State



Functional Programs

So far, our object languages have been purely functional

* A function produces the same result every time for the
same arguments

 That’s nice in some ways

* But that’s kind of limiting

* Sometimes we just need to keep track of changes



Non-Functional Procedure

(define counter 0)

(define (f x)
(set! counter (+ x counter))
counter)

* Using mutable variables to keep track of state



Non-Functional Procedure, now with boxes!

(define counter (box 0))

(define (f x)
(set-box! counter (+ x (unbox counter)))
(unbox counter))

* Alternatively, can use mutable data structures

* Box = single-element mutable array



BFAE = FAE + Boxes

<BFAE> := <num>

{+ <BFAE> <BFAE>}

{- <BFAE> <BFAE>}
<id>

{fun {<id>} <BFAE>}
{<BFAE> <BFAE>}
{newbox <BFAE>}
{setbox <BFAE> <BFAE>}
{openbox <BFAE>}

{seqn <BFAE> <BFAE>}

{with {b {newbox 0}}
{seqgn
{setbox b 10}
{openbox b}}} = 10



Implementing Boxes with Boxes

(define-type BFAE-Value
[numV (n number?) ]
[closureV (param-name symbol?)
(body BFAE?)
(ds DefSub?) ]
[boxV (container (box/c BFAE-Value?))])



Implementing Boxes with Boxes

; interp : BFAE? DefSub? -> BFAE-Value?
(define (interp a-bfae ds)
(type-case BFAE a-bfae

[newbox (val-expr)
(boxV (box (interp val-expr ds)))]
[setbox (box-expr val-expr)
(set-box! (boxV-container
(Lnterp box-expr ds))
(interp val-expr ds))]
[openbox (box-expr)
(unbox (boxV-container
(interp box-expr ds)))1))

Nice parlor trick.
But we haven’t learned anything about how boxes work!



