
Generational GC

1

The Generational Hypothesis

Hypothesis: most objects "die young"
• i.e., they are only needed for a short time, and can be

collected soon

• A great example of empirical systems work

• Found to hold for programs in practice
Regardless of programming style! (functional,
imperative, OO, etc.)

2

The Generational Hypothesis

(define (euclidian-norm v)
 (sqrt (foldl + 0 (map square v))))

• square produces foats which are only used until the
addition

• map produces a whole list which is only used until we
fold over it

• + produce a whole lot of intermediate foats which are
only used for the next addition

3

The Generational Hypothesis

So, how can we use this to guide GC design?

• Young objects have a high chance of being garbage
But they’re only a small portion of all objects
So if we focus our efforts on them, can free a lot of
space in not much time!

• Have a separate region for young objects: nursery
Allocate new objects there
When we run out of space, collect there (only!)
When objects get old enough, migrate them to the
main heap
When we run out of space in the main heap, only
then do we GC it

4

Generational Garbage Collection

Ok, so how to GC?

• Clearly want copying GC for nursery
Cost proportional to # of live objects
• Which should be few in nursery
Use the main heap as to-space!
• And don’t swap spaces! Always in the same direction
• Can use the whole heap with a copying GC!
Survivors get copied out of the nursery naturally!
• Surviving a GC = old enough to move out

• What about main heap?
Could be anything. Mark-and-sweep is fne.
Doesn’t matter as much (stay tuned)

5

Generational Garbage Collection

Nursery Main heap

6

Generational Garbage Collection

Nursery Main heap

7

Generational Garbage Collection

Nursery Main heap

8

Generational Garbage Collection

Nursery Main heap

9

Generational Garbage Collection

Nursery Main heap

1�

Generational Garbage Collection

Nursery Main heap

11

Generational Garbage Collection

Nursery Main heap

12

Generational Garbage Collection

Nursery Main heap

13

Generational Garbage Collection

Nursery Main heap

14

Generational Garbage Collection

Nursery Main heap

15

Generational Garbage Collection

Nursery Main heap

16

Generational Garbage Collection

Nursery Main heap

Eventually, main
heap flls up too

17

Generational Garbage Collection

Nursery Main heap

18

Generational Garbage Collection

Nursery Main heap

19

Generational Garbage Collection

Nursery Main heap

2�

Generational Garbage Collection

Nursery Main heap

21

Generational Garbage Collection

Nursery Main heap

22

Generational Garbage Collection

Nursery Main heap

23

Generational Garbage Collection

If the generational hypothesis holds
• Then we’ll collect the nursery pretty often
• But only collect the main heap rarely

Collecting the nursery is cheap
• Can keep it fairly small, so not many objects
• Will be mostly dead objects, and copying GC has cost

proportional to live objects!
• → can afford to do it often; pauses will be short

Collecting the main heap is slow
• It will be large; needs to hold all our data
• A lot of it will be live, and will need to be traced/copied
• → but that’s ok, don’t do it very often

24

The Snag

• When we GC the nursery, what do we use as roots?

• Want to use registers, globals, etc. Sure.

• But we may also have pointers to nursery objects from
the main heap!

These nursery objects may be live too!

• Only matters if the object in the main heap is live
But can’t know unless we mark all of main heap
Which is what we were trying to avoid in the frst
place!

25

The Solution

• Track pointers from main heap to nursery
And just assume they’re live, conservative
So treat them as roots

• How do we keep track? Write barriers
Can only get a pointer from main heap to nursery
by using mutation
Can’t have an old object point to a new one
naturally
• Latter wasn’t around when the old one was allocated!
So whenever we mutate, we look out for that case,
and keep track

• Doesn’t happen much in practice
Requires a particular mutation pattern
So ok to be conservative

26

Variants

• Can have N generations
Containing progressively older and older objects

• Can migrate generations only after surviving N GCs
Reduces the number of short-lived objects that
only survive because we happened to GC during
their (short) lifetime
Can use some spare bits in the objects to store
count (bit overloading, think mark bit)

27

In Practice

• Most production GCs are generational in some form
It’s that good

• Generational hypothesis: self-fulflling prophecy /
virtuous circle

Generational GC is effcient because most objects
are short-lived
Generational GC makes short-lived objects cheap
Programmers use more short-lived objects
because they’re cheap
Lather, rinse, repeat

28

History

• Came from the Self language (late 80s, early 90s)

• Self is little-known today, but hugely infuential
JS is basically Self
Implementation technology (JITs, PICs, OSR,
adaptive deopts, etc.) is used all over the place

29

Cheney on the MTA

3�

Charlie on the MTA

• 1940s: Massachusetts Transit Association (MTA) has both entry
and exit fares on trains

• 1949: Walter A. O’Brien runs for mayor of Boston
His campaign: get folk singers to write songs about items
on his platform
Then blare them from a truck going around town (got fned
10$ for that)

• One such song is about Charlie, who has enough money to get
on the train, but not off

So he never returned

• 1959: The song itself becomes a hit

• 2006: MBTA (former MTA) introduces the Charlie card

• 2009: I move to Boston, and fnally get the Charlie/Cheney joke
31

Continuation-Passing Style

• We’ve seen continuation-passing style
Wrote an interpreter that way

• In CPS, the last thing a function does is always call another
function

If the function is done with its own work, it calls its
continuation
Otherwise, passes it along to whoever it calls
So our functions never return
They just keep calling until the end, then everything just
returns all at once

• Compilers for language with higher-order functions often
convert object programs to CPS, inside the compiler

Easier to implement control (e.g., return, exceptions, etc.)
Makes a lot of transformations and optimizations easier

32

Cheney on the MTA

• Two-space copying collection = Cheney’s algorithm

• Our object programs are in CPS
Their functions never return!
Just like Charlie!

• So their stack just keeps growing and growing
(In CPS, all calls are tail calls, so could reuse stack
frames and solve that problem, which is how most
compilers solve the problem. But not here!)

33

Cheney on the MTA

Key idea: use the stack as the nursery for a
generational GC!
• Grow the stack until we run out of stack space

• Then GC, copying live objects into the heap

• Then restart the stack from 0!
Nothing ever returns, so we don’t need return addresses!
And all the useful data has been copied away!

• Analogy: instead hopping on a trampoline on every function call
We sometimes jump over the Empire State Building
(Trampolines are the canonical solution for "reusing" stack
frames for tail calls)

34

Cheney on the MTA

Stack Heap

35

Cheney on the MTA

Stack Heap

36

Cheney on the MTA

Stack Heap

37

Cheney on the MTA

Stack Heap

38

Cheney on the MTA

Stack Heap

39

Cheney on the MTA

Stack Heap

4�

Cheney on the MTA

Stack Heap

41

Cheney on the MTA

Stack Heap

42

Cheney on the MTA

Stack Heap

43

Cheney on the MTA

Stack Heap

44

Cheney on the MTA

Stack Heap

45

Cheney on the MTA

Stack Heap

46

Cheney on the MTA

Stack Heap

47

Cheney on the MTA

Stack Heap

48

For More Information

• Chicken Scheme uses this implementation strategy

• CONS Should Not CONS Its Arguments, Part II: Cheney
on the M.T.A., Henry Baker, 1994

http://home.pipeline.com/~hbaker1/CheneyMTA.html

49

