
AppsPlayground: Automatic Security Analysis of
Smartphone Applications

Vaibhav Rastogi, Yan Chen, and William Enck†

Northwestern University, †North Carolina State University
vrastogi@u.northwestern.edu, ychen@northwestern.edu, enck@cs.ncsu.edu

ABSTRACT

Today’s smartphone application markets host an ever in-
creasing number of applications. The sheer number of ap-
plications makes their review a daunting task. We propose
AppsPlayground for Android, a framework that automates
the analysis smartphone applications. AppsPlayground in-
tegrates multiple components comprising different detection
and automatic exploration techniques for this purpose. We
evaluated the system using multiple large scale and small
scale experiments involving real benign and malicious ap-
plications. Our evaluation shows that AppsPlayground is
quite effective at automatically detecting privacy leaks and
malicious functionality in applications.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—In-
vasive software (e.g., viruses, worms, Trojan horses); D.2.5
[Software Engineering]: Testing and Debugging

General Terms

Security

Keywords

Dynamic analysis, Android, malware, privacy leakage

1. INTRODUCTION
Mobile devices such as smartphones have gained great

popularity in response to vast repositories of applications.
Most of these applications are created by unknown develop-
ers who may not operate in the users’ best interests, leading
to malware [14, 16] and frequent exposure of privacy sensi-
tive information such as phone identifiers and location [6, 7,
8].

Recently, researchers have proposed both static and dy-
namic security analysis techniques for smartphone applica-
tions. While static analysis approaches such as those used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

by PiOS [6] and Enck et al. [8] scale to large numbers of
applications, they do not capture runtime environment con-
text such as configuration variables and user input. More
importantly, code may be obfuscated to thwart static analy-
sis, either intentionally or unintentionally (such as stripping
symbol information of native binaries to reduce size).

On the other hand, TaintDroid [7] uses dynamic analy-
sis to capture runtime environment context. However, the
researchers had to manually navigate the user interfaces of
each analyzed application to sufficiently exercise dangerous
functionality. More recently, DroidScope [30] used dynamic
analysis for malware forensics. Large-scale dynamic analysis
however requires more than what has been proposed earlier
– a fast analysis system and strategies to provide automatic
code coverage.

In this paper, we propose AppsPlayground, referred to as
simply Playground for brevity, a framework for automated
dynamic security analysis of Android applications. Play-
ground is meant to analyze applications for both malware,
i.e., apps that have a malicous intent, and grayware, i.e.,
apps that are not malicious but may still be annoying, for
example, by leaking private information for a legitimate pur-
pose but without user’s awareness. From this point on, for
the sake of conciseness, we will not particularly distinguish
between malware and grayware and refer to them both as
malware. An automatic dynamic analysis framework needs
to possess not only detection techniques for identifying ma-
licious or annoying functionality but also automatic explo-
ration techniques to explore the application code as much as
possible. Furthermore, the dynamic analysis environment
needs to appear as real (in this case, a real smartphone) to
the app as possible, lest a malicious app can easily detect the
special environment and not show any malicious behavior.

In Playground, solutions to all the above requirements are
integrated together in a modular manner. We use multiple
detection techniques, ranging from taint tracing to kernel-
level system call monitoring. For taint-tracing, we are able
to seamlessly integrate and reuse TaintDroid [7], an already
available taint-tracing engine with very good performance
for Android into the rest of our system. In order to deal with
root attacks in Android, we describe vulnerability conditions
in Android as succint signatures in terms of system calls and
kernel-level data structures. These signatures may easily be
incorporated into a dynamic analysis.

For automatic exploration, we find that the nature of An-
droid imposes non-conventional requirements on the explo-
ration techniques that need to be used. Application code
can be triggered by several kinds of system events and so
such events need to be simulated. Moreover, most of the

apps in Android provide GUI, which requires sophisticated
GUI exploration schemes. Trivial approaches for GUI ex-
ploration such as fuzz testing have their advantages in their
simplicity and, if designed properly, have the ability to even-
tually exhaustively explore a finite state space. They how-
ever take more time and are sometimes insufficient because
application user interfaces have complex requirements such
as login credentials for Internet services. Therefore, we also
need to intelligently drive the user interface to exercise code
implementing interesting and dangerous functionality. Our
heuristic-based intelligent execution technique is able to avoid
redundant exploration and is able to use contextual infor-
mation to fill editable text boxes meaningfully.

To demonstrate the practical advantage of Playground,
we evaluated 3,968 from the official Android Market (now
Google Play). We identified exposures of privacy sensitive
information in 946 applications, flagged by the taint-tracing
engine. Of these, 844 applications leaked phone identifiers
(such as phone number and IMEI), and 212 applications
leaked geographic location. We note that detecting privacy
violations still requires manual confirmation, as TaintDroid
only identifies that information has left the device over the
network interface, and not privacy violations. For further
validation, we also tested the applications used in the Taint-
Droid study. Playground’s findings almost completely coin-
cided with the findings manually made by the TaintDroid
authors on the much smaller set of thirty applications they
evaluated. Furthermore, we also evaluated Playground on
known malware samples, falling under diverse categories of
root attacks and SMS trojans, and were able to detect the
malicious nature of all of them.

Finally, to evaluate the performance of automatic GUI
exploration, we compare our system with GUIRipper [19],
a system that automatically generates test cases based on
windowing elements in traditional desktop GUIs. To the
best of our knowledge, this is the only system, apart from
fuzz-testing, available in the literature for GUI exploration.
It lacks advanced techniques such as filling in contextual
data in text boxes and repeatedly exercising GUI widgets to
achieve better code coverage, both of which we have found
are often critical requirements when testing Android applica-
tions. Our comparison with an Android port of this system
shows our technique to achieve a mean 30% improvement in
terms of code coverage.

To summarize, this paper makes the following contribu-
tions.

• We propose AppsPlayground (or simply, Playground),
a modular framework for scalable dynamic analysis of
Android application.

• We identify the key requirements for automatically ex-
ploring Android applications. We use automatic sys-
tem event triggering and propose and develop a new
intelligent execution technique that can use contextual
information to provide meaningful textual input.

• We describe vulnerability conditions for known vulner-
abilities in Android as succint signatures that may be
used in dynamic analysis. These vulnerability condi-
tions are necessary for a system compromise.

