
DYDROID : Measuring Dynamic Code Loading and Its Security Implications in
Android Applications

Zhengyang Qu, Shahid Alam†, Yan Chen, Xiaoyong Zhou††, Wangjun Hong, Ryan Riley†

Northwestern University, Qatar University†, Samsung Research America††

Abstract

Android has provided dynamic code loading (DCL) since
API level one. DCL allows an app developer to load additional
code at runtime. DCL raises numerous challenges with regards
to security and accountability analysis of apps. While previous
studies have investigated DCL on Android, in this paper we
formulate and answer three critical questions that are missing
from previous studies: (1) Where does the loaded code come
from (remotely fetched or locally packaged), and who is the
responsible entity to invoke its functionality? (2) In what ways
is DCL utilized to harden mobile apps, specifically, application
obfuscation? (3) What are the security risks and implications
that can be found from DCL in off-the-shelf apps?

We design and implement DYDROID, a system which
uses both dynamic and static analysis to analyze dynamically
loaded code. Dynamic analysis is used to automatically ex-
ercise apps, capture DCL behavior, and intercept the loaded
code. Static analysis is used to investigate malicious behavior
and privacy leakage in that dynamically loaded code. We have
used DYDROID to analyze over 46K apps with little manual
intervention, allowing us to conduct a large-scale measurement
to investigate five aspects of DCL, such as source identifi-
cation, malware detection, vulnerability analysis, obfuscation
analysis, and privacy tracking analysis.

We have several interesting findings. (1) 27 apps are found
to violate the content policy of Google Play by executing
code downloaded from remote servers. (2) We determine the
distribution, pros/cons, and implications of several common
obfuscation methods, including DEX encryption/loading. (3)
DCL’s stealthiness enables it to be a channel to deploy
malware, and we find 87 apps loading malicious binaries
which are not detected by existing antivirus tools. (4) We
found 14 apps that are vulnerable to code injection attacks due
to dynamically loading code which is writable by other apps.
(5) DCL is mainly used by third-party SDKs, meaning that app
developers may not know what sort of sensitive functionality
is injected into their apps.

I. INTRODUCTION

Android is the dominant smartphone OS. In Q2 2015,
IDC placed the worldwide market share of Android at 82.48
percent of all active smartphones [27]. However, its open
nature and the wide variety of app markets also make it
easier to disseminate malware or otherwise untrustworthy
apps. In 2016, Mirror reported that up to 10 million Android
smartphones had been infected by malicious software [21].

After realizing the severity of the malware threat, Google
developed and deployed Google Bouncer [44], a tool that
analyzes apps submitted to Google Play [15] and checks them
for malicious behavior before publishing them. Other security
vendors, such as Bitdefender [11], have released products that
are deployed on the client side with static malware analysis.

While most apps are distributed as standalone Android
application package (APK) files, the Android platform also
supports apps dynamically loading additional binaries at run-
time by making use of dynamic code loading (DCL). The
usage of DCL is not regulated by the OS, and as such it opens
up several possible threats. For example, it can be leveraged to
evade malware detection. Our research indicates that DCL is
widely used in mobile marketplaces. A thorough investigation
of various security-relevant aspects of DCL is thus needed.

By using DCL, a developer can change the behavior of
an app at runtime in unpredictable ways. This feature can
significantly ease the deployment of malicious code. Malware
authors are able to evade the security check of offline analysis
systems, such as Google Bouncer, by only executing the mali-
cious code when logical conditions are met [36]. For example,
we developed an app which downloads and dynamically loads
known malware over the network. This app passed the security
check of Google Bouncer, thus demonstrating the practicality
of such threats. Although the similar experiment has been
conducted by Poeplau et al. [48], our penetration proves that
this issue has not been addressed within the recent two years.
Moreover, our study of malware samples deployed by DCL
in the wild shows instances where the malicious behavior is
triggered by the status of the runtime environment, such as
availability of a network connection or the system time.

Google’s content policy [16] for apps on Google Play spec-
ifies that all application updates must go through their market.
This policy is not effectively enforced, however, because apps
can download and dynamically load new code at runtime
without using the market. In fact, our experimental and the
measurement results in Section V find numerous apps in the
wild that are loading remotely fetched code and violating this
policy. Android lacks the ability to track the provenance of
code loaded dynamically. Thus, the malicious behaviors and
privacy usage in the stealthy channel of DCL are not regulated.
Moreover, benign apps that improperly implement DCL can
be vulnerable to code injection attacks by other apps on the
device; the OS does not enforce any sort of integrity check
on dynamically loaded code, and in certain circumstances it is
possible for the attacker to tamper with the code to be loaded.

1

While DCL can be the cause of some security problems,
it can also be used to protect the intellectual property of
Android developers. Some recent studies [56], [59] show that
DCL and bytecode encryption can be leveraged to obfuscate
an app, which makes it difficult to reverse-engineer with
static/dynamic analysis tools. Some security providers, such as
Bangcle [10] and Ijiami [17] provide such services to protect
the intellectual property of developers, where the whole app’s
bytecode is encrypted and stored as a private resource, and an
app container dynamically loads the bytecode after decryption.

In this work we perform a large-scale measurement of DCL
usage in over 46K apps, investigating the following issues:

• Provenance. The loaded bytecode can be either packed
as static files in the APK file or fetched stealthily from a
remote server at runtime. The latter is capable of evading
static/dynamic malware detection mechanisms. We are thus
interested in the popularity of its usage, despite the fact that
it is prohibited by Google Play.

• Security risks/implications. Are there any malicious be-
haviors hidden in dynamically loaded code? Does the usage
of DCL in existing mobile apps have vulnerabilities? How
is user privacy tracked in dynamically loaded code?

• Application hardening. DCL can be used by apps for the
purpose of anti-reverse engineering. In the obfuscated app,
the bytecode of the original app is encrypted and repacked.
The modules of bytecode decryption, code loading, and app
lifecycle construction are interposed in the original app’s
launching procedure. We investigate an app’s pattern after
obfuscation, popularity, and comparison with other common
obfuscation techniques, including native code, lexical obfus-
cation, Java reflection, and anti-decompilation.

• Usage in the wild. How widely is DCL adopted in apps
in marketplaces? Does the DCL usage correlate with other
application attributes, e.g. number of downloads, average
rating, and number of ratings? We also study the source of
dynamic code loading within the app itself, whether it is
the main application or a third party library. For example, a
developer may integrate a software development kit (SDK)
related to advertising in order to generate revenue. This SDK
may use DCL to load portions of its functionality at runtime.
We are interested in the entity responsible for using DCL.

We summarize the following challenges. (1) Code intercep-
tion. We need to log the DCL event and intercept the code
loaded. The files containing the binaries may be temporary,
which are compiled as intermediate results and will be deleted
after being merged with the app triggering the DCL behavior.
The app’s runtime and our code interception are concurrent in
the OS. We thus need to instrument the low-level IO-related
APIs to enforce mutual exclusion and intercept those loaded
binaries. (2) Provenance/entity identification. The Android OS
itself does not distinguish whether or not a file in storage is
downloaded from the network, meaning that it is non-trivial to
determine if a file loaded using DCL was originally sourced
from the network. Detecting this case will require making
use of flow analysis. In addition, the code loading may be

triggered by a third-party SDK or library. Our mechanism
must also be able to find out whether it was the developer
or the third-party library provider who performed DCL. (3)
Obfuscation identification. DCL is being actively used for
anti-reverse engineering purposes. A proper methodology to
accurately detect when an app is obfuscated in this way needs
to be developed.

In this work we make the following contributions:

• We develop a framework, DYDROID, which combines both
dynamic and static analysis in order to detect DCL and
intercept the bytecode and/or native code loaded. The paths
to the binaries to be loaded are pushed to a queue, and
we instrument the IO-related calls to block file delete and
rename operations during the phase of code interception.
A flow analysis is implemented in the dynamic analysis,
which captures the flow from a URL to a file. DYDROID
tracks the call site of DCL behavior by retrieving the
element of the Java stack trace. Using this stack trace we are
able to differentiate the responsible entity launching DCL.
After capturing the dynamically loaded code, DYDROID
performs static analysis on the intercepted binaries in order
to determine malicious behavior and privacy leakage. In ad-
dition, we summarize the general pattern of apps obfuscated
with bytecode encryption/loading based on the samples
from four mobile app security vendors. The obfuscation
pattern involves how the three core components, the app
bytecode decryption, DCL, and app lifecycle construction,
are organized in an application subclass [4] as the container.

