
EECS 321
Programming Languages

Spring 2019

Instructor: Vincent St-Amour

1

Course Details

http://www.eecs.northwestern.edu/~stamourv/
teaching/321-S19

(or search for “Vincent St-Amour” and follow the links)

• Slides will be posted there

• Offce hours and logistic info

• Link to Piazza

• Everything, really

2

Course Format

• 9 homework assignments
Grades: check+ (A), check (B), check- (C), 0 (F)
Assignments due Fridays at 6pm
Grades out on Mondays (or we give you a heads up)
Individual submissions

• No exams

• A lot of programming, all in Racket*
We assume you either know Racket
or can pick it up on your own

• Loosely following PLs: Application and Interpretation (PLAI)
First edition
Link on course web page

3

Resubmission Policy

• I care that you learn the material, sooner or later
So you should get credit for it, even if it takes you more time
But I still want deadlines to keep you on top of things

• You can resubmit for up to two weeks after an assignment’s deadline
That’s two more chances to get feedback (and a grade)

• Resubmission grades capped halfway between "check" and "check+"
Even if you got a "check", you still have things to learn
So you should get credit if you do

• I’m giving you a lot of rope; use it carefully
Don’t fall behind

• Details on the course web page

4

Academic Integrity

• Collaboration good, plagiarism bad
You need to understand the difference

• The work you submit must be your own

• Don't even look at other solutions!
Not your colleagues’
Not online

• We check

• We report anything suspicious to the dean

5

Classroom Etiquette

• Learning this (or any) material requires focus and concentration
Let’s ensure our classroom environment is conducive to that

• Laptops
Laptops are fne; following along with the slides is great
Some laptop activities are distracting, though
• If you’re planning to do non-course-related stuff, sit in the back
• So you don’t distract your colleagues who are paying attention

• Talking
Asking a quick question to your neighbor is fne
• But ask me instead, so everyone benefts from the answer
Continuous talking is extremely rude
• Distracting for your colleagues around you, and for me too
• If you want to chat, go outside

6

Course Staff and Offce Hours

Instructor: Vincent St-Amour
Wednesdays 1-2 or by appointment, Mudd 3215

Peer mentors: Chloe Brown, Hakan
Dingenc, Kate Hayner-Slattery, Jeremy
Kaish, Louisa Lee, Patrick Sachaj
See web site

TA: Spencer Florence
(Will help peer mentors at busy times.)

7

Key Ideas of this Class

Programs are data

• ... which other programs can operate on
to run then (interpreters)
to transform them (refactoring tools)
to check properties about them (type checkers)

• ... which other programs can generate
to make them more effcient (compilers)
to automate some aspects of programming (code generators)
to generate infnite test cases (generative testing)

• Comes up surprisingly often in practice!
... if you know how to look!

8

Key Ideas of this Class

Meta-language vs object-language

• Meta-language programs operate on programs in the
object-language

• Our meta-language will be a variant of Racket: #lang plai
Very well suited as a meta-language

• Our object-languages will be many, small, and simple
Designed to illustrate specifc concepts

9

Key Ideas of this Class

Different languages share common concepts
• Found in the vast majority of languages:

Operations on basic data (e.g., arithmetic)
Variables and scope
Functions
State
etc.

• Learn those well, and learning languages is easy!
New faces on familiar ideas

Languages go and come, but λ abides

• Differences between languages as variations on such concepts
(Most of) the rest is (mostly) cosmetic
Then you can focus on the differences that do matter

1�

This Class’s Approach

Learn by building

• Both in lecture and in homeworks

• We will build interpreters
Interpreter = (meta-language) program that executes
(object-language) programs

New concept → new object-language → new interpreter
See more than one way to implement most concepts

• ... and also a few other programs that operate on programs
Parsers
Program generators
Compilers
Type checkers

11

Topic Outline

• Variables and binding (substitution and deferred substitution)

• (Higher-order) functions

• Parsing (a little)

• Random testing

• Recursion

• State

• Control

• Garbage collection

• Type checking and type inference

12

Homework #1

On the course web page
Due on Friday at 6pm

To test your prerequisites
Should be very easy
If not, you may not be ready

Tree traversals and manipulations
will be our bread and butter
So you need to master them!

Future homeworks:
Also due on Fridays at 6pm

13

Tutorial Session

• If you feel rusty on Racket-related concepts

• Tonight 6pm, Tech M152

14

Let's dive in!

