Control

Our Languages So Far

Far

0O
wn
%]
U
0.0
3
=)
00
cC
[y
L
S

What We Sometimes Need

What We Sometimes Need

Escaping because of an error (exceptions)

Escaping because we found the answer (early return)

Revisiting an earlier decision we made (backtracking)

Alternating between different computations
(coroutines)

* These are all forms of control operations
© |.e., of deviating from the normal control flow of
our program

Control

* Control is all about deciding what to execute next

* May not be what directly follows in the program!

- Our strategy: make "what to execute next" explicit
in our interpreter
© Then implementing control operators is just a
matter of messing with that

Continuation-passing style

Key idea: convert the interpreter into a style where
all remaining work is explicit as an argument to the
interpreter: a continuation

Kind of like what we did with interp2 when we
implemented state using a store: the k argument was a

continuation!

Then we can swap in and out different pieces of work as
we decide what we want to run!

Continuation-passing style

We will transform our interpreter from:

interp : FAE DefSub -> FAE-Value

into a function with this type:

FAE DefSub (FAE-Value -> FAE-Value)
-> FAE-Value

If we also have a store as a result, where does it go!?

interp : (-> BFAE
DefSub

Store
(Value*Store -> Value*Store)

Value*Store)

(But we won’t worry about stores for now.) 8-10

Analogy

If a store is akin to a heap as an explicit value...

...then a continuation is a stack as an explicit value!

11

What follows in the FAE interpreter, transformed in
continuation-passing style. Each future step of
computation is explicitly packaged up into a more

complex k argument to be supplied to the next call to
interp

12

(define-type FAE

[num (n number?)]

[add (1lhs FAE?)
(rhs FAE?)]

[sub (lhs FAE?)
(rhs FAE?)]

[id (name symbol?)]

[fun (param-name symbol?)
(body FAE?)]

[app (fun-expr FAE?)
(arg-expr FAE?)])

13

(define-type FAE-Value
[numV (n number?)]
[closureV (param-name symbol?)
(body FAE?)
(ds DefSub?)])

(define-type DefSub
[mtSub]
[aSub (name symbol?)
(value FAE-Value?)
(rest DefSub?)])

14

(define (interp-expr a-fae)
(interp a-fae (mtSub)
(A (x) x)))

15

14

; FAE? DefSub? (FAE-Value? -> any) -> any

(define (interp a-fae ds k)

(type—-case FAE a-fae
[num (n) (k (numV n))]
[add (1 r) (numop + 1 r ds k)]
[sub (1 r) (numop - 1 r ds k)]
[id (name) (k (lookup name ds))]
[fun (param-name body)
(k (closureV param-name body ds))]
[app (fun-expr arg-expr)
the next slide contains this case]))

16

[app (fun-expr arg-expr)
(interp fun-expr ds
(A (fun-val)
(interp arg-expr ds
(A (arg-val)
(interp
(closureV-body fun-val)
(aSub (closureV-param-name fun-val)
arg-val
(closureV-ds fun-val))

k)))))l

17

(define (numop op 1 r ds k)
(interp 1 ds

(A (1-v)
(interp r ds
(A (r-v)
(k (numV

(op (numV-n 1-v)
(numV-n r-v)))))))))

18

(define (lookup name ds)
(type-case DefSub ds
[mtSub () (error 'lookup "free variable'")]
[aSub (n num rest)
(1f (equal? n name)
num
(Lookup name rest))]))

19

Let’s add early return to our language!

To start, let’s allow only 0 as an early return value

(defin

e-type KFAE

[num (n number?)]

[add
[sub

[id
[fun

[app

[ret

(lhs KFAE?)
(rhs KFAE?)]
(lhs KFAE?)
(rhs KFAE?)]
(name symbol?)]
(param-name symbol?)
(body KFAE?)]
(fun-expr KFAE?)
(arg-expr KFAE?)]
-0]) ; no extra info to keep track of!

20

Ret-0

{{fun {x} {+ x {ret-0}}}

5} = 0

{+ {{fun {x} {+ x {ret-0}}}

S}
3}

= 3

{ret-0} = error:

not inside a function

21

Ret-0

.[1.:ét—0 () (numVv 0)]

* We don’t have to call our continuation.

* If we ignore it, we skip its work!

22

Ret-0

{+ {{fun {x} {+ x {ret-0}}}
5}
3}

= 0

* Oops, we return too far!

* All the way to the beginning, in fact!

» Solution:; two continuations! One for normal execution,
one for returning!

23

(define (interp-expr a-kfae)
(interp a-kfae (mtSub)
(A (x) x)
(A (x)
(error 'interp
"not inside a function"))))

24

If we produce a value, continue interpreting the current
function.

; KFAE? DefSub?

; (KFAE-Value? -> KFAE-Value?)

; (KFAE-Value? -> KFAE-Value?)

; -> KFAE-Value?

(define (interp a-kfae ds k ret-k)

(type-case KFAE a-kfae
[num (n) (k (numV n))]
[add (1 r) (numop + 1 r ds k ret-k)]
[sub (1 r) (numop - 1 r ds k ret-k)]
[id (name) (k (lookup name ds))]
[fun (param-name body)
(k (closureV param-name body ds))]

-))

25

[app (fun-expr arg-expr)
(interp fun-expr ds
(A (fun-val)
(interp arg-expr ds
(A (arg-val)
(interp
(closureV-body fun-val)
(aSub (closureV-param-name fun-val)
arg-val
(closureV-ds fun-val))
k
; we're entering a new function body
; 1f we return from it, i1it's as 1f we
; were done interpreting the body!
; so we're done with the call!
k))
ret-k))
ret-k)]

26

Returning = calling the return continuation with the
return value!

°[]°:ét () (ret-k (numV 0))]

27

For completeness

(define (numop op 1 r ds k ret-k)
(interp 1 ds
(lambda (1-v)
(interp r ds
(lambda (r-v)
(k (numVv
(op (numV-n 1-v)
(numV-n r-v)))))

ret-k))

ret-k))

Pass ret-k along in case either operand returns.

Otherwise continue execution as nhormal

28

Returning any value

Let’s generalize to allow any return value

(define-type KFAE

[num
[add

[sub

[1id
[fun

[app

(n number?)]

(lhs KFAE?)

(rhs KFAE?)]

(lhs KFAE?)

(rhs KFAE?)]

(name symbol?)]
(param-name symbol?)
(body KFAE?)]
(fun-expr KFAE?)
(arg-expr KFAE?)]

[ret-0]

[ret

(ret-expr KFAE?)])

29

Returning any value

{{fun {x} {+ x {ret 2}}}

5} = 2

{+ {{fun {x} {+ x {ret 10}}}

S}
3}

= 13

{ret 2} = error:

not inside a function

30

[ret (ret-expr)
; compute your return value
(interp ret-expr ds
; when you're done, return!

(lambda (ret-val) (ret-k ret-val))
; 1f someone tries to return while

; computing the return value,
; the same as just returning
ret-k)]

that's

31

...which is equivalent to

[ret (ret-expr)
(Interp ret-expr ds
ret-k ; that lambda was extraneous
ret-k)]

32

Ret within Ret

ret is an expression

So can have ret inside ret!
{{fun {x} {ret {ret 2}}}
5} => 2

{{fun {x} {+ x {ret {+ 4 {ret 2}}}}}
5}
= 2

That’s a bit weird, but it follows naturally from our rules.

This kind of behavior makes sense for, e.g., exceptions.

33

Exception within Exception

Fabrikam

An error occurred while creating an error
report

Source: https://docs.microsoft.com/en-us/windows/desktop/uxguide/mess-error

34