• DYDROID is capable of stable operation with little manual
intervention. Various types of exceptions are automatically
handled, such as device storage running out. It allows us
to be the first to conduct a large-scale measurement of
DCL over 46K Android apps. Our measurement tracks the
provenance of DCL, including local/remote availability, and
the entity. We find the 27 apps that violate the content
policy of Google Play by executing the binaries downloaded
from the remote server of Baidu [9]. Generally, over
85% of DCL is initiated by third-party SDKs or libraries.
And the app popularity has the positive correlation with
DCL adoption. Moreover, we conduct the first large-scale
measurement of various obfuscation methods to understand
their distribution, pros/cons, and implications.

• Our analysis demonstrates a number of apps in the wild
that use DCL to load malware. We find 87 apps which
load malicious bytecode or native code at runtime, making
them undetectable to existing antivirus tools such as Google
Bouncer or VirusTotal [29]. We have conducted further
analysis which reveals that the execution of the malicious
code in these apps is triggered by properties of the runtime
environment, such as the system time, GPS service avail-
ability, and network connectivity.

• We have identified a vulnerability in a number of DCL
apps that leaves them open to code injection attacks [48]
by other apps on the system. We explore a variant of the
code injection vulnerability, where code is loaded from the

2

APK Decompilation
Use Dynamic Code

Loading (DCL)?

Yes

Provenance/entity
Identification

Dynamic Analysis

App Execution Engine

DCL Logger Code Interception

Download Tracker

Vulnerability
Analysis

Malware
Detection

Privacy tracking
Analysis

Static Analysis

Obfuscation Analysis

DEX Encryption Lexical Native

ReflectionAnti-decompilation

Fig. 1. System Architecture

internal storage of other apps, and we find 7 apps vulnerable
to this attack.

The remainder of this paper is organized as follows: Sec-
tion II presents a brief background. We cover the design
of DYDROID and its implementation in Sections III and
IV. Section V presents our measurement results over large
numbers of real-world apps with DCL, which is followed by
the relevant discussion. We have related work in Section VI.
Finally, we conclude our work in Section VII.

II. BACKGROUND

Android apps are written in Java. The classes are compiled
to Dalvik bytecode with the tool dx and further stored as
one file classes.dex in the installation package. Each
class is loaded and executed in the DVM1. Other than the
internal static executable bytecode, Android also supports
fetching external binaries dynamically. Developers use the
class loader provided by Android to load arbitrary executable
bytecode, which is stored in files with various formats, such
as APK, JAR, ZIP, DEX, and ODEX (optimized DEX). The
DEX code is then translated into a performance-optimized
version, ODEX. There are two types of basic class loaders
DexClassLoader [5], and PathClassLoader [6]. Apps
can also load native code. The APIs in the Java Native
Interface (JNI) [18] can be invoked to dynamically load native
libraries in .so format. Android does not verify the loaded
code integrity or have the ability to differentiate whether the
file containing loaded binaries is originally packed in the
application or downloaded from a remote server at runtime.
The binaries can be accessed with diverse methods. For
example, an application can even use package contexts to
retrieve the classes contained in another application. However,
the loading behavior will always be achieved by either using
DexClassLoader, PathClassLoader for DEX code or
invoking the APIs load(), loadLibrary() in the JNI for
native code. All DCL goes through one of these points, which
provides us with a reliable way to enforce complete mediation
in intercepting the loaded code.

1Starting with Android 5.0 the Dalvik virtual machine was replaced by
ART, an ahead of time compiler. In this work we make use of Android 4.3.1,
and thus we discuss Dalvik.

Package Name: com.audials

dalvik.system.NativeStart

com.android.internal.os.ZygoteInit

…
com.audials.Util.AndroidUtil

Call site class

Package Name: com.gameimax.KidsLab

java.util.concurrent.ThreadPoolExecutor

java.util.concurrent.FutureTask

…
com.google.android.gms.ads.internal.f

Entity: Developer

Entity: Third-party library

Fig. 2. Java Stack Trace Element

III. SYSTEM DESIGN

A. System Overview

The architecture of DYDROID is illustrated in Figure 1.
An APK file will first be decompiled into an intermediate
representation (IR). Then we check if the app creates the
class loader to dynamically load DEX code or invokes the
APIs related to native code loading. We do not verify the
reachability of DCL-related code, only its existence within
the app. This step simply serves as a filter to determine which
apps to investigate further using our dynamic analysis. Apps
containing DCL-related code are then executed and our App
Execution Engine is used to log DCL events and track files
downloaded remotely during execution. Using this information
we are able to determine the provenance of the loaded code
(local or remote) and whether the DCL is vulnerable to
code injection attacks. The intercepted code will be passed
to our static analysis to investigate the existence of malicious
behavior and privacy leakage.

We also perform obfuscation analysis by checking the
Android manifest file and the availability of basic components
against a series of rules to identify whether bytecode loading
and encryption are applied to obfuscate the app. The method is
also designed to recognize the usage of other anti-reverse en-
gineering techniques, including lexical obfuscation, reflection,
native code, and anti-decompilation.

B. Dynamic Analysis

To completely capture loading events, we modify the An-
droid framework. All DCL events an app can use go through
DexClassLoader or PathClassLoader in the DVM,

3

TABLE I
RULES OF DOWNLOAD TRACKER

source: URL, sink: File
URL:

URL → InputStream
InputStream:

InputStream → InputStream
InputStream → Buffer

Buffer:
Buffer → InputStream
Buffer → OutputStream

OutputStream:
OutputStream → Buffer
OutputStream → OutputStream
OutputStream → File

File:
File → File
File → InputStream

or load() or loadLibrary() in the JNI. As such, we
instrument these methods to record the following information:
(1) path to the loaded file with various formats, e.g., so, APK,
ZIP, JAR, DEX; (2) path to the directory storing the optimized
version of the DEX code; (3) the call site class of the DCL
(the class where the class loader is created). We determine the
call site by analyzing the stack trace [20]. An example of this
analysis can be found in Figure 2. We record the classes of the
sequence of objects whose methods are called when the class
loader is initialized, and the top element of the stack trace
is the call site class, which is used to figure out whether the
developer or a third party library provider launched the DCL.
Our DCL logger skips the system binaries, such as native
libraries in /system/lib, which are provided by security-
trusted OS vendors and are thus not in our scope.

When a DCL event is captured, the path to the file being
loaded is stored in a queue and logged. In some third-party
libraries, such as the Google Ads library, we observed that the
files loaded are temporary, meaning they are deleted after the
load. As such, fully intercepting the loaded binaries requires
enforcing mutual exclusion. We modify the methods related
to file deleting and renaming in java.io.File to ensure
that the delete and rename operations silently fail for files in
our queue of dynamically loaded binaries. This ensures the
dynamically loaded code remains available for later analysis.

To investigate if a loaded file is packed locally or fetched
remotely at runtime, our dynamic analysis includes taint
tracking regarding file downloads. As shown in Table I,
URL and File are modeled as source and sink. We first
instrument the class URL to record all the URLs initialized,
and the class URLConnection with its subclasses, such
as HttpURLConnection, HttpsURLConnection, and
FtpURLConnection, to track the flow from URL to Input-
Stream. Next, we instrument the constructors, and the meth-
ods read() and write() of the classes InputStream,
Reader, OutputStream, Writer, including their sub-
classes in the package java.io.*, to track the flows among
InputStream, Buffer, OutputStream, and File. The copy and
renaming operations are considered as the flows among Files.

Each object is represented by type and hash code [19]. In the
data flow graph, we search the paths from a URL to a File.

