
Control

1

Our Languages So Far

2

Our Languages So Far

3

What We Sometimes Need

4

What We Sometimes Need

• Escaping because of an error (exceptions)

• Escaping because we found the answer (early return)

• Revisiting an earlier decision we made (backtracking)

• Alternating between different computations
(coroutines)

• These are all forms of control operations
I.e., of deviating from the normal control fow of
our program

5

Control

• Control is all about deciding what to execute next

• May not be what directly follows in the program!

• Our strategy: make "what to execute next" explicit
in our interpreter

Then implementing control operators is just a
matter of messing with that

6

Continuation-passing style

Key idea: convert the interpreter into a style where
all remaining work is explicit as an argument to the
interpreter: a continuation

Kind of like what we did with interp2 when we
implemented state using a store: the k argument was a
continuation!

Then we can swap in and out different pieces of work as
we decide what we want to run!

7

Continuation-passing style

We will transform our interpreter from:

interp : FAE DefSub -> FAE-Value

into a function with this type:

FAE DefSub (FAE-Value -> FAE-Value)
-> FAE-Value

If we also have a store as a result, where does it go?

interp : (-> BFAE
DefSub
Store
(Value*Store -> Value*Store)
Value*Store)

(But we won’t worry about stores for now.) ��1�

Analogy

If a store is akin to a heap as an explicit value...

...then a continuation is a stack as an explicit value!

11

What follows in the FAE interpreter, transformed in
continuation-passing style. Each future step of
computation is explicitly packaged up into a more
complex k argument to be supplied to the next call to
interp

12

(define-type FAE
 [num (n number?)]
 [add (lhs FAE?)

(rhs FAE?)]
 [sub (lhs FAE?)

(rhs FAE?)]
 [id (name symbol?)]
 [fun (param-name symbol?)

(body FAE?)]
 [app (fun-expr FAE?)

(arg-expr FAE?)])

13

(define-type FAE-Value
 [numV (n number?)]
 [closureV (param-name symbol?)

(body FAE?)
(ds DefSub?)])

(define-type DefSub
 [mtSub]
 [aSub (name symbol?)

(value FAE-Value?)
(rest DefSub?)])

14

(define (interp-expr a-fae)
 (interp a-fae (mtSub)

(λ (x) x)))

15

; FAE? DefSub? (FAE-Value? -> any) -> any
(define (interp a-fae ds k)
 (type-case FAE a-fae

 [num (n) (k (numV n))]
 [add (l r) (numop + l r ds k)]
 [sub (l r) (numop - l r ds k)]
 [id (name) (k (lookup name ds))]
 [fun (param-name body)

(k (closureV param-name body ds))]
 [app (fun-expr arg-expr)

the next slide contains this case]))

16

...
[app (fun-expr arg-expr)

(interp fun-expr ds
 (λ (fun-val)

 (interp arg-expr ds
 (λ (arg-val)

 (interp
(closureV-body fun-val)
(aSub (closureV-param-name fun-val)

arg-val
(closureV-ds fun-val))

k)))))]

17

(define (numop op l r ds k)
 (interp l ds

(λ (l-v)
 (interp r ds

(λ (r-v)
 (k (numV

(op (numV-n l-v)
(numV-n r-v)))))))))

1�

(define (lookup name ds)
 (type-case DefSub ds

 [mtSub () (error 'lookup "free variable")]
 [aSub (n num rest)

(if (equal? n name)
num
(lookup name rest))]))

1�

Let’s add early return to our language!

To start, let’s allow only 0 as an early return value

(define-type KFAE
 [num (n number?)]
 [add (lhs KFAE?)

(rhs KFAE?)]
 [sub (lhs KFAE?)

(rhs KFAE?)]
 [id (name symbol?)]
 [fun (param-name symbol?)

(body KFAE?)]
 [app (fun-expr KFAE?)

(arg-expr KFAE?)]
 [ret-0]) ; no extra info to keep track of!

