Pulling Recursion
Out of Thin Air



Where has recursion gone!

* With FIWAE, we had recursion "for free"
© All functions were globally scoped
© So a function was in scope in its own body

* With F(W)AE, bindings are function parameters (and
with with local variables)

© Neither has a variable being in scope for its
definition

{with {loop {fun {x} {loop x}}}
{loop 0}}

Does not work!

* But there’s a trick!

2-3



Factorial

* Switching to Racket/PLAI to show the trick
© But works the same in FAE

(let ([fac
(A (n)
(Lf (zero? n)
1
(* n (fac (- n 1)))))1])
(fac 10))

Doesn’t work: 1let is like with

Still, at the point that we call £ac, obviously we have a
binding for fac...

... SO pass it as an argument!

4-6



Factorial

(let ([facX
(A (facX n)
(Lf (zero? n)
1
(* n (facX facX (- n 1)))))1)
(facX facX 10))

Wrap this to get fac back...

7-8



Factorial

(let ([fac
(A (n)
(let ([facX
(A (facX n)
(1f (zero? n)
1
(* n (facX facX (- n 1)))))1)
(facX facX n)))1)
(fac 10))

Try this in the HtDP Intermediate with Lambda
language, click Step

But the language we implement has only single-argument
functions...

9-11



From Multi-Argument to Single-Argument

(define £

(A (xy 2)
(list z y x)))

(£ 1 2 3)

(define £
(A (x)
(A (y)
(A (z)
(list z y x)))))

(((£ 1) 2) 3)

12



Factorial

(let ([fac
(A (n)
(let ([facX
(A (facX)
(A (n)
(Lf (zero? n)
1

(* n ((facX facX) (- n 1))))))1)
((facX facX) n)))1)
(fac 10))

Simplify: (A (n) (let ([£f ...]1) ((£ £) n)))
= (let ([f ...]1) (£ £))..

13-14



Factorial

(let ([fac
(let ([facX
(A (facX)
(A (n)
(Lf (zero? n)
1

(* n ((facX facX)
(facX facX))]1)
(fac 10))

(-n 1))))))1)

15



Factorial

(let ([fac
(let ([facX
(A (facX) ; Almost original fac:
(A (n)
(Lf (zero? n)
1
(* n ((facX facX) (- n 1))))))1)

(facX facX))]1)

(fac 10))

More like original: introduce a local binding for
(facX facX)...

16-17



Factorial

(let ([fac
(let ([facX
(A (facX)
(let ([fac (facX facX)])
; Exactly like original fac:
(A (n)
(1f (zero? n)
1
(* n (fac (- n 1)))))))1])
(facX facX))]1)
(fac 10))

Oops! — this is an infinite loop
We used to evaluate (facX facX) only whennis
non-zero

Delay (facX facX)..

18-20



Factorial

(let ([fac
(let ([facX
(A (facX)
(let ([fac (A (x)
((facX facX) x))1])
; Exactly like original fac:
(A (n)
(Lf (zero? n)
1
(* n (fac (- n 1)))))))1)
(facX facX))])
(fac 10))

Now, what about £ib, sum, etc.?

Abstract over the fac-specific part...

21-22



Make-Recursive and Factorial

(define (mk-rec body-proc)
(let ([£X
(A (£X)
(let ([£f (A (x)
((£X £X) x))1])
(body-proc f£)))1])
(£X £X)))

(let ([fac (mk-rec
(A (fac)
; Exactly like original fac:
(A (n)
(1f (zero? n)
1

(* n (fac (- n 1)))))))1)
(fac 10))

23



(let ([fib

Fibonnaci

(mk-rec
(A (£ib)

(£fib 5))

4

> Usual fib:

(A (n)

(i1f (or (=n 0) (=n 1))
1
(+ (£ib (- n 1))
(fib (- n 2))))))) 1)

24



Sum

(let ([sum
(mk-rec
(A (sum)

; Usual sum:

(A (1)

(1f (empty? 1)

0
(+

(sum '(1 2 3 4)))

(fEirst 1)
(sum (rest 1)))))))1)

25