In order to increase the chance that our dynamic analysis
engine triggers the DCL event, we employ Fuzz testing [50],
[45], [43], [28]. Specifically, a sequence of events is generated
and triggered automatically as inputs to UI elements, which
invoke the callback functions and Android framework. We
utilize the fuzzing tool Monkey [28], which runs on top of
a device running the instrumented version of Android 4.3.1.
We verify that the DCL-related APIs in Android 7.1 do not
change significantly from Android 4.3.1. DexClassLoader
and PathClassLoader remain the same and ART uses
DEX to load. The class Runtime only adds an API (load0) to
load native code. We only need to add hooking to one API to
adapt to the latest version of Android. Our system modification
thus works well on newer versions of Android.

a) Provenance/entity Information: Poeplau et al. had
shown that it was feasible to evade Google Bouncer with DCL
[48]. Our experiment indicates that the issue has not been fixed
in the recent two years. We prepared a malicious app AppM ,
that is derived from known malware [22]. We submitted this
app to Google Play and it was rejected by Google Bouncer. We
then implemented a new app AppL, which can dynamically
load AppM from a server at runtime. The server decides
whether or not to send AppL the link to the copy of AppM .
The app AppL was approved and released on Google Play. We
should note that we disabled the malware delivery at the server
side during application review and after release. We thus make
sure no end user is affected by the malware.

Google has a content policy [16] that apps should not using
side channels other than the standard updates to modify the
APK binary code. In other words, when using DCL it is only
legitimate to load code already packaged into the installation
package. Remote fetching new code is not allowed. However,
we still found some apps fetching binaries from a remote
server at runtime. This technique can ease the application up-
dates for developers. For example, a normal application update
can be packed as a DEX file and be pushed to devices instantly
when it is ready, bypassing lengthy application review on
the store. However, loading the code fetched remotely brings
malware authors a stealthy channel to deploy malicious code
after app approval by the store. Given the limitation of offline
analysis systems [47], [54], the malware detection deployed on
mobile marketplaces can be evaded easily, where the malicious
code is actually fetched and executed after the application’s
public release. Moreover, the Android OS currently cannot
tell whether the file to be loaded is fetched remotely. Thus,
the existing Android ecosystem lacks a mechanism to enforce
Google’s policy. The DCL logger and download tracker of
DYDROID records the provenance information for remotely
downloaded files, meaning we can identify which DCL apps
are loading code remotely and thus violating the policy.

In addition to tracking local/remote provenance, we can also
determine if the DCL event was triggered by the app itself
or a third party library included with it. In Java, packages
organize classes into namespaces. Classes in the same package

4

can access the package-private and protected members of each
other. Android apps inherit this organizational pattern. Each
app has a unique application package name that includes the
classes from developers, while the third-party libraries are
organized with different package names. As shown in Figure 2,
the package name can be used to determine if the DCL event
was triggered by the main app or a third party library.

b) Vulnerability Analysis: When studying DCL we no-
ticed a potential vulnerability depending on where apps
load their dynamic code from. If bytecode is being
loaded, then the parameter dexPath in the constructors
of DexClassLoader and PathClassLoader specifies
the list of files containing bytecode to be loaded. If na-
tive code is being loaded, the parameter libName of
API loadLibrary() represents the name of the library
containing the loaded code. It will be passed to function
mapLibraryName() to get the path to the library file given
the runtime environment, and the API load() does the real
job of loading code from the library file.

Under Android, the responsibility for verifying the integrity
of the file being loaded is on the developer, who is generally
more concerned with functionality than security. Thus, if the
loaded code is located on a space writable by other parties,
then other apps can replace the file with another, and cause
the code to be loaded in the context of the vulnerable app.

Poeplau et al. [48] have previously discussed the problem of
dynamic code loading from external storage. As such, part of
our analysis checks for this vulnerability in our application set.
In addition, we identify another variant of this vulnerability.
During vulnerability analysis, we check if the path of the file
loaded falls into either of the following categories:

• External storage. Prior to Android 4.4, any app is able to
modify the contents of external storage without declaring
special permissions. This means that if an app performs
DCL from a file on external storage (for example, in
/mnt/sdcard/2), any other app can replace that file. After
Android 4.4, apps must declare a special permission in order
to write to external storage. This is a common permission,
however, and it would not be unusual for an app to have it.

• Internal storage of other apps. Android provides each
app private internal storage where only that app can create
files. However, we have observed that other apps can dy-
namically load binaries from the private internal storage of
other apps. While it unclear why an app developer would
want to do this, we noticed that some do. As such, we flag
this situation as a potential vulnerability in the apps that
load files from the internal storage of other apps, e.g. from
/data/data/otherAppPackageName/.

C. Static Analysis

a) Malware Detection: The dynamic code intercepted by
our system can be bytecode or native code. Most malware
detection systems for Android, however, only operate on

2The example paths to external storage and internal storage are based on
the observation in the Android device, where we conduct our measurement.

bytecode. As such, in order to perform malware detection of
our captured samples we make use of the publicly available
malware analysis system DroidNative [32], [14], which is able
to analyze both bytecode and native code binaries. DroidNative
translates the binaries compiled for various platforms, such as
ARM and x86, to the platform independent Malware Anal-
ysis Intermediate Language (MAIL) [31]. MAIL provides a
high-level representation of the disassembled binary program,
which includes the specific information such as control flow
information, function/API calls and patterns. Given the issue of
zero-day malware and malware variants, DroidNative utilizes
a learning-based method, and trains a classifier based on
the annotated control flow graphs (ACFG) of malware. In
the evaluation with traditional malware variants, DroidNative
achieves the detection rate of 99.48%. In DYDROID, we train
DroidNative with 1,240 apps from 19 malware families which
are collected from two sources [61], [22]. We then use the sys-
tem to detect malware samples from among the dynamically
loaded code we intercept. Specifically, DroidNative conducts
a subgraph matching on the ACFG and flags a malware when
the degree of match is over 90%. When a sample is flagged
as malware, we manually verify it in order to reduce the
possibility of false positives.

We then go further, and for each intercepted file contain-
ing malicious code, we validate whether the loading event
can be reproduced under a variety of runtime environment
configurations. First, we set the system time to be before
the app’s release date. Second, we enable airplane mode but
intentionally re-enable the WiFi connection. Third, we enable
airplane mode to disable all Internet connectivity. Finally, the
location service is disabled.

b) Privacy Tracking Analysis: Previous related studies
[61], [53] found that Android apps frequently transmit sen-
sitive data to unknown destinations without user consent.
However, the severity of this problem remains unclear within
DCL. As such, we conduct a static data-flow analysis on
intercepted DEX code.

Our data-flow analysis leverages the public system Flow-
Droid [33], which achieves the high precision 86% and recall
93% in data leak detection. FlowDroid requires the application
installation package as input. The manifest file and layout
resource are used to locate the app entry points. While we only
have the DEX binaries intercepted. Unlike a whole app that
has the well-defined components interacting with the system,
the loaded code interacts with the app, and an arbitrary class
can be the entry point to the loaded libraries. We thus modify
FlowDroid regarding the definition of program entry point
and remove its dependency on the manifest file and layout
resources.

Felt et al. [39] surveyed 3,115 smartphone users about 99
risks and asked the participants to rate how upset they would
be if a given risk occurred. Specifically, their survey covered
11 data types regarding user privacy. Additionally, we combine
the data types reported in other mobile privacy tracking studies
[37], [57], [62], as listed in Table X. The 18 types of privacy
are classified into 5 categories:

5

/mnt/sdcard/
/data/data/otherAppPackageName/

• Location. Android provides the APIs that can be invoked
to fetch user’s real-time location.

• Phone identity. The smartphone identifiers (IMEI, IMSI,
ICCID) can be used to recognize the device’s identity.

• User identity. The user identifiers (phone number, device
accounts) can be used to track user’s identity.

• Usage pattern. The system’s PackageManager APIs
support fetching the apps and packages installed on device.
Third parties are strongly motivated to track this type
of data. For example, advertisement providers can infer
user’s interests from the installed apps and selectively push
customized ad content.

• Content provider. Content providers control the access to
a structured set of data. Android has a series of default
content providers to manage the private user data, e.g.
bookmark in browser, address book, and call history.
For the categories location, phone identity, user identity, and

usage pattern, our data-flow analysis checks the invocation
of related system APIs and callback functions as the source
of privacy tracking. Content provider is identified by URI
[7] and organized as an SQLite database with schema and
table definitions. We thus look up the URI mapped with each
privacy-sensitive content provider as the source of data flow.
We use the comprehensive list of sinks in the SuSi project
[49], which was discovered by a learning approach.