• We implement the AppsPlayground framework for An-
droid and evaluate 3,968 applications from the official
Android app Market. Our analysis identified expo-
sures of privacy sensitive information in 946 applica-

tions. Moreover, we were able to confirm the malicious
nature of already known malware samples using this
framework.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides relevant background in Android and Section
3 gives an overview of Playground. Sections 4, 5 and 6
provide detailed discussion of the techniques incorporated
into Playground. Section 7 discusses the implementation
of Playground. Section 8 describes our measurements with
Playground. Section 9 discusses the effectiveness of the auto-
matic exploration techniques employed. Section 10 presents
related work and Section 11 concludes.

2. ANDROID BACKGROUND
Android is a widely popular and open source operating

system designed for smartphones and other mobile devices.
While Android is based on Linux, it defines an entirely new
middleware and GUI environment in which applications ex-
ecute. Applications are mostly written in Java, which is
compiled to Dalvik bytecode, which runs in a virtual ma-
chine similar to the Java virtual machine. Apart from Java,
Android also allows parts of apps to be coded in native code.

Every Android application runs as an unprivileged user
with Linux UIDs effectively being used to provide applica-
tion sandboxes. Android applications are composed of com-
ponents. There are four component types: activity, service,
broadcast receiver, and content provider. The user interface
is defined by one or more activity components. Services are
meant to run in background while content providers manage
access to data. Broadcast Receivers are registered with sys-
tem services and can receive system events, such as reboot
completed, or an SMS received, and so on. Once a broad-
cast receiver is registered to receive a system event, the code
specified in the broadcast receiver is run whenever the sys-
tem event is triggered.1 Most system events are guarded by
permissions, which the app must declare and get approved
for at installation time.

For automatic exploration, it is necessary to understand
the GUI features in Android. Each activity corresponds to
a screen displayed to the user. This screen is functionally
equivalent to a traditional GUI window, the only difference
being that only one screen is shown at a time (with minor
exceptions), whereas traditional GUIs can typically display
multiple windows.

An application’s GUI consists of several activities that in-
voke one another and possibly return results. At any point
in time, only one activity has input focus and processing.
This activity is referred to as the active activity. When one
activity invokes another, the former is paused and the new
activity is pushed to the top of the activity stack and made
active. Once an activity has completed its work, it termi-
nates, optionally returning a value, and the next activity on
the stack is made active. Note that activities are not lim-
ited to invoking activities within the same application. A
sequence of related activities on the stack is called a task.

The activity GUI layout is commonly defined in XML but
may also be defined programmatically. As in traditional
GUIs, an Android window consists of widgets, which are
are referred to as views in Android terminology. The An-
droid library supplies several useful views which may either

1This may sometimes not hold due to, for example, abort of
a broadcast.

(a) (b) (c)

Figure 1: A simple application with three windows. Win-
dow (a) invokes window (c) which invokes window (b). (c)
shows only the lower half of the screen emphasizing the menu
window.

Figure 2: The GUI hierarchy for the window in Figure 1(a)

be standalone (e.g., buttons) or act as containers for other
views. In addition to the window layout, an activity can de-
fine a menu that appears when the user presses the physical
“Menu” button on the phone.

Example. Figure 1 shows a simple example application.
The application consists of two activities, “Hello World” and
“About” (Figures 1(a) and 1(b), respectively). The “Hello
World” activity has three buttons which bring up the “Hello
World!!” message in three different languages. The “About”
activity is non interactive. There is a menu attached to
the “Hello World” activity, which we model as a separate
window. After opening this menu, one may click on the
only option (named “About”) to go to the “About” activ-
ity. Figure 2 depicts the GUI hierarchy of the window in
Figure 1(a).

3. APPSPLAYGROUND OVERVIEW
This section gives a broad view of Playground. We be-

gin with describing the overall architecture of Playground
followed by the different components involved in brief.

3.1 Overall Architecture
We seek to design a general framework for automatic dy-

namic analysis for smartphone applications. Playground
is built as a virtual machine environment. Specifically, it
repurposes the Android emulator, available with the An-
droid SDK, for the dynamic analysis environement. Built
on Qemu [1], the emulator emulates an ARM machine and
provides support for a few features available on a real phone,
such as telephony.

A virtualized environment is essential to providing scal-
ability required for malware analysis. For example, every

analysis can use a fresh snapshot of the environment with-
out affecting the analyses of other samples; this is not feasi-
ble when using real devices. However, different from a few
past approaches [30], we do not employ virtual machine in-
trospection, a technique in which the virtual machine (VM)
guest is run unmodified and any analysis tools run outside
the VM, analyzing its physical memory to get information
from inside the virtual machine. This approach while com-
plicated, allows the analysis tools to be strictly more privi-
leged than the analyzed environment.

In the case of Android however, apps typically run as un-
privileged users and hence introspection is not actually re-
quired. Even for known attacks that try to get root privi-
leges, signatures may be developed for identifying the attack
and safely recording it before the privilege escalation actu-
ally completes. For apps requiring root (through su), these
arguments do not apply; however, the number of such apps
is low and the number of rooted devices is also significantly
smaller. Furthermore, the complexity of introspection also
hinders in the retrieval of GUI information or sending events
from outside the emulator.

Figure 3 shows the architecture of Playground. Play-
ground has several components comprising multiple detec-
tion techniques, multiple automatic exploration techniques,
and techniques to make analysis environment appear like a
real phone. All these components work independently of
each other and integrate together in a plugin-able manner.
We next briefly discuss the components listed in the figure.

3.2 Playground Components
Detection techniques are the components that actually

provide the detection of a possibly malicious functionality
while a sample is being tested. The detection techniques
that we include are taint tracing for information leakage
detection, based on TaintDroid; sensitive API monitoring,
such as monitoring for the SMS API; and kernel-level moni-
toring for detection of root exploits. Disguise techniques are
those that make the environment appear like a real device;
these include the use of realistic phone identifiers, keeping
realistic data in phone databases, and so on.

Automatic exploration techniques help in automatically
increasing code coverage of the application code. Without
automatic code coverage, it is likely that much of the code in
an application will not be executed. Playground simulates
events, such as location change and sms received, to trig-
ger code in event receivers (primarily broadcast receivers).
To explore the app GUI, we use fuzz testing and intelligent
black-box execution. Since fuzz testing simply sends in a
stream of random inputs, it may be described as a random
walk on the state space. Given the ability to restart from the
start state any number of times, it can eventually explore
any finite connected state space. Applications that do not
need any meaningful text to be filled in have a small state
space consisting of screen taps and drags. Fuzz testing can
deal with such applications quite well without any knowl-
edge of their interaction model. On the other hand if some
meaningful texts such as login credentials are required, fuzz
testing cannot enter in the right input, and fails. For such
cases, we need intelligent execution, which heuristically de-
termines what data has to be entered in. Furthermore, since
fuzz testing is random, it may sometimes fail to explore some
states. Intelligent exploration however deterministically ex-
plores states that it can model.