2�

Ret-0

{{fun {x} {+ x {ret-0}}}
5} ⇒ 0

{+ {{fun {x} {+ x {ret-0}}}

5}
3}

⇒ 3

{ret-0} ⇒ error: not inside a function

21

Ret-0

...
[ret-0 () (numV 0)]

• We don’t have to call our continuation.

• If we ignore it, we skip its work!

22

Ret-0

{+ {{fun {x} {+ x {ret-0}}}
5}
3}

⇒ 0

• Oops, we return too far!

• All the way to the beginning, in fact!

• Solution: two continuations! One for normal execution,
one for returning!

23

(define (interp-expr a-kfae)
 (interp a-kfae (mtSub)

(λ (x) x)
(λ (x)
 (error 'interp

"not inside a function"))))

24

If we produce a value, continue interpreting the current
function.

; KFAE? DefSub?
; (KFAE-Value? -> KFAE-Value?)
; (KFAE-Value? -> KFAE-Value?)
; -> KFAE-Value?
(define (interp a-kfae ds k ret-k)
 (type-case KFAE a-kfae

 [num (n) (k (numV n))]
 [add (l r) (numop + l r ds k ret-k)]
 [sub (l r) (numop - l r ds k ret-k)]
 [id (name) (k (lookup name ds))]
 [fun (param-name body)

(k (closureV param-name body ds))]
 ...))

25

...
[app (fun-expr arg-expr)

(interp fun-expr ds
 (λ (fun-val)

 (interp arg-expr ds
 (λ (arg-val)

 (interp
(closureV-body fun-val)
(aSub (closureV-param-name fun-val)

arg-val
(closureV-ds fun-val))

k
; we're entering a new function body
; if we return from it, it's as if we
; were done interpreting the body!
; so we're done with the call!
k))

 ret-k))
 ret-k)] 26

Returning = calling the return continuation with the
return value!

...
[ret () (ret-k (numV 0))]

27

For completeness

(define (numop op l r ds k ret-k)
 (interp l ds

(lambda (l-v)
 (interp r ds

(lambda (r-v)
 (k (numV

(op (numV-n l-v)
(numV-n r-v)))))

ret-k))
ret-k))

Pass ret-k along in case either operand returns.

Otherwise continue execution as normal

2�

Returning any value

Let’s generalize to allow any return value

(define-type KFAE
 [num (n number?)]
 [add (lhs KFAE?)

(rhs KFAE?)]
 [sub (lhs KFAE?)

(rhs KFAE?)]
 [id (name symbol?)]
 [fun (param-name symbol?)

(body KFAE?)]
 [app (fun-expr KFAE?)

(arg-expr KFAE?)]
 [ret-0]
 [ret (ret-expr KFAE?)])

2�

Returning any value

{{fun {x} {+ x {ret 2}}}
5} ⇒ 2

{+ {{fun {x} {+ x {ret 10}}}

5}
3}

⇒ 13

{ret 2} ⇒ error: not inside a function

3�

...
[ret (ret-expr)

; compute your return value
(interp ret-expr ds

; when you're done, return!
(lambda (ret-val) (ret-k ret-val))
; if someone tries to return while
; computing the return value, that's
; the same as just returning
ret-k)]

31

...which is equivalent to

...
[ret (ret-expr)

(interp ret-expr ds
ret-k ; that lambda was extraneous
ret-k)]

32

Ret within Ret

ret is an expression

So can have ret inside ret!

{{fun {x} {ret {ret 2}}}
5} ⇒ 2

{{fun {x} {+ x {ret {+ 4 {ret 2}}}}}
5}

⇒ 2

That’s a bit weird, but it follows naturally from our rules.

This kind of behavior makes sense for, e.g., exceptions.

33

Exception within Exception

Source: https://docs.microsoft.com/en-us/windows/desktop/uxguide/mess-error

34