D. Obfuscation Analysis

In addition to the dynamic and static analysis components of
DYDROID, we also analyze obfuscation techniques applied to
the apps. Based on our observation of obfuscated app samples
served by various providers, e.g., Bangcle, Ijiami, 360 [1],
and Alibaba [2], we found that these services share a common
design based on application rewriting, where code loading and
encryption are actively used with the purpose of anti-reverse
engineering. An application subclass is implemented as a con-
tainer. When the application process is started, this container is
instantiated before any of the application’s components. The
class loader created in the container loads the bytecode of
other components from an encrypted file packed as a local
resource, and the customized code decryption runs before the
actual code load. Thus, it is impossible to reverse-engineer the
bytecode through static analysis. In addition, some tricks are
applied to make dynamic analysis more difficult, e.g., for one
app, three distinct processes are started and attach the ptrace
system call [24] in a loop to prevent the execution from being
tracked and controlled externally.

When all the following rules are fulfilled, we identify the
obfuscated app with DCL applied based on the decompiled IR
as illustrated in Figure 1.
• The attribute android:name is defined in the
application tag in the application’s manifest file
and a class loader is instantiated in this class. This is
the name of the class that executes before any other
components of the app. This class (container) injected via
application rewriting performs as the new entry point of
the whole app. It invokes the added native code to decrypt

the original bytecode of the app. Moreover, the bytecode
is loaded at runtime and the app lifecycle is constructed
within this class.

• Not all the application components declared in the manifest
file are found in the decompiled code, and a file in the
format that supports bytecode storage is found locally. The
decompilation tool used by us is designed for the app
organized in the general pattern, where the bytecode is
stored in the file classes.dex. Thus, the obfuscated
DEX code stored as a resource (normally in the assets
folder) cannot be found and decompiled by the reverse
engineering tool. However, all the components to be invoked
at runtime need to be declared in the manifest file. We thus
treat this mismatch as an identification rule.

• The job of decryption is normally implemented in native
code for the sake of security. The application container class
that is discussed above uses the JNI to load the local .so
file to decrypt the bytecode. Although the code decryption
may be implemented in Java within the application container
class, the decryption process will be exposed to attackers,
who can reverse engineer the application container class. In
our dataset we did not find any examples of using Java to
do the code decryption.
Our mechanism to detect obfuscation techniques includes

several methods in parallel with DCL, such as lexical obfus-
cation, and anti-decompilation. We intend to deliver the com-
pressive measurement results regarding the app obfuscation
usage in the current mobile marketplace.

Lexical obfuscation is the process where the identifiers of
classes, fields, and methods in the bytecode are replaced with
meaningless ones, and thus we need to judge whether each
identifier makes sense regarding semantics. We implement a
parser to extract the identifiers. We compare the identifiers
against a language database constructed from DBpedia [12],
which dumps Wikipedia for the purpose of Natural Language
Processing (NLP). If the identifiers in an application do not
correspond to actual words, then we assume the app has been
lexically obfuscated. ProGuard [23] has been integrated into
Android IDE to provide the lexical obfuscation functional-
ity. One may argue that the ProGuard identifier assignment
scheme is rather repetitive and simple to identify, which is
straightforward to be used to identify the usage of lexical
obfuscation. However, there are several other mobile security
vendors having such a functionality, such as Allatori [3],
where the app is obfuscated by methods other than the simple
identifier renaming. Our method is thus able to recognize the
obfuscation usage comprehensively.

Reflection allows a running program to retrieve information
about itself and the runtime environment, which can be used
to instantiate arbitrary classes, invoke methods, and alter data
fields. As with native code, although developers may have
various purposes of using these techniques, such as perfor-
mance improvement, accessing private fields and methods,
they do increase the bar of reverse engineering, because
they make analyzing the program statically very difficult. But
dynamic analysis is still able to recover the execution of the

6

TABLE II
DYNAMIC ANALYSIS SUMMARY OUT OF 40,849 APPS FOR BYTECODE AND

25,287 APPS FOR NATIVE CODE

DEX Native
Failure 495 (1.21%) 330 (1.31%)

Rewriting failure 454 (1.11%) 133 (0.53%)
No activity 8 (0.02%) 13 (0.05%)

Crash 33 (0.08%) 184 (0.73%)
Exercised 40,354 (98.79%) 24,957 (98.69%)
Intercepted 16,768 (41.05%) 13,748 (54.37%)

apps obfuscated by this method. We determine if reflection
is applied by checking the existence of the related APIs of
the package java.lang.reflect. Moreover, the usage of
native code can be identified by confirming with the output of
our dynamic analysis.

Anti-decompilation techniques hinder the reverse engineer-
ing tools by making the code appear invalid to them. For
example, the programming language pattern lacking the one-
to-one mapping from DEX bytecode to the target language.
When we decompile the Android apps to IR, we record the
apps obfuscated with anti-decompilation techniques.

IV. IMPLEMENTATION

We leverage the open source tool baksmali [26] to
unpack and decompile the installation package into the
IR smali. The log of our dynamic analysis and the
dumped loaded code are stored in the external storage of
the device. If the application does not declare the An-
droid permission WRITE EXTERNAL STORAGE, we will
rewrite and repack the decompiled version with the per-
mission added to the manifest file. Our DCL logger and
code interception rely on instrumenting the constructors
of DexClassLoader and PathClassLoader, the APIs
load() and loadLibrary() in the JNI, and the APIs
related to file deleting and renaming in java.io.File. The
download tracker involves instrumenting the constructor of
the class URL and the method getInputStream() of the
class URLConnection, including its subclasses. Moreover,
the flow among InputStream, Buffer, OutputStream, and File
are tracked through the constructors and the methods read()
and write() of the classes InputStream, Reader,
OutputStream, Writer. We write a script in Python to
parse the output of download tracker and construct the flow
graph of file download.

V. MEASUREMENT

In this section, we will introduce our measurement data
set. We then present our measurements results, which mainly
answer the following questions. (1) What are the apps loading
code in the remote fetch manner that is prohibited by Google
Play, and who is the responsible entity? (2) How is the DCL
used for app hardening, specifically, obfuscation? (3) What are
the security risks/implications of DCL in the marketplaces?
The dynamic analysis runs on the Samsung Galaxy Nexus
device with the fuzzing tool Monkey running on top of it.

TABLE III
DCL V.S. APPLICATION POPULARITY BASED ON 58,739 APPLICATIONS;

NUMBER OF DOWNLOADS; NUMBER OF RATINGS, AVERAGE RATINGS

#Downloads #Ratings Rating
DEX 60,010 2,448 3.91

Without DEX 52,848 2,318 3.77
Native 288,995 8,668 3.82

Without Native 75,127 1,119 3.79

TABLE IV
RESPONSIBLE ENTITY OF DCL OUT OF 16,768 APPS FOR BYTECODE AND

13,748 APPS FOR NATIVE CODE

3rd-party (#Apps) Own (#Apps) 3rd-party &
Own (#Apps)

DEX 16,755 (99.92%) 50 (0.30%) 37 (0.22%)
Native 11,834 (86.08%) 2,280 (16.58%) 366 (2.66%)

A. Data Set

We randomly collected 58,739 apps and the metadata,
such as description, rating, the number of downloads, from
Google Play in November 2016. The data set includes 42
application categories. 58,685 apps are successfully unpacked
and decompiled into the IR. Those apps which fail in the
reverse-engineering procedure are obfuscated. The decompiler
crashes and does not generate the smali code. We find out
that 46K apps have DCL operations in the decompiled IR,
where 40,849 apps initialize class loaders for loading DEX
code, and 25,287 apps invoke related APIs in JNI for loading
native code. We note that the DCL may not be actually
executed at runtime. We try to avoid blindly exercising app,
given the heavy cost of dynamic analysis.

B. Results

The results of our dynamic analysis are summarized in
Table II. The app will be rewritten and repacked with the
permission of writing to external storage added, if it is not de-
clared, so as to log the DCL. The anti-repackaging technique is
applied to some apps, which crashes apktool. Moreover, the
fuzzing tool cannot exercise those apps without any Activity
component. Finally, apps may also crash at runtime due to the
implementation fault by developers. We overall successfully
exercise 40,354 apps for bytecode and 24,957 apps for native
code, among which the DCL of 16,768 apps and 13,748 apps
are actually executed and the loaded code are successfully
intercepted, separately. We note that the loading of system
library is not included in our scope, which is provided by
security-trusted OS vendors.