15

The Most Common Kinds of Program Manipulators

An interpreter takes a program and produces a result

Good for understanding
program behavior, easy
to implement (our focus)

Python
bash
Racket
x86 processor
Desktop calculator
Algebra student

A compiler takes a program and produces a program

Good for speed, more
complex (take 322)

gcc
javac
Racket
x86 processor

So, what’s a program?
16

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

〈prog〉 ::= 〈defn〉* 〈expr〉
〈defn〉 ::= 〈id〉(〈id〉) = 〈expr〉
〈expr〉 ::= (〈expr〉 + 〈expr〉)

| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

〈id〉 ::= a variable name: f, x, y, z, ...

〈num〉 ::= a number: 1, 42, 17, ...

Each meta-variable, such as 〈prog〉, defnes a set

17

Using a BNF Grammar

〈id〉 ::= a variable name: f, x, y, z, ...

〈num〉 ::= a number: 1, 42, 17, ...

The set 〈id〉 is the set of all variable names

The set 〈num〉 is the set of all numbers

To make an example member of 〈num〉, simply pick an
element from the set

2 ∈ 〈num〉

298 ∈ 〈num〉

18�2�

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

The set 〈expr〉 is defned in terms of other sets

We’ll have to do this in steps

21

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

combine the examples with literal text

22

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

7 ∈ 〈num〉

combine the examples with literal text

7 ∈ 〈expr〉
23�25

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

f ∈ 〈id〉 7 ∈ 〈expr〉

combine the examples with literal text

f(7) ∈ 〈expr〉
26�29

Using a BNF Grammar

〈expr〉 ::= (〈expr〉 + 〈expr〉)
| (〈expr〉 - 〈expr〉)
| 〈id〉(〈expr〉)
| 〈id〉
| 〈num〉

To make an example 〈expr〉:

choose one case in the grammar

pick an example for each meta-variable

f ∈ 〈id〉 f(7) ∈ 〈expr〉

combine the examples with literal text

f(f(7)) ∈ 〈expr〉
3��31

Using a BNF Grammar

〈prog〉 ::= 〈defn〉* 〈expr〉
〈defn〉 ::= 〈id〉(〈id〉) = 〈expr〉

f(x) = (x + 1) ∈ 〈defn〉

To make a 〈prog〉 pick some number of 〈defn〉s

(x + y) ∈ 〈prog〉

f(x) = (x + 1)
g(y) = f((y - 2))
g(7)

 ∈ 〈prog〉

32�33

So, what’s a language, then?

A programming language is defned by

• a grammar that describes what programs are possible

• rules for evaluating any such program to produce a result

For example, algebra evaluation is defned in terms of
evaluation steps:

(2 + (7 - 4)) → (2 + 3) → 5

34�35

So, what’s a language, then?

A programming language is defned by

• a grammar that describes what programs are possible

• rules for evaluating any such program to produce a result

For example, algebra evaluation is defned in terms of
evaluation steps:

f(x) = (x + 1)

f(10) → (10 + 1) → 11

36

Evaluation

• Evaluation (→) is defned by a set of
pattern-matching rules:

(2 + (7 - 4)) → (2 + 3)

due to the rule

... (7 - 4) ... → ... 3 ...

37

Evaluation

• Evaluation (→) is defned by a set of
pattern-matching rules:

f(x) = (x + 1)

f(10) → (10 + 1)

due to the rule

... 〈id〉1(〈id〉2) = 〈expr〉1 ...

... 〈id〉1(〈expr〉2) ... → ... 〈expr〉3 ...

where 〈expr〉3 is 〈expr〉1 with 〈id〉2 replaced by 〈expr〉2

38

Rules for Evaluation

• Rule 1: one pattern

... 〈id〉1(〈id〉2) = 〈expr〉1 ...

... 〈id〉1(〈expr〉2) ... → ... 〈expr〉3 ...

where 〈expr〉3 is 〈expr〉1 with 〈id〉2 replaced by 〈expr〉2

• Rules 2 - ∞: special cases

... (0 + 0) ... → ... 0 (0 - 0) ... → ... 0 ...

... (1 + 0) ... → ... 1 (1 - 0) ... → ... 1 ...

... (2 + 0) ... → ... 2 (2 - 0) ... → ... 2 ...
etc. etc.

When the interpreter is a program instead of an Algebra student,
the rules look a little different

39�41

Action Items

• Sign up for Piazza

• Brush up your Racket

• Read the docs for the PLAI language
(comes with Racket)
http://docs.racket-lang.org/plai/plai-scheme.html

• Do Homework 1

42

