoun Conventions

	Optimization Coaching
	2 When Optimizers Fail
	2.1 A Dialog Between Compilers and Programmers
	2.2 Architecture
	2.3 Prototypes

	3 Host Compilers
	3.1 The Typed Racket Compiler
	3.2 The Racket Compiler
	3.3 The SpiderMonkey JavaScript Engine
	3.3.1 The IonMonkey Optimizer
	3.3.2 Optimization Corpus
	3.3.3 A Near Miss Walkthrough

	4 Optimizer Instrumentation
	4.1 The Typed Racket Optimizer
	4.2 The Racket Inliner
	4.3 The IonMonkey Optimizer

	5 Optimization Analysis
	5.1 Pruning
	5.1.1 Incomprehensible Failure Pruning
	5.1.2 Irrelevant Failure Pruning
	5.1.3 Optimization Proximity
	5.1.4 Harmless Failure Pruning
	5.1.5 Partial Success Short-Circuiting
	5.1.6 Profiling-Based Pruning

	5.2 Targeting
	5.2.1 Type-Driven Specialization
	5.2.2 Inlining
	5.2.3 Property Access and Assignment
	5.2.4 Element Access and Assignment

	5.3 Ranking
	5.3.1 Static Badness
	5.3.2 Profiling-Based Badness

	5.4 Merging
	5.4.1 Causality Merging
	5.4.2 Locality Merging
	5.4.3 Temporal Merging
	5.4.4 Same-Property Analysis
	5.4.5 By-Solution Merging
	5.4.6 By-Constructor Merging

	6 Recommendation Generation
	6.1 Recommendations for Typed Racket
	6.2 Recommendations for Inlining
	6.3 Recommendations for SpiderMonkey

	7 User Interface
	7.1 Racket Prototype
	7.2 SpiderMonkey Prototype

	8 Evaluation
	8.1 Racket Prototype
	8.1.1 Results and Discussion

	8.2 SpiderMonkey Prototype
	8.2.1 Results and Discussion

	9 Coaching Beyond Racket and SpiderMonkey
	9.1 Common Subexpression Elimination
	9.2 Test Reordering
	9.3 Scalar Replacement
	9.4 Loop-Invariant Code Motion
	9.5 Reducing Closure Allocation
	9.6 Specialization of Polymorphic Containers
	9.7 Anchor Pointing

	10 Dead Ends
	10.1 Hidden Costs
	10.2 Temporal Patterns

	11 Related Work
	11.1 Profilers
	11.2 Compiler Logging
	11.3 Analysis Visualization
	11.4 Interactive Optimization
	11.5 Rule-Based Performance Bug Detection
	11.6 Assisted Optimization
	11.7 Auto-Tuning
	11.8 Refactoring Tools

	Feature-Specific Profiling
	12 Weighing Language Features
	12.1 Prototype

	13 Feature Corpus
	13.1 Contracts
	13.2 Output
	13.3 Generic Sequence Dispatch
	13.4 Type Casts and Assertions
	13.5 Parser Backtracking
	13.6 Shill Security Policies
	13.7 Marketplace Processes
	13.8 Pattern Matching
	13.9 Method Dispatch
	13.10 Optional and Keyword Argument Functions

	14 Profiling Simple Features
	14.1 Inspecting the Stack with Continuation Marks
	14.2 Feature-specific Data Gathering
	14.3 Analyzing Feature-specific Data

	15 Extension: Profiling Structure-Rich Features
	15.1 Custom Payloads
	15.2 Analyzing Structure-Rich Features

	16 Extension: Instrumentation Control
	16.1 Syntactic Latent Marks
	16.2 Functional Latent Marks

	17 Evaluation
	17.1 Case Studies
	17.1.1 Sound Synthesis Engine
	17.1.2 Maze Generator
	17.1.3 Shill-Based Grading Script
	17.1.4 Marketplace-Based SSH Server
	17.1.5 Markdown Parser

	17.2 Plug-in Implementation Effort
	17.3 Instrumentation Overhead

	18 Limitations
	18.1 Control Features
	18.2 Non-Observable Features
	18.3 Diffuse features

	19 Feature-Specific Profiling Beyond Racket
	19.1 Continuation Marks Beyond Racket
	19.2 Profiling Beyond Stack Inspection

	20 Related Work
	20.1 Traditional Profiling
	20.2 Vertical Profiling
	20.3 Alternative Profiling Views
	20.4 Dynamic Instrumentation Frameworks
	20.5 Domain-Specific Debugging

	Closing Remarks
	21 Conclusion

	Bibliography