By mining the log of DCL from mobile advertisement
vendors, such as AdMob, we find the general pattern of the
file path to the bytecode loaded by the advertisement libraries
“/data/data/AppPackageName/cache/ad*”. Within
the 16,768 apps whose DCL events are captured and loaded
bytecode are intercepted, we find out 15,012 apps execute the
binaries related to mobile advertisement. Those files are gen-
erated intermediately and will be deleted after being merged
with the apps which start the DCL behaviors.

7

TABLE V
APPS FETCHING BINARIES FROM REMOTE SERVERS

Package name
com.ipeaksoft.pitDadGame, com.xy.mobile.shaketoflashlight

org.madgame.Idom, com.yb.sex.cartoon5
com.jianhui.FJDazhan, com.quwenba.i9300manual

com.rhino.itruthdare, com.xiangqi.fanapp.a1521
com.huijia.moyan, org.mfactory.three.bubble
com.huijia.zuoqingwen, apps.simple.recipe

com.xiangqi.fanapp.a1284, com.ioteam.numbertest
com.avpig.acc, air.com.qqqf.xxywszzy2a

com.seven.chuanyueqinggong, com.game.knyds
air.com.qqqf.xxnjyybdc123456, com.seven.tiancantudou

com.conpany.smile.ui, com.classicalmuseumad.cnad
com.seven.chuanyuegongting, com.seven.mengrushenj

com.nexusgame.popbirds, com.XTWorks.lolsol
com.Long.ButtonsShowAndroid

a) Dynamic Code Loading in Mobile Marketplaces:
The number of downloads, the number of ratings, and the
average rating are used to quantify the application popularity
in marketplaces. From Table III, we can see that the apps with
DCL are more popular than the complementary set. There are
various factors, which affect the application popularity, and
we cannot assert there is any causal relation between usage
of DCL and application reputation. However, given the high
popularity, the security risks of DCL, such as evading malware
detection, code injection vulnerability, and privacy tracking,
can thus easily affect large numbers of end users.

b) Provenance/entity Identification: We identify if the
third-party or developer is the responsible entity who launches
DCL. The results are summarized in Table IV. For both DEX
and native code, the third-party SDKs and libraries of over
85% are the actual entities to load code at runtime. Given the
difficulty of reverse-engineering the code dynamically loaded,
protecting the intellectual property is the possible motivation
of deploying third-party libraries using DCL.

With the download tracker in our dynamic analysis, we
find out the 27 apps in Table V, which execute the bina-
ries downloaded from remote servers at runtime. For ex-
ample, the app com.classicalmuseumad.cnad3 down-
loads two files in the formats JAR and APK from the
domain http://mobads.baidu.com/ads/pa/. All the
DCL events of loading code in the remote fetch manner are
initialized by the advertisement related third-party libraries
from Baidu [9]. The update mechanism of mobile market-
place is a reasonable explanation of the measurement results.
Application developer fully controls the update release. SDK
vendors cannot predict whether the most up-to-date version of
library will be included. In other words, the mobile market
channel is not dependable. Fetching the DEX code from a
remote server allows the third-party SDK providers to modify
the libraries without any constraint, which is prohibited by the
content policy of Google Play because it eases the deployment
of malware. However, the existing Android OS lacks the

3https://play.google.com/store/apps/details?id=
com.classicalmuseumad.cnad

TABLE VI
#APPS USING OBFUSCATION TECHNIQUES OUT OF 58,739 APPLICATIONS

Technique #Apps (%)
Lexical 52,836 (89.95%)

Reflection 30,664 (52.20%)
Native 13,748 (23.40%)

DEX encryption 140 (0.24%)
Anti-decompilation 54 (0.09%)

E
n
te

rt
a
in

m
e
n
t

T
o
o
ls

S
h
o
p
p
in

g
A

c
ti
o
n

C
a
s
u
a
l

A
rc

a
d
e

P
h
o
to

g
ra

p
h
y

P
e
rs

o
n
a
liz

a
ti
o
n

P
u
z
z
le

C
o
m

m
u
n
ic

a
ti
o
n

M
u
s
ic

 A
N

D
 A

u
d
io

P
ro

d
u
c
ti
v
it
y

S
tr

a
te

g
y

R
o
le

 P
la

y
in

g
L
if
e
s
ty

le
M

e
d
ia

 A
N

D
 V

id
e
o

E
d
u
c
a
ti
o
n

B
u
s
in

e
s
s

A
d
v
e
n
tu

re
W

e
a
th

e
r

H
e
a
lt
h
 A

N
D

 F
it
n
e
s
s

B
o
a
rd

M
a
p
s
 A

N
D

 N
a
v
ig

a
ti
o
n

B
o
o
k
s
 A

N
D

 R
e
fe

re
n
c
e

F
in

a
n
c
e

M
e
d
ic

a
l

L
ib

ra
ri
e
s
 A

N
D

 D
e
m

o

#
A

p
p

s

0

5

10

15

20

25

30

Fig. 3. #Apps with DEX Encryption v.s. Application Category

ability to track the source of loaded code and is not effective
to enforce the policy.

c) Obfuscation Analysis: The feature of DCL can be
used to harden mobile apps. Based on our observation of
application samples from mobile application security providers
and the general pattern after being obfuscated, we detect the
app shielded by DCL and bytecode encryption. Moreover, we
also design the method to identify the usage of common ob-
fuscation techniques. Table VI lists how widely each technique
is adopted in the apps within our data set.

89.95% apps use the lexical obfuscation. The high adoption
rate is expected, as this functionality is included in ProGuard
and served within Android IDE for free [23]. Even with the
high popularity, lexical obfuscation just makes the source code
not human readable. For reflection and native code, though
they may be used for other purposes, such as performance
improvement, accessing private fields, they do increase the
difficulty of reverse engineering. 52.20% apps adopt reflection
and 23.40% apps include native code.

The adoption rate of DEX encryption method is still low
0.24%. DEX encryption has the decryption functionalities
inside native layer, and developers may have the compatibility
concern, given the Android fragmentation issue [8]. It is also
possible that this technique is relatively new and does not
have enough market penetration. Given the 140 apps using
DEX encryption, we measure its distribution across application
categories, which is illustrated in Figure 3. The categories
Entertainment, Tools, and Shopping of apps play a
dominant role. We further investigate the functionalities of
apps in these categories. The apps in the category of entertain-
ment provide the functionalities of controlling smart TV, where

8

https://play.google.com/store/apps/details?id=com.classicalmuseumad.cnad
https://play.google.com/store/apps/details?id=com.classicalmuseumad.cnad

TABLE VII
MALWARES DETECTED IN DCL

Family #Apps Sample App (#Downloads)
DEX Swiss code monkeys 1 com.sktelecom.hoppin.mobile (10,000,000)

Adware airpush minimob 2 com.oshare.app (10,000)

Native Chathook ptrace 84 com.com2us.tinyfarm.normal.freefull.google.global.android.common
(10,000,000)

TABLE VIII
MALICIOUS CODE LOADED IN VARIOUS CONFIGURATIONS OVER 91 FILES

Configuration #Files intercepted (%)
System time 72 (79.12%)

Airplane mode/WiFi ON 56 (61.54%)
Airplane mode/WiFi OFF 53 (58.24%)

Location OFF 70 (76.92%)

the TV vendors are motivated to protect the communication
between smartphone and TV from being reverse engineered.
The apps in the category of tools are antivirus apps and those
in the category of shopping include the sensitive functionalities
of payment, which are both obfuscated for the purpose of
security.