Figure 3: Architectural overview of AppsPlayground analysis framework

Intelligently driving the user interface of smartphone ap-
plications presents several challenges:

• Modeling the GUI. In order to intelligently exercise the
user interfaces of applications, a representation of the
program flow must be abstracted from the GUI. The
closeness of this approximation to the actual program
flow determines the completeness of the automation
algorithms.

• Efficient exploration strategy. Even simple applica-
tions can have a very large (if not infinite) number
of unique program states based on user input (e.g., a
counter). Practical testing of applications requires an
efficient exploration strategy with the ability to effec-
tively discover distinct and useful states and remove
redundant states.

• Context determination. Applications often have text
fields that require special values. Leaving them empty
or filling in garbage can limit application exploration.
A few real world examples follow.

– Login credentials. Unless a correct username and
password is supplied in the correct fields, the ex-
ploration of the application will be seriously lim-
ited.

– Cities and zip codes. Application functionality
depending on zip codes and cities entered in input
fields will likely fail in the presence of random
input.

– Duplicate input fields. Applications occasionally
require the user to enter the same information in
two text fields for consistency checks, e.g., pass-
words, PINs, and Email addresses.

– Input format. Fields such as Email addresses and
phone numbers are occasionally required to be en-
tered in a specific format before the application
will accept the input.

– Dates. A future date may not work when a past
date is expected. An application which asks for
date of birth may not move forward if a date is
in the past but is one that does not indicate the
user is now over 13.

In all these cases, Playground must infer from the con-
text present around text fields what should be filled in.
We note in most cases, these inputs are validated by
remote servers and so even symbolic execution cannot
help determine correct values for them.

4. DETECTION TECHNIQUES
In this section we discuss the various detection techniques

that are included in Playground. Other techniques may be
included as needed.

Taint tracing.
Playground uses taint tracing to track privacy-sensitive

information leakage. We have integrated a slightly modified
version of TaintDroid [7], an open-source, high-performance
taint-tracing system for Android. We note that TaintDroid
works only for Dalvik bytecode only. Native code taint-
tracing would likely require dynamic binary instrumentation
or VM instrospection. We currently do not use such meth-
ods for native code taint-tracing; these methods result in a
typical slowdown of 10x to 30x for the code and hence are
not very attractive from the performance perspective.

Sensitive API monitoring.
Playground monitors a few system APIs for detecting pos-

sibly malicious functionality. The SMS API is one of the
most exploited API in Android. Malicious apps use it to
send text messages to premium rate numbers without user’s
awareness. Playground can record the destination and con-
tent of the SMS messages sent by an app. Similarly, Play-
ground monitors the Java reflection API to record method
calls and field accesses through reflection as some of these
may be indicative of obfuscated codes typical in malware.
Playground also monitors dynamic bytecode loading and can
inform the analyst of which bytecodes (contained in a .dex
file) were loaded. We note that monitoring reflection and
bytecode loading APIs is done for application code only.
Framework code is trusted and so need not be monitored.
The differentiation is done on the basis of class loaders; in
Android the class loaders for application code are always dif-
ferent from the class loader that loads the framework code.

Kernel-level monitoring.
We also provide kernel-level tracking to identify known

root-exploits. Our method of identification of root exploits is
based on vulnerability conditions and is thus immune to code
polymorphism. We observe that known root exploits such as
rageagainstthecage, exploid, and gingerbreak, all have sig-
natures that can easily be used in dynamic analysis without
raising too many false alarms:

• Rageagainstthecage/Zimperlich. These attacks fork
RLIMIT NPROC (the maximum allowable) number
of processes for a UID (the UID associated with the
malicious app) and then make zygote (a system dae-
mon) spawn another process for that user. The zygote
daemon typically uses setuid system call to change the
UID to the app’s uid. However, since this UID already
has as many processes as are allowed, setuid fails, and
the app gets a process with root privileges. We observe
that this attack can be detected simply by monitoring
if the number of processes for a user comes close to the
maximum allowed.

• Exploid (CVE-2009-1185). This exploit is based on a
vulnerability in the init, in which init does not check
the origin of NETLINK messages. Untrusted code may
thus be registered and get called later. For this vul-
nerability to happen, a neccessary condition is that the
app code must send a NETLINK message later. We
can use this as our signature.

• Gingerbreak (CVE-2011-1823). This exploits a vulner-
ability in the vold daemon in Android, again requiring
untrusted code to send NETLINK messages to vold.
Hence our signature here is similar to that for exploid.

We note that the above three are representative examples.
In general we can encode conditions for any vulnerability in
code; the checks will be inserted in the crtical path that
leads to the given vulnerability. We note that the OS used
for analysis need not actually be vulnerable for the vulnera-
bility conditions to get triggered. Hence, attacks for vulner-
abilities in multiple versions of Android may be detected on
the same version. Moreover, attacks that would normally
not succeed in the emulator may also be detected.

5. DISGUISE TECHNIQUES
Playground adopts a number of measures to make the

analysis environment appear realistic. It provides real-looking
phone identifiers to the app. These identifiers include the
phone number, IMEI, IMSI, Android ID and so on. We also
modify the build.prop (a file that contains several proper-
ties about the system) properties to match a real device. In
a similar vein, we can also modify identifiers that relate to
Qemu and other virtualization-related features.

Furthermore, we provide realistic data on the device, such
as contacts, SMS, pictures, files on SDCard, and so on. We
also provide additional libraries such as the Google Maps li-
brary, which is available on real devices. In addition Google
apps (a set of Google proprietary apps available on a major-
ity of Android devices) may also be provided though we do
not provide them at this moment. Data from sensors such
as GPS is also made to appear realistic. Currently, we do
not support all sensors. Support for microphones is partial
while we do not have any support for accelerometers.

We note that evasion of virtualized environments has long
been an issue. Even if the above problems are fixed, there
will always be evasion techniques based on timing (virtual

devices run slower) and Qemu fingerprinting, for example [22].
These problems are general to all dynamic analysis systems.

6. AUTOMATIC EXPLORATION

TECHNIQUES
We discuss here the techniques used for automatic explo-

ration in Playground. The next two subsections describe
event triggering and intelligent execution. Fuzz testing be-
ing almost a trivial technique is skipped from discussion
here. Currently, Playground does not use any symbolic ex-
ecution, which appears to be a good option for state space
exploration of an app. We note that there are presently no
effective symbolic execution solutions for interactive applica-
tions such as those involving GUI. Even projects developed
around symbolic execution use random walks or fuzz testing
to explore the GUI parts of the applications [25]. Symbolic
execution can however be used to make event triggering bet-
ter. For example, SMS messages received from only certain
numbers may trigger some code in the application; sym-
bolic execution could be used to construct the right kinds of
messages here. We plan to include symbolic execution into
Playground as a future work.

6.1 Event Triggering
Several API elements in Android are event based. Ap-

plications may register some code to be triggered whenever
an event happens. There are specific events raised by the
system when, for example, an SMS is received, the device
location changes, the system completes a reboot, a call is re-
ceived or is hung up, and so on. Sensitive events are guarded
by permissions, which an app must declare statically and get
approved for at the time of installation. Many malicious ap-
plications have been found to register for specific events [32].

Based on the permissions declared by the application, we
raise specific events in the system. For example, if an appli-
cation contains the BOOT COMPLETED permission, Play-
ground artificially raises the reboot completed event (note
that we use VM snapshots only; booting the VM will be
much more time consuming). This triggers the app’s code
that was registered with this event. However, artificially
raising important events may cause system inconsistencies
as well. This happened with the reboot completed event. We
correct some of the framework code so that it would react
to this event only once. Other events are handled similarly.

6.2 Intelligent Execution
Playground intelligently drives the user interface of a smart-

phone application by dynamically defining and exploring a
model created from window and widget features. We extract
features from displayed user interfaces to iteratively define
a model that approximates the application’s logic. For ex-
ample, when an application launches, it displays a window
with one or more buttons. When a button is selected, a new
window appears. The transitions between windows are cap-
tured by this model. Note that this approach is based on the
intuition that smartphone applications are highly interactive
and that the resulting model provides a good approximation
of the application’s logic states.

Figure 4 presents an overview of the intelligent execution
module. For every iteration, Playground checks if focus has
changed to a different window. To avoid redundant explo-
ration, a window equivalence module uses heuristics to de-
termine if the newly displayed window is similar to previ-

Figure 4: Overview of the intelligent execution module of
Playground

ously viewed windows. If so, the window is merged with
an existing state. Playground then extracts features rele-
vant to driving the GUI. These include widgets containing
texts, editable text fields, buttons, scroll containers and so
on. It then creates associations between the current features
and those retrieved earlier using widget tracking (why this
is needed is discussed below). A few search optimizations
are applied next to prune the search space. Next, Play-
ground uses sequencing policies to determine the next GUI
action (such as select a button, scroll down, fill text fields).
Text fields are filled using heuristics defined by the context
determination module. The current iteration is completed
with the performance of an action. The rest of this section
describes the various modules shown in Figure 4 in greater
detail.

Widget Tracking

When navigating windows, widgets may disappear and later
reappear. Failure to identify a widget when it reappears may
result in concluding identical states or events to be different
and hence redundant exploration. For example, consider a
window with buttons A and B. Upon pressing button A, the
window closes. To complete the exploration, the window is
re-opened. The problem would be trivial if the each widget
has a unique identifier. This is unfortunately not true for
Android.

Playground tracks widgets similar to the way a human
user might. We have identified the following widget prop-
erties for widget tracking. (1) Text associated with a wid-
get. Widgets often have some text associated with them
which is made visible to the user, e.g., a text label on a but-
ton. In many conditions, this text is sufficient to uniquely
identify the widget. However, not all widgets have associ-
ated text. Additionally, multiple widgets may have the same
text. (2) Image associated with a widget. GUI layouts often
use widgets containing an image. In such cases, the image
can uniquely identify the widget.2 (3) Position within the
window. Combined with the previous previous, the location
of the widget on the screen is a useful indicator. Finally,
(4) Position in the GUI hierarchy. Widgets often have fixed
chains of ascendents. A button, for example, will always

2We modified Android framework for exporting image iden-
tifiers which could be hashes of images, their resource names,
and so on.

have the same chain of ascendents in a window. The user
perceives this in terms of the relative positioning of widgets.

Sequencing Policies

Each window can contain many widgets that allow input
events. In addition to buttons, a window can contain ed-
itable text boxes, check boxes, spinners, etc. The result of
selecting a button can be directly influenced by interaction
with other widgets. Check-boxes can enable/disable other
widgets. Finally, scrollable container widgets hide other wid-
gets from the user. Exercising every possible sequence of
widget interaction is infeasible. So, we have to arrange the
order of event execution in the most meaningful way.

The sequence of interaction with widgets in a window re-
quires consideration. Based on observation, we classify GUI
input events into two groups: (a) those that input param-
eters or variables into the app, such as inputting text into
an editable text box or a spinner, and (b) those that provide
actions, such as buttons. First, widgets that accept input
variables should be acted upon before action widgets. Sec-
ond, widgets that are contained within a scrollable container
are acted upon before scrolling the container. Third, con-
tents of the scrollable container and the container itself are
exercised before acting upon widgets outside the container,
except when this is in conflict with the first rule. This de-
sign choice follows the intuition that the widgets outside the
scrollable widget (if present) are often the control buttons
such as “OK”, “Submit”, and “Cancel”.

Note that the choice of these policies has important ram-
ifications. If the behavior of a widget depends on another
widget, Playground may not be able to trigger the entire set
of behaviors. While we discuss this problem within a sin-
gle window, it is easy to see such problems would also arise
across windows.

Search Optimizations

For the sake of practicality, we heuristically prune redun-
dant navigation paths where possible. For items organized
as a list or a grid, we explore the items up to a threshold. In
addition to reducing exploration time, a threshold is some-
times necessary to achieve program termination. For exam-
ple, an Android list may dynamically expand and thereby
go infinitely deep. We also put a threshold on the number of
times the same widget may be interacted with (interacting
with the same widget more than once may be required to
completely explore the states that this widget leads to).

Window Equivalence

When exploring an application, a window is often invoked
several times with different parameters. For example, con-
sider an address book application. One window displays a
list of contacts. When a contact is selected, an “edit con-
tact” window is opened. On selecting different contacts, the
resulting window will be similar, but not identical. Similar
windows often correspond to the same application function-
ality and underlying code. Playground reduces the search
space by annotating such equivalent windows.