Anti-decompilation disables the reverse-engineering tool
apktool by using its implementation bug. As apktool
keeps evolving, the percentage of apps with anti-decompilation
capability remains low 0.09%. Next, we discuss the security
risks and implications of DCL.

d) Malware Detection: Our measurement investigates
the malware hidden in DCL. Overall, we find that 87 apps
dynamically load malicious binaries in three malware families
from 91 static files 4. All the detection results are verified
by one of the authors manually with the following method
so as to guarantee that there is no false positive. DroidNative
outputs the ACFG match of the testing binary with the training
malware sample. A testing sample will be flagged as malicious
if over 90% ACFG of a malware training sample has the
parallel match with its ACFG. In most cases, the identified
testing samples only differ from the matched malicious sam-
ples in the memory addresses, which depend on where the app
is loaded. We note that because these malware samples are
loaded dynamically, existing detection systems do not detect
them. All of these apps are publicly released on Google Play,
which means they pass the security verification of Google
Bouncer. Moreover, we submitted the malicious samples to
VirusTotal [29] (a service that integrates various antivirus
products) for scanning and it failed to detect them.

We find the apps loading malicious code in three malware
families, and the results are listed in Table VII. For each
family, one sample application package name is given for
the sake of brevity. The full results with all malicious apps
are provided in Table XI (Appendix). One app loads the
malicious DEX code in the Swiss code monkeys family.
It adds the malicious code as a service, and sends IMEI, phone
number, and IMSI to a remote site. A remote user is able
to send and execute a command, such as app installation,
website navigation, adding browser bookmark, sending text

4One app may have multiple malicious files to load.

message, and blocking test message response. Two apps are
found to execute the malicious bytecode in the family Adware
airpush minimob, where mobile advertisement is pushed
to the device via notification. Moreover, shortcuts are placed
on users’ home screens and browser settings are changed to
redirect homepage. There are total 84 apps loads malicious
native code in the family Chathook ptrace, which mainly
targets the two popular chatting apps QQ [25] and WeChat
[30] with millions of downloads. The malicious app tries to
get the root privilege first. Then, it attaches the system call
ptrace to the two apps as the superuser, controls the two
apps, and hooks the Java methods related to the chatting
window. Finally, the malware leaks the chat history to a remote
server.

We further investigate the malicious loading event can be
reproduced with different configurations of runtime environ-
ment. The results are listed in Table VIII. 19 files of malicious
code are not loaded when the system time is set before the
app’s release date, which can be used to bypass the check
during the app review phase. Moreover, we also observe
the hide of malicious behaviors when connection or location
service is not available, where those logical conditions make
it more difficult to detect the malware loaded dynamically.

e) Vulnerability Analysis: The app that loads code from a
space writable by other parties is vulnerable to code injections.
We classify those apps with risky DCL into two categories: (1)
private storage of other apps, (2) public external storage. The
results are listed in Table IX. We note that all the vulnerable
apps are manually confirmed to make sure that even developer
fails to enforce integrity verification on the loaded code. We
also check the manifest files of those apps in the second
category and make sure they do support the OS version lower
than 4.4. 14 apps are found to have risky usage of DCL. Three
vulnerable apps have over the 1M number of downloads. Both
developers and OS vendors should pay attention to security
regulation of DCL.

7 of them load native code from the internal stor-
age of other apps. 6 apps load the native code from
the file libCore.so in the internal storage of the app
com.adobe.air. The developers of these apps are differ-
ent from that of the app com.adobe.air, and they blindly
trust the integrity of the library provided by the Adobe
developer, which introduces the extra attack surface for
code injection. Another app com.devicescape.usc.wifinow
loads the library libdevicescape-jni.so from the app
com.devicescape.offloader, which share the same developer.

7 of them use world read/writable external storage
to cache the bytecode loaded. For example the

9

TABLE IX
VULNERABLE APPLICATIONS DETECTED. APPS IN THE CATEGORY OF EXTERNAL STORAGE ARE VERIFIED AS SUPPORTING THE OS VERSIONS LOWER

THAN 4.4

Category #Apps Package name (#Downloads)
DEX Internal storage of other applications 0

External storage (< Android 4.4) 7 com.longtukorea.snmg (1,000,000)
com.felink.android.launcher91 (1,000,000)

com.ycgame.cf1en.gpiap (100,000)
com.fitfun.cubizone.love (100,000)

com.fkccy.view (100,000)
com.trustlook.fakeiddetector (10,000)

com.leduo.endcallsms (100)
Native Internal storage of other applications 7 com.devicescape.usc.wifinow (1,000,000)

com.renren.and02506 (100,000)
air.air.com.hi4o.game.Subway Rushers (10,000)

air.com.fire.ane.test.bubblecrazy (10,000)
com.renren.wan.war (10,000)

air.com.fire.ane.test.ANETest (1,000)
com.moeapps (100)

External storage (< Android 4.4) 0

TABLE X
PRIVACY TRACKING IN DYNAMICALLY LOADED CODE BASED ON 16,768
APPLICATIONS (L: LOCATION, PI: PHONE IDENTITY, UI: USER IDENTITY,

UP: USAGE PATTERN, CP: CONTENT PROVIDER), BROWSER: READ
HISTORY & BOOKMARK

Data type Categ #Apps Exclusively
3rd-party (%)

Location L 254 251 (98.82%)
IMEI PI 581 576 (99.14%)
IMSI PI 27 25 (92.59%)

ICCID PI 8 6 (75.00%)
Phone

number UI 12 10 (83.33%)

Account UI 23 23 (100.00%)
Installed

applications UP 32 28 (87.50%)

Installed
packages UP 235 231 (98.30%)

Contact CP 1 1 (100.00%)
Calendar CP 76 73 (96.05%)
CallLog CP 32 32 (100%)
Browser CP 1 1 (100%)
Audio CP 5 5 (100%)
Image CP 74 72 (97.30%)
Video CP 31 31 (100%)

Settings CP 16,482 16,441 (99.75%)
MMS CP 1 1 (100%)
SMS CP 1 1 (100%)

app com.longtukorea.snmg stores its bytecode file
yayavoice_for_assets_2015101201.jar in the
public directory /mnt/sdcard/im_sdk/jar/. Malicious
parties can exploit these vulnerabilities by replacing the
original file with arbitrary binaries. One app with only the
permission of writing to the SD card can misbehave with all
the permissions declared by the vulnerable app granted.

f) Privacy Tracking Analysis: We investigate 18 types
of privacy tracked in the loaded DEX code with our static
analysis. The results are listed in Table X. As we mentioned
above, there are 15,012 apps loading the Google Ads library,
which has strict control of user privacy and only reads the

device settings. However, the remaining 1,756 apps heavily
leak various types of user privacy. About 30% apps leak the
user’s IMEI through DCL. Some highly sensitive types of data,
such as location, and installed packages are retrieved in more
than 10% apps. As for the responsible entity, the majority of
those privacy leakages are exclusively invoked by third-party
libraries. The integrated SDK/library is a black-box for the
developer, who is not clear about the security risks introduced.

C. Discussion

Using a fuzzing tool in dynamic analysis may have a code
coverage problem. We observe that advertisement libraries
initialize most of the DCL events and the DCL events are
triggered when the app is launched. Our observation matches
the results in MAdScope [46]. Thus using monkey is enough
regarding the purpose of our measurement.

Regarding the privacy tracking in DCL, users may know
and accept it when installing the application. Without this
differentiation, it is not possible to know if it is a violation
of the promised privacy or not. Deciphering the purpose of
privacy tracking is still an open question.