Playground uses window equivalence heuristics to deter-
mine if the current window state is sufficiently similar to
a previously visited window state. For our Android imple-
mentation, we leverage the correspondence between activity
components and window design. That is, our heuristic clas-
sifies all windows belonging to the same activity component

as equivalent. GUI Ripper [19] also used window titles to
determine window equivalence.

Context Determination

As previously discussed, applications often have text fields
that must be filled with appropriate values to lead them
to the right states. Playground searches for keywords in
the hints and the widget IDs3 associated with editable text
boxes and in the visible text labels next to them. For exam-
ple, the string “Email” may appear immediately to the left
of a text box, indicating that it should be filled in with an
Email address.

Determining the keyword rules requires empirical investi-
gation. We analyzed the string resources of over 500 Android
applications to determine which strings application develop-
ers use for particular fields. To do this, we first extracted
all of the strings an application’s string resource file. We
then converted the strings into a canonical form (lowercase,
de-hyphenated). Next, we sorted the strings of all applica-
tions by frequency. The result was used to manually classify
the strings into various semantic buckets, e.g. email, name,
and phone. Finally we coded keyword based rules for each
semantic bucket. Our final specification included rules for
email, address, date, phone number, password, username,
cancel, and ok, among several others. The approach of au-
tomatically filling in text fields has also been used for web
form completion [11, 23]. These techniques are more sophis-
ticated and include self-learning. We plan to integrate these
techniques into Playground.

Our strategy for addressing account sign-up and sign-in
follows from the keyword rules approach for context deter-
mination. Sometimes, an application requiring sign-in will
also include a window to sign-up for the service. The sign-up
window will contain text input fields for Email, username,
and password. By identifying these fields, Playground can
automatically sign up for an account if a sign up option is
available from within the app. Currently, Playground always
uses the same Email address, username, and password; sub-
sequent tests of an application will automatically sign in by
filling in the same credentials. In future, Playground may
also be able to identify if it could not successfully log in. A
human tester can then create an account which Playground
can use to automatically test at least future versions of the
application.

7. IMPLEMENTATION
We have implemented the Playground analysis framework.

The implementation is done over the standard Android em-
ulator that comes with the Android SDK. We modify the
Android source code to integrate TaintDroid and to insert
hooks for API level monitoring. Kernel modifications are
made to provide kernel-level monitoring. Furthermore, dis-
guise measures are implemented by changing the appropri-
ate identifiers and data, either directly in the Android source
code or by adding files on the disk images and changing the
content of the standard databases (such as contacts). Mi-
nor changes were required to the Android source for doing
event triggering and fuzz testing. Intelligent execution in-
terfaces with the window manager in Android to retrieve
window and widget properties from the system. We use the
ViewServer/HierarchyViewer for the interface. Changes are

3Developers often tend to give descriptive IDs to widgets
which often convey the purpose of those widgets

Table 1: Private Information Leaks Detected

Number of applications 3968

Information type Number of applications leaking

GPS 212
Android ID (AID) 581
IMEI 329
IMSI 91
Phone number 63
ICC-ID 3
WiFi MAC address 4
All types 946
At least one ID 844
At least one non-AID ID 442
GPS with at least one ID 120

made to the code of many standard widgets so that required
widget properties may be retrieved. We further modified re-
lated code to make retrieval of properties faster than in the
original code.

Apart from the guest (Android) side, Playground also has
a host side, written in over 3,000 lines of Java code. The host
side implements the algorithms for intelligent execution, and
also handles the dispatch of apps to multiple emulators for
parallel testing and the logging of information received from
the detection techniques running inside the emulator.

8. FINDINGS
To show the effectiveness of Playground, we conduct some

small-scale and a large-scale experiment. Our first experi-
ment tries to automatically derive the results obtained in
the TaintDroid paper. The second experiment is conducted
on a set of 3,968 apps downloaded from the Android Market
in November 2010. Finally, we also test Playground on real,
known malware to evaluate the effectiveness of Playground
at detecting malware.

For taint tracing in our experiments, we tracked device
identifiers and location information leaks. By device iden-
tifiers we mean any strings that may be used to identify a
particular device. Android ID is an identifier on Android
available to any app without requesting any special permis-
sion. IMEI is an identifier available on all GSM phones.
IMSI is associated with the SIM card and identifies a user
on the cellular network. The ICC-ID is also specific to a
SIM card. Access to IMEI, IMSI, ICC-ID, and WiFi Mac
address requires special permissions.

8.1 Small-Scale Validation
To validate the effectiveness of Playground in helping dis-

cover privacy leaks, we used Playground to drive the same
set of applications as that studied in the original TaintDroid
paper. The TaintDroid researchers had to manually explore
the applications but we attempt to achieve the same detec-
tion automatically here. Out of thirty total applications,
we had to exclude nine because they were now obsolete and
non functional or would not run properly on the Android
emulator. Of the rest we were able to reproduce the exact
findings from the manual tests conducted by the TaintDroid
authors except in two cases (Wisdom Quotes Lite, Traffic
Jam) where location leaks were not detected. In one other
case (Babble) however, we detected an additional location
leak which was not found in the original TaintDroid experi-
ments. Such discrepancies are possible due to non determin-

istic behavior of applications which has been witnessed by
others also [9]. Moreover, we also detected several leaks of
Android ID which was not being tracked in the TaintDroid
paper. This experiment thus conclusively establishes the ef-
fectiveness of Playground at automatically detecting privacy
leaks.

8.2 Large Scale Measurements
We used Playground to drive 3,968 applications. Our find-

ings are summarized in Table 1. We detected 946 applica-
tions to be leaking information to Internet, which is 23.8%
of total number of applications we evaluate. This is because
many free applications likely include third party ads and/or
analytics libraries which track unique users based on these
identifiers. Among the identifiers, Android ID is the one
with least risk, as it can be changed at any time. Other
identifiers are permanently associated with either the device
or the SIM card. We find that in 52.3% of applications leak-
ing an identifier, there is at least one non Android ID identi-
fier. In 56.7% of instances of location leaks, both an ID and
the location information is leaked out. In these cases, the
applications can uniquely track the location history of the
users. We also found 63 phone number leaks. Since phone
numbers are often found on social networking profiles, the
privacy implications of tracking are more significant than
those of other identifiers.
Analysis of Results: We would like to know the final des-
tinations of information leaks; if the leaks are to advertise-
ment/analytics networks or to developer’s own servers. Usu-
ally, the applications from a single creator4 may share the
same set of servers. If applications from multiple creators
leak the information to a single destination domain, it is
most likely the domain belongs an advertisement/analytics
network, or a domain related to third-party libraries used by
the applications. We found a total of 392 unique domains.
Of these 29 domains relate to at least two creators. These
are more likely to be advertisement/analytics networks. The
rest of the domains come from single creators and hence are
very likely to be domains used by the developers.