VI. RELATED WORK

a) Dynamic Code Loading & Measurement: Gibler et
al. [40] design the system AndroidLeaks, which performs a
static analysis to check user privacy leakage among large-
scale Android applications. It does not support the analy-
sis of dynamically loaded code. Grace et al. [42] conduct
a measurement regarding the privacy and security risks in
the advertisement libraries of Android applications, where
DCL is defined as a risky flag. Other than simply focusing
on advertisement libraries, we include the DCL invoked by
developer her/him-self and the third-party libraries for various
purposes. Zhauniarovich et al. [60] investigate the usage of
DCL and reflection in application update, where the native
code is not considered in the security model. DEX encryption
together with dynamic loading has been recently found in
the application of anti-reverse engineering, and some studies

10

investigate recovering the obfuscated applications [56], [59].
However, there is no study to uncover its usage cases within
the Android applications in current marketplaces, such as
popularity, general obfuscation pattern, and pros/cons. Rastogi
et al. [51] have the system design similar to us, which focuses
on the mobile advertisement measurement on the App-Web
interface, while we explore the DCL usage. Poeplau et al. [48]
find out the vulnerabilities in the usage of loading external
code with a static analysis approach, but they do not further
analyze the security implications of the loaded binaries. Our
code analysis is its superset, which includes five security-
related aspects and allows us answer the 3 critical questions
missing there. Our dynamic analysis framework allows us to
precisely investigate the provenance, entity, and content of
DCL. It additionally reveals that the loading of malicious code
is triggered by properties of the runtime environment, such
as system time and network connectivity. Falsina et al. [38]
propose a code verification protocol and a drop-in library to
reduce the vulnerabilities in DCL, which is complementary to
our study.

b) Program Analysis: RiskRanker [41] determines that
DCL is taking place by static analysis. Its Dalvik code
execution scheme is not able to analyze code loaded from
sources other than local package, e.g. remote fetch. Zhang
et al. [58] introduce a learning-based approach to analyzing
the dependency of dynamic network requests. Crowdroid [35]
is deployed in a crowdsourcing manner to detect Android
malware using dynamic analysis. Because it applies low-level
system call interposition, the analysis is not fine-grained due to
the loss of context in Android middleware. Specially, it cannot
differentiate the bytecode in the original application with that
additionally loaded. TaintDroid [37] tracks the taint propaga-
tion at runtime, which aims at privacy leakage detection. Its
implementation is based on DVM modification, which thus
cannot handle native code. DroidBox [13], which combines
TaintDroid and modifications of Android’s code libraries, is
able to log sensitive events at runtime, such as file read/write,
loading class through DexClassLoader. It shares the same
limitation with TaintDroid on analyzing native code. Some
other dynamic analysis approaches can be adopted in our mea-
surement [34], [55], [52], which reconstructs both low-level
OS-specific and high-level Android-specific behaviors. Those
methods introduce heavy latency in behavior reconstruction.
Our approach intercepts the dynamically loaded code, and
passes it to the cheap and efficient static analysis.

VII. CONCLUSION

The unpredictability of DCL challenges the related security
and accountability analysis. In this paper, we build the system
DYDROID, which is capable of intercepting DCL events and
saving copies of the loaded bytecode and native code. We
conduct a large-scale measurement of the DCL component
of over 46K apps to investigate three critical questions miss-
ing in previous studies: (1) provenance, which includes the
code’s remote/local availability, and responsible entity; (2)
app hardening, where DCL is used for the purpose of app

obfuscation; (3) security risks/implications, which contains the
malware detection, vulnerability analysis, and privacy tracking
analysis. The apps that are found to use DCL in the remote
fetch manner show that there is no existing solution to the
enforcement of the related content policy. DCL is mainly used
by third-party SDKs, indicated that the developer may not
be aware that it is occurring. Given its stealthiness, DCL is
also a channel to deploy malware, and we observe the real
samples where the actual loading is controlled with logical
conditions, such as system time. The security verification of
DCL is needed from the app developer and OS vendors, given
the apps vulnerable to code injection, which load binaries
writable by other parties.

ACKNOWLEDGMENT

We give our special thanks to Vaibhav Rastogi at the
University of Wisconsin-Madison for his efforts on paper
revising and the rebuttal period, Michael Grace at Samsung
Research America for his support to this research project, and
all the anonymous reviewers for their thoughtful comments.

REFERENCES

[1] 360 jiagu. http://jiagu.360.cn/.
[2] Ali jaq. http://jaq.alibaba.com/safety/.
[3] Allatori Java string renaming document. http://www.allatori.com/

doc.html#properties-renaming.
[4] Android Application Class. https://developer.android.com/reference/

android/app/Application.html.
[5] Android DexClassLoader. http://developer.android.com/reference/

dalvik/system/DexClassLoader.html.
[6] Android PathClassLoader. http://developer.android.com/reference/

dalvik/system/PathClassLoader.html.
[7] Android URI. http://developer.android.com/reference/android/net/

Uri.html.
[8] Android’s biggest problem is operating system fragmentation.

http://o.canada.com/technology/personal-tech/androids-biggest-
problem-is-operating-system-segmentation.

[9] Baidu. http://www.baidu.com/.
[10] Bangcle. http://www.bangcle.com/.
[11] Bitdefender Antivirus Software. http://www.bitdefender.com/.
[12] DBpedia - A Wikipedia based Natural Language Processing Database.

http://dbpedia.org/datasets.
[13] Droidbox - android application sandbox. https://github.com/pjlantz/

droidbox.
[14] DroidNative. https://bitbucket.org/shahid alam/droidnative.
[15] Google Play. https://play.google.com/store?hl=en.
[16] Google Play Developer policy. https://play.google.com/about/developer-

content-policy.html.
[17] Ijiami. http://www.ijiami.cn/.
[18] Java Native Interface. http://developer.android.com/ndk/samples/

sample hellojni.html.
[19] Java Object HashCode. https://docs.oracle.com/javase/7/docs/api/java/

lang/Object.html#hashCode().
[20] Java StackTraceElement. https://docs.oracle.com/javase/7/docs/api/java/

lang/StackTraceElement.html.
[21] Millions of Android smartphones are infected with malware - here’s

how to keep yours virus-free. http://www.mirror.co.uk/tech/millions-
android-smartphones-infected-malware-8382366.

[22] Mobile Malware Dump. http://contagiominidump.blogspot.com.
[23] ProGuard. http://developer.android.com/tools/help/proguard.html.
[24] ptrace. http://man7.org/linux/man-pages/man2/ptrace.2.html.
[25] QQ. https://play.google.com/store/apps/details?id=

com.tencent.mobileqq&hl=en.
[26] Smali: An assembler/disassembler for Android’s dex format. http:

//code.google.com/p/smali/.
[27] Smartphone os market share. http://www.idc.com/prodserv/smartphone-

os-market-share.jsp.

11

http://jiagu.360.cn/
http://jaq.alibaba.com/safety/
http://www.allatori.com/doc.html#properties-renaming
http://www.allatori.com/doc.html#properties-renaming
https://developer.android.com/reference/android/app/Application.html
https://developer.android.com/reference/android/app/Application.html
http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://developer.android.com/reference/dalvik/system/DexClassLoader.html
http://developer.android.com/reference/dalvik/system/PathClassLoader.html
http://developer.android.com/reference/dalvik/system/PathClassLoader.html
http://developer.android.com/reference/android/net/Uri.html
http://developer.android.com/reference/android/net/Uri.html
http://o.canada.com/technology/personal-tech/androids-biggest-problem-is-operating-system-segmentation
http://o.canada.com/technology/personal-tech/androids-biggest-problem-is-operating-system-segmentation
http://www.baidu.com/
http://www.bangcle.com/
http://www.bitdefender.com/
http://dbpedia.org/datasets
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://bitbucket.org/shahid_alam/droidnative
https://play.google.com/store?hl=en
https://play.google.com/about/developer-content-policy.html
https://play.google.com/about/developer-content-policy.html
http://www.ijiami.cn/
http://developer.android.com/ndk/samples/sample_hellojni.html
http://developer.android.com/ndk/samples/sample_hellojni.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()
https://docs.oracle.com/javase/7/docs/api/java/lang/StackTraceElement.html
https://docs.oracle.com/javase/7/docs/api/java/lang/StackTraceElement.html
http://www.mirror.co.uk/tech/millions-android-smartphones-infected-malware-8382366
http://www.mirror.co.uk/tech/millions-android-smartphones-infected-malware-8382366
http://contagiominidump.blogspot.com
http://developer.android.com/tools/help/proguard.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://play.google.com/store/apps/details?id=com.tencent.mobileqq&hl=en
https://play.google.com/store/apps/details?id=com.tencent.mobileqq&hl=en
http://code.google.com/p/smali/
http://code.google.com/p/smali/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[28] UI/Application exerciser Monkey. http://developer.android.com/tools/
help/monkey.html.

[29] VirusTotal. https://www.virustotal.com/.
[30] WeChat. https://play.google.com/store/apps/details?id=

com.tencent.mm&hl=en.
[31] S. Alam, R. N. Horspool, and I. Traore. Mail: Malware analysis inter-

mediate language: a step towards automating and optimizing malware
detection. In SIN, 2013.

[32] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi. Droidnative:
Automating and optimizing detection of android native code malware
variants. computers & security, 65:230–246, 2017.

[33] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. In ACM SIGPLAN Notices, volume 49, pages 259–269, 2014.