In Table 2, we show the domains that are related to a large
number of unique applications. We also show what informa-
tion has been leaked to this domain. For example, we find in
98.1% of leaks to data.flurry.com, the Android ID has been
leaked. We find most of these are advertisement/analytics
networks. localwireless.com and playgamesite.com are how-
ever developer sites. We note that AdMob is known to track
users on the basis of hashed device identifiers. TaintDroid
does not propagate taint through cryptographic hash func-
tions and hence it appears, that none of the identifiers were
sent to AdMob.

8.3 Analyses on Known Malware
We also analyzed known malware to confirm that Play-

ground is able to detect malware in the wild. We consid-
ered three malware samples, FakePlayer, DroidDream, and
DroidKungfu. The first one is an SMS trojan that sends
SMS messages to premium numbers. The other two are
root exploits. Detailed information about the samples may
be found in Table 3. Following is our experience of analyzing
these malware samples with Playground.

4We obtained the creator information from the Android
Market

FakePlayer.
This malware sample installs as a movie player. On start-

ing the application, the an activity came up momentarily
and then closed. On checking the logging done by Play-
ground, we found that this app had sent three text messages
to short numbers 3353, 3354, and 3353 in sequence. Each
message contained text “798657”. The SMS destinations be-
ing short would make it highly suspicious that this sample
is malware.

DroidDream.
On starting the application inside Playground, we did not

experience anything suspicious; rather the app crashed. On
disassembling the app’s code and examining it, it turned out
that the app would get stuck on the “phoning home” behav-
ior. Apparently, it tries to connect to a remote server send-
ing private information about the phone, including IMEI
and IMSI numbers, but failed when we tested because the
remote server did not respond. We removed this “phoning
home”behavior (which is a single method call with the name
of postUrl()), and tested the modified app again. It turns
out that this time app did execute the rageagainstthecage
exploit. We could see several running processes with this
app’s UID and finally could also see a root process; the priv-
ilege escalation had completed. Next, we checked the logs
collected by Playground. The logs showed a huge number of
forks and exceeding of a threshold number of processes. The
logs thus give sufficient evidence of the rageagainstthecage
attack having being attempted.

DroidKungFu.
On launching this app inside Playground, the only thing

we observed was the“phoning home”behavior, which is quite
well documented. The app sent the IMEI, Android version,
and phone model out of the phone. While IMEI was ex-
plicitly marked to be taint-traced; the Android version and
phone model appeared as plain text in the logs as being sent
out of the phone. We however did not observe any attempt
to gain root privileges. On looking deeper into the code, we
found that the root exploits were not executed due to some
condition checks, which looked for the existence of /sys-
tem/xbin/su and some version checks. Changing either the
analysis environment or the app code would allow us to see
the attacks being executed. This is a general problem in dy-
namic analysis that sometimes the environment conditions
may not match. Symbolic execution may be of help here.

9. EFFECTIVENESS OF AUTOMATIC EX-

PLORATION
In this section we evaluate and discuss the effectiveness of

automatic exploration. For this, we augmented the Dalvik
VM to report code coverage in terms of the number of in-
structions executed. Next we compare our system with GUI
Ripper and then provide a discussion where we include our
experience on automatic exploration.

9.1 Comparison with GUI Ripper
We compare our system with GUI Ripper [19]. We ported

it to Android based on the information available in Memon
et al. [19]. Playground is essentially a superset of GUI Rip-
per. This meant that we simply remove some of the func-
tionality of Playground (such as context determination and

Table 2: Most common leaking domains. The percentages indicate the proportion of apps which leak the corresponding
information.

uniq apps # uniq creators Android id IMEI IMSI Phone # Location

data.flurry.com 265 180 98.1% 2.2% 0 0 14.0%
mobclix.com 152 71 95.4% 68.4% 0 0 12.5%
Google related domains 63 58 0 0 0 0 96.8%
localwireless.com 58 1 0 0 100% 0 24.1%
admob.com 51 27 0 0 0 0 90.1%
ad.qwapi.com 45 26 97.8% 2.2% 0 0 13.3%
playgamesite.com 29 2 0 100% 0 0 0
ade.wooboo.com.cn 21 8 100% 0 0 100% 4.7%

Table 3: Malware samples used for testing anti-malware tools

Family Package name SHA-1 code Date found Remarks

Fakeplayer org.me.androidappli-
cation1

1e993b0632d5bc6f0741
0ee31e41dd316435d997

08/2010 SMS trojan

DroidDream com.droiddream.
bowlingtime

72adcf43e5f945ca9f72

064b81dc0062007f0fbf

03/2011 Root exploit

DroidKungFu com.sansec 4bf050f089a0d44d6865
ff74b75cb7f1706fdcaa

05/2011 Root exploit

repeatedly exercising widgets) to get a GUI Ripper config-
uration.

For Playground, we observed a code coverage mean of
33%. We observed 27% mean code coverage GUI Ripper.
The low coverage is expected because both the systems treat
the application as a black-box. In fact, low coverage is one of
the most limiting factors in dynamic analysis. It is also true
that many applications may not give close-to-100% coverage.
There may be several reasons for this. Applications may
have dead code or code which executes only under special
circumstances such as special device configurations and so
on.

To get a comparison between Playground and GUI Rip-
per, we (a) disregard instructions executed by simply start-
ing the application (since these instructions are trivially exe-
cuted without the need of any navigation), and (b) calculate
the percent difference between Playground and GUI Rip-
per. Since, we are interested in the cases when Playground
performs better (or worse) than the other approaches, we
do not use the absolute value of the difference, i.e., we use

C(x, y) = (x−y)
(x+y)/2

. Moreover, because GUI Ripper does not

include fuzz testing, we use coverage results from only the
intelligent execution component for Playground. Using this
metric, our measurements indicate Playground’s intelligent
component improves by a 31% in mean over GUI Ripper.
We plot this difference against the number of applications
in Figure 5. For applications on the positive side, Play-
ground does better. Some applications lie on the negative
side. This is likely because of non-determinism in applica-
tions because of which a run of GUI Ripper may be able
to execute more code in an application than a different run
of Playground. Such non deterministic behavior has been
encountered earlier also [9].

9.2 Discussion
While event triggering is undoubtedly needed, it was not

clear to us before the experiments how fuzz testing and in-
telligent execution would help and compare with each other.
First, we found that the code coverage at simply launching
the applications is only 16% while our automatic exploration

C(p−l,g−l)

F
re

q
u

e
n

c
y

−2 −1 0 1 2

0
1

0
0

2
0

0
3

0
0

4
0

0

Figure 5: Percentage difference in code coverage between
Playground and GUI Ripper

techniques of fuzz testing and intelligent execution nearly
double the code coverage. Second, intelligent execution can-
not work in cases that it does not model; this applies to
all the custom-made widgets and, in the current implemen-
tation, to web-based GUI, which may also be embedded in
apps and which is not handled currently (the process would
be similar to handling normal GUI but in a different envi-
ronment). In such cases, fuzz testing was found help, filling
up the limitations of intelligent execution.

Intelligent execution was primarily useful in cases where
user credentials or some meaningful information was required.
In fact, for automatic login, we found that in several cases
we had received emails on the email account we used for
testing from several services. Playground had automatically
created accounts with these services. In particular, we found
emails from 34 different services. Some of these are popular
social networking, cloud and media services such as Pan-
dora, Dropbox, Last.fm, and Kik Messenger. Most of these

related to account registrations while a few were received
on supplying email address alone. We note that account
registration for most applications is done through web sites.
Playground currently cannot work with web pages. More-
over, many account registration routines also have captcha
tests. However, once registered, Playground can easily use
these credentials for subsequent navigation. A few situations
were also related to providing other meaningful inputs such
as a city name or a zipcode. For example, the Weather.com
app asks for this in the absence of consent to location data
access. Exploration is quite stunted if this is not provided.

Intelligent execution is thus specially useful for complex
apps, such as those for social networking. In these cases,
fuzz testing is usually stuck at the beginning only due to
need of login or similar things. It is however, usually after
login only, that there is access to the user’s databases, files,
location and other sensor information.

10. RELATED WORK

Dynamic Malware Analysis. Given we are trying to run
applications and detect security and privacy breaches, our
work naturally falls into the category traditionally known
as dynamic malware analysis. For Android two works are
quite comparable to our work. DroidScope [30] is a malware
analysis framework for Android applications. It is however
different from our work in that while we aim to detect ma-
licious or unwanted functionality on a large scale (in thou-
sands of apps), they aim at malware forensics, to provide
accurate analysis of apps that are known to be malware.
Their analysis does not provide automatic exploration and
requires significant manual effort to understand the working
of the malware.

Google Bouncer is a tool that screens applications up-
loaded to the Google Play market for malware. This tool
appears to be similar to Playground in that it needs to pro-
vide automatic exploration and detection techniques. It is
however a closed, proprietary tool and not much is known
about it. Researchers [20, 28] have however found that it
is poor at disguising techniques and many of the common
identifiers may be used to identify the virtual environment.

Strider HoneyMonkey [27] loads webpages in the browser,
automatically clicks dialog boxes to allow installation of any
binary and then detect if it is malware. CWSandbox [29] and
Botlab [12] study malware behavior in monitored environ-
ments. All the above works have little or even no interaction
with the malware executables being studied. Playground
however is designed to work with highly interactive applica-
tions. These applications are different from the traditional
malware in that the former’s execution is primarily driven
by interaction.

Driving Applications. Any dynamic program analysis
approach may be classified as either a black-box or a white-
box approach depending on whether it meaningfully uses the
program code to do the analysis. For our automatic explo-
ration, we decided to stick to the black-box (or a somewhat
gray-box) approach which is far simpler than the white-box
paradigms. Approaches like model checking [5] and symbolic
and concolic execution [15, 26] would fall into the white-box
space. We plan to include symbolic execution in the future
in Playground. Zheng et al. [31] also propose a framework
for automatic UI exploration of Android apps. It is a grey-
box technique as some static analysis is involved. We can
improve our approach by including similar static analysis to

guide the dynamic exploration. However, as they also note
static analysis is insufficient to analyze all aspects of the
UI. Our black-box, yet sophisticated dynamic exploration
techniques can help to cover such aspects.

GUI Testing. Automatic GUI testing has for long been
an intriguing area in software engineering, specifically be-
cause of the complexity of event interactions that are possi-
ble. Much of the commercially available tools are directed
towards capture-playback [4] or towards programmatic de-
scriptions of input and output event sequences [2, 24]. These
however do not provide completely automatic solutions to
GUI testing. Our task at GUI exploration is obviously very
different from what these tools can accomplish. Privacy Or-
acle [13] however uses capture-playback to its advantage for
multiple runs along same paths on application GUI but with
slightly perturbed inputs.

GUI testing is often accomplished as model based testing
[3], involving coming up with a finite state machine model
of the event space that the app provides and subsequent
generation and execution of test cases based on that model.
Given a model, automatic techniques may be used to come
up with test cases [17, 21].

Memon et al. automatically deduce GUI models by ex-
ploring the GUI [18, 19]. We face a similar problem of
automatically generating an abstract state machine by ex-
ploring the application UI. However, we model much more
accurately window transitions without assuming a directed-
acyclic-graph organization amongst windows (in Android,
for example, cycles are possible). More importantly, Memon
et al. do not provide abilities to fill contextual text input
and do not talk about modules such as widget tracking and
sequencing policies which we found crucial for black-box ex-
ploration. These advantages do show up in Section 9.

Hu and Neamtiu [10] have discover GUI bugs in Android
applications. They fuzz applications and monitor the system
logs to discover bugs. Playground can complement their
work by driving applications automatically.

11. CONCLUSION AND FUTURE WORK
In this paper we proposed AppsPlayground, a tool au-

tomatic dynamic analysis of smartphone applications. We
integrated a number of detection, exploration, and disguise
techniques to come up with an effective analysis environ-
ment that may be used to evaluate Android applications on
a large scale.

The future directions for Playground include including
symbolic execution for systematic exploration of the ap-
plications’ state space and to make Playground even more
stealthy by enhancing the disguise techniques.

Acknowledgements

We would like to thank Zhichun Li for his extensive com-
ments through the major part of this project. We are grate-
ful to Patrick Traynor for helpful comments during the writ-
ing of the paper. We would further like to extend our thanks
to the anonymous reviewers and our shepherd, Debin Gao,
for valuable comments and suggestions for improving the
paper.