[34] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak.
An android application sandbox system for suspicious software detec-
tion. In IEEE MALWARE, 2010.

[35] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for android. In SPSM, 2011.

[36] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang. Profiling
user-trigger dependence for android malware detection. Computers &
Security, 49:255–273, 2015.

[37] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In USENIX OSDI, 2010.

[38] L. Falsina, Y. Fratantonio, S. Zanero, C. Kruegel, G. Vigna, and
F. Maggi. Grab’n run: Secure and practical dynamic code loading for
android applications. In ACSAC, pages 201–210. ACM, 2015.

[39] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99 problems, but
vibration ain’t one: A survey of smartphone users’ concerns. In ACM
SPSM, 2012.

[40] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks:
Automatically detecting potential privacy leaks in android applications
on a large scale. Trust and Trustworthy Computing, 2012.

[41] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable
and accurate zero-day android malware detection. In MobiSys, 2012.

[42] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In WiSec, 2012.

[43] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps. In Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, 2014.

[44] H. Lockheimer. Android and security, February 2012. http://
googlemobile.blogspot.com/2012/02/android-and-security.html.

[45] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering, 2013.

[46] S. Nath. Madscope: Characterizing mobile in-app targeted ads. In
Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, pages 59–73. ACM, 2015.

[47] J. Oberheide. Dissecting android’s bouncer, June 2012. https://
blog.duosecurity.com/2012/06/dissecting-androids-bouncer/.

[48] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute this! analyzing unsafe and malicious dynamic code loading in
android applications. In NDSS, 2014.

[49] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach for
classifying and categorizing android sources and sinks. In NDSS, 2014.

[50] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic security
analysis of smartphone applications. In CODASPY, 2013.

[51] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley. Are these ads
safe: Detecting hidden attacks through the mobile app-web interfaces.
2016.

[52] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors. EuroSec, April, 2013.

[53] K. Tian, D. Yao, B. G. Ryder, and G. Tan. Analysis of code heterogeneity
for high-precision classification of repackaged malware. In Security and
Privacy Workshops (SPW), 2016 IEEE, pages 262–271. IEEE, 2016.

[54] R. Whitwam. Circumventing Google’s Bouncer, Android’s anti-malware
system, June 2012. http://www.extremetech.com/computing/130424-
circumventing-googles-bouncer-androids-anti-malware-system.

[55] L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In
USENIX Security Symposium, 2012.

[56] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu. Appspear:
Bytecode decrypting and dex reassembling for packed android malware.
In Research in Attacks, Intrusions, and Defenses. 2015.

[57] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage
detection. In CCS, 2013.

[58] H. Zhang, D. D. Yao, and N. Ramakrishnan. Causality-based sensemak-
ing of network traffic for android application security. In Proceedings of
the 2016 ACM Workshop on Artificial Intelligence and Security, pages
47–58. ACM, 2016.

[59] Y. Zhang, X. Luo, and H. Yin. Dexhunter: toward extracting hidden code
from packed android applications. In Computer Security–ESORICS.
2015.

[60] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Mas-
sacci. Stadyna: Addressing the problem of dynamic code updates in the
security analysis of android applications. In CODASPY, 2015.

[61] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. IEEE Symposium on Security and Privacy, 2012.

[62] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming information-
stealing smartphone applications (on android). In Trust and Trustworthy
Computing. 2011.

APPENDIX The overall malware analysis results for ap-
plications with DCL are listed in Table XI.

12

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://www.virustotal.com/
https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en
https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/
https://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/
http://www.extremetech.com/computing/130424-circumventing-googles-bouncer-androids-anti-malware-system
http://www.extremetech.com/computing/130424-circumventing-googles-bouncer-androids-anti-malware-system

TABLE XI
OVERALL MALWARES DETECTED IN DCL

Family #Apps Package name (#Downloads)
DEX Swiss code monkeys 1 com.sktelecom.hoppin.mobile (10,000,000)

Adware airpush minimob 2 com.oshare.app (10,000)
com.skyfire.browser.toolbar.horizon (500)

Native Chathook ptrace 84 com.com2us.tinyfarm.normal.freefull.google.global.android.common (10,000,000)
com.tencent.qqmusic (1,000,000) com.minstroy.AlloAndFriendsAR (10,000)

com.cinemagram.main (100,000) com.revesoft.itelmobiledialer.ngc inc (100,000)
com.xquare.rabbitlauncher (100,000) fr.ikomobi.auchandrive (100,000)
com.futurebits.followertracker (50,000) com.grandsons.dictbox (50,000)

com.ledinh.blueremote (50,000) com.uusoftware.gstv (50,000)
bob.game.rabbit (10,000) com.austereo.foxfm (10,000)

com.blissapplications.popota (10,000) com.bravolang.dictionary.english (10,000)
com.drync.tnb (10,000) com.expertflyer.seatalerts (10,000)

com.lila.apps.maze (10,000) com.mofang.tyongzheqianxian (10,000)
com.nbcuni.telemundostation.telemundo51 (10,000)
com.revesoft.mobiledialer.cellfone.cellfone (10,000)

com.revesoft.mobiledialer.dialglobe communication.call u (10,000)
com.revesoft.mobiledialer.dilse voip.dilse voip (10,000)
com.revesoft.mobiledialer.kryptos global.mtring (10,000)

en.am.bestdict (10,000) radio.ezzadeen (10,000)
yojoya.hansu.zz (10,000) com.mangopub.orion (5,000)

com.indianic.collectionofbuddhism2 (5,000) com.mygame.electricbirds (5,000)
atp.proje.lifegame (1,000) au.com.starfm (1,000)

com.chunfen.brand5 (1,000) com.comelit.avapi (1,000)
com.douban.frodo (1,000) com.emo.awifitether.wifihotspot (1,000)

com.inspector.missioninsectible (1,000) com.learnerscloud.igcsemaths.videos (1,000)
com.magzter.whathifi (1,000) com.nbcuni.telemundostation.phil (1,000)

com.nextelkorea.dongjob (1,000) com.pack.lingopal lite sr (1,000)
com.plonkgames.games.word wheel (1,000) com.qg.appleinteractive (1,000)

com.revesoft.mobiledialer.moxtelecom.goldenphone (1,000)
com.utvmedia.wirefm (1,000) com.visitapps.winterfest (1,000)

nl.charm.nedradio (1,000) pt.impresa.viv (1,000)
quoc.tran.android.ebook.chamthuongthuquyenthuong (1,000)

net.ltslab.android.games.sed (1,000) com.khan.RamzanQuran (500)
com.machinememoryp.activity (500) com.mm.android.direct.dotcomlite (500)

com.paktech.anwarmaqsood (500) www.apollonlinks.com (500)
com.revesoft.mobiledialer.m m enterprise.hello 2 hello (500)

au.com.lovelandradio (100) com.burger maker (100)
com.globomate.starquest (100) com.ingokids.diferencias (100)

com.magzter.landscapedesign (100) com.palmtrends xswzk (100)
com.quikding.gamedog (100) com.renjianbt.appr046 (100)

com.revesoft.mobiledialer.fonogulf.luckystar (100)
com.revesoft.mobiledialer.uzzal telelcom.voice rock 67611 (100)

com.salmonsocial.client (100) com.scottgames.useholywaterv2 (100)
com.suixingpay (100) com.xraystudiogame.snake (100)

en.hi.bestdict (100) harriskeriap.radio.harScannerRailRadio (100)
jp.colopl.envshomerun (100) jp.ogapee.onscripter.release (100)

jp.rrj.readingginei09 (100) com.magzter.hkgolfer (50)
com.cloud inside.mobile.glosbedictionary.dela (10)
com.cloud inside.mobile.glosbedictionary.hupt (10)
com.cloud inside.mobile.glosbedictionary.idko (10)
com.cloud inside.mobile.glosbedictionary.jams (10)

com.cryptotel.tethercontrol (10) harriskeriap.radio.harGhanaRadio(10)
com.cloud inside.mobile.glosbedictionary.fisq (1)

13

	Introduction
	Background
	System Design
	System Overview
	Dynamic Analysis
	Static Analysis
	Obfuscation Analysis

	Implementation
	Measurement
	Data Set
	Results
	Discussion

	Related Work
	Conclusion
	References