References

[1] Qemu. http://www.qemu.org.

[2] Abbot. http://abbot.sourceforge.net/.

[3] Larry Apfelbaum and John Doyle. Model Based
Testing. In Software Quality Week Conference, pages
296–300, 1997. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.86.1342.

[4] AutoIt.
http://www.autoitscript.com/site/autoit/.

[5] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. The MIT Press, January 1999.
ISBN 0262032708. URL
http://www.worldcat.org/isbn/0262032708.

[6] Manuel Egele, Christopher Kruegel, Engin Kirda, and
Giovanni Vigna. PiOS: Detecting Privacy Leaks in
iOS Applications. In ISOC Network and Distributed
System Security Symposium (NDSS), February 2011.

[7] William Enck, Peter Gilbert, Byung-Gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, BC, October
2010.

[8] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A Study of Android Application
Security. In Proceedings of the 20th USENIX Security
Symposium, San Francisco, CA, August 2011.

[9] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. “These aren’t the Droids you’re looking
for”: Retrofitting Android to protect data from
imperious applications. In Proceedings of the 18th
ACM Conference on Computer and Communications
Security (CCS 2011), 2011.

[10] Cuixiong Hu and Iulian Neamtiu. Automating gui
testing for android applications. In Proceeding of the
6th international workshop on Automation of software
test, 2011.

[11] Y.W. Huang, S.K. Huang, T.P. Lin, and C.H. Tsai.
Web application security assessment by fault injection
and behavior monitoring. In Proceedings of the 12th
international conference on World Wide Web, pages
148–159, 2003.

[12] John P. John, Alexander Moshchuk, Steven D.
Gribble, and Arvind Krishnamurthy. Studying
spamming botnets using Botlab. In Proceedings of the
6th USENIX symposium on Networked systems design
and implementation, pages 291–306, Berkeley, CA,
USA, 2009. USENIX Association. URL http://

portal.acm.org/citation.cfm?id=1558977.1558997.

[13] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David
Wetherall, Gabriel Maganis, and Tadayoshi Kohno.
Privacy oracle: a system for finding application leaks
with black box differential testing. In CCS ’08:

Proceedings of the 15th ACM conference on Computer
and communications security, pages 279–288, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-810-7.
doi: 10.1145/1455770.1455806. URL
http://dx.doi.org/10.1145/1455770.1455806.

[14] Kasperskey Lab. First SMS Trojan detected for
smartphones running Android.
http://www.kaspersky.com/news?id=207576158,
August 2010.

[15] James C. King. Symbolic execution and program
testing. Commun. ACM, 19(7):385–394, July 1976.
ISSN 0001-0782. doi: 10.1145/360248.360252. URL
http://dx.doi.org/10.1145/360248.360252.

[16] Lookout. Update: Security Alert: DroidDream
Malware Found in Official Android Market.
http://blog.mylookout.com/blog/2011/03/01/

security-alert-malware-found-%
in-official-android-market-droiddream/.

[17] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Hierarchical GUI test case generation using automated
planning. IEEE Transactions on Software
Engineering, 27(2):144–155, February 2001. ISSN
00985589. doi: 10.1109/32.908959. URL
http://dx.doi.org/10.1109/32.908959.

[18] A.M. Memon. An event-flow model of gui-based
applications for testing. Software Testing, Verification
and Reliability, 17(3):137–157, 2007.

[19] Atif Memon, Ishan Banerjee, and Adithya Nagarajan.
GUI Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. Reverse Engineering, Working
Conference on, pages 260+, 2003. ISSN 1095-1350.
doi: 10.1109/WCRE.2003.1287256. URL
http://dx.doi.org/10.1109/WCRE.2003.1287256.

[20] Jon Oberheide. Dissecting android’s bouncer, June
2012. https://blog.duosecurity.com/2012/06/
dissecting-androids-bouncer/.

[21] A. Pretschner, O. Slotosch, E. Aiglstorfer, and
S. Kriebel. Model-based testing for real. International
Journal on Software Tools for Technology Transfer
(STTT), 5(2):140–157, March 2004. ISSN 1433-2779.
doi: 10.1007/s10009-003-0128-3. URL
http://dx.doi.org/10.1007/s10009-003-0128-3.

[22] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting
system emulators. Information Security, pages 1–18,
2007.

[23] S. Raghavan and H. Garcia-Molina. Crawling the
hidden web. In Proceedings of the International
Conference on Very Large Data Bases, pages 129–138,
2001.

[24] Robotium. http://code.google.com/p/robotium/.

[25] P. Saxena, D. Akhawe, S. Hanna, F. Mao,
S. McCamant, and D. Song. A symbolic execution
framework for javascript. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 513–528.
IEEE, 2010.

[26] Koushik Sen, Darko Marinov, and Gul Agha. CUTE:
a concolic unit testing engine for C. SIGSOFT Softw.
Eng. Notes, 30(5):263–272, September 2005. doi:
10.1145/1095430.1081750. URL
http://dx.doi.org/10.1145/1095430.1081750.

[27] Yi-Min Wang, Doug Beck, Xuxian Jiang, and Roussi
Roussev. Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites that Exploit
Browser Vulnerabilities. In IN NDSS, 2006. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.100.224.

[28] Ryan Whitwam. Circumventing google’s bouncer,
android’s anti-malware system, June 2012.
http://www.extremetech.com/computing/
130424-circumventing-googles-bounc%
er-androids-anti-malware-system.

[29] Carsten Willems, Thorsten Holz, and Felix Freiling.
Toward Automated Dynamic Malware Analysis Using
CWSandbox. IEEE Security and Privacy, 5(2):32–39,
March 2007. ISSN 1540-7993. doi:
10.1109/MSP.2007.45. URL
http://dx.doi.org/10.1109/MSP.2007.45.

[30] L-K Yan and H Yin. DroidScope: Seamlessly
Reconstructing the OS and Dalvik. In Proceedings of
USENIX Security Symposium. USENIX Association,
2012. URL http://portal.acm.org/citation.cfm?

id=1558977.1558997.

[31] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han,
and W. Zou. Smartdroid: an automatic system for
revealing ui-based trigger conditions in android
applications. In Proceedings of the second ACM
workshop on Security and privacy in smartphones and
mobile devices, pages 93–104. ACM, 2012.

[32] Yajin Zhou and Xuxian Jiang. Dissecting android
malware: Characterization and evolution. Security
and Privacy, IEEE Symposium on, 2012.

