
1

FlowCog: Context-aware Semantic Extraction
and Analysis of Information Flow Leaks in

Android Apps
Xuechao Du, Xiang Pan, Yinzhi Cao, Member, IEEE, Boyuan He, Gan Fang, Yan Chen, Fellow, IEEE,

and Daigang Xu

Abstract—Android apps having access to private information may be legitimate, depending on whether the app provides users enough
semantics to justify the access. Existing works analyzing app semantics are coarse-grained, staying on the app-level. They can only
identify whether an app, as a whole, should request special permission but cannot answer whether a specific app behavior under a
particular runtime context, such as information flow, is correctly justified. We propose FlowCog, an automated system to extract
semantics related to information flows and correlate such semantics with given information flows to address these issues. Particularly,
FlowCog statically finds all the Android views related to the given flow via control or data dependencies and then extracts semantics,
such as texts and images, from these views and associated layouts. Next, FlowCog adopts natural language processing and deep
learning approaches to infer whether the extracted semantics correlate with the given flow. FlowCog is open-source and available at
https://github.com/xcdu/FlowCog. Our evaluation shows that FlowCog can achieve an accuracy rate of 95.4% and an F1 score of
0.953.

Index Terms—Android, Information Leakage, Semantic Extraction, Natural Language Processing

✦

1 INTRODUCTION

ANDROID apps, due to the nature of their functionalities,
often have access to users’ private information. For

example, a weather app may request a user’s location to
provide customized weather services; a call app may obtain
or import a phone book to ease the dialing. While these
examples provide legitimate usages of private information,
some apps may also misuse such information [1]–[4], such
as stealing users’ call history without their knowledge.

That said, an app needs to justify access to users’ private
information with sufficient semantics available to users. For
example, a weather app will clearly state that it provides
local weather conditions to make user understand its access
to location information. Existing researchers have already
started to study the semantics of an app’s behaviors. For
instance, CHABADA [5], Whyper [6], and AutoCog [7] try
to correlate the app’s description, such as these in Google
Play, with the permissions that the app asks.

However, existing approaches [5]–[8] are coarse-grained,
staying on the app level. They can identify whether an app
should have access to a certain piece of private information
but cannot justify whether the access should happen under
a specific context. For example, an app may have two data

• X. Du is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China. Email: xcdu@zju.edu.cn.

• X. Pan is with the Google Inc., Email: xiangpan2011@gmail.com.
• Y. Cao is with the Department of Computer Science, Johns Hopkins

University, Baltimore MD 20218, USA. Email: yinzhi.cao@jhu.edu.
• B. He and Y. Chen are with the Department of Electrical Engineering and

Computer Science, Northwestern University, Evanston, IL 60208 USA.
Emails: bhe@northwestern.edu, ychen@northwestern.edu.

• G. Fang is with Palo Alto Networks. Email: gfang@paloaltonetworks.com.
• D. Xu is with ZTE CORPORATION. Email: xu.daigang1@zte.com.cn.

flows1 [9]–[14] accessing private information. The first one
provides customized service with user’s knowledge, e.g., a
pop-up window, but the other hiding secretly in the back-
ground and sending information to the Internet without the
user’s knowledge. The former is legitimate with sufficient
semantics, which we call positive in the paper, but the latter
is negative.

This paper proposes an automated, flow-level system
called FlowCog to extract and analyze semantics for each
Android app’s information flow.

FlowCog is fine-grained because it extracts flow-specific
semantics called context, e.g., the information in a registra-
tion interface and a pop-up window, and correlates the con-
text with the information flow. While intuitively simple, the
challenge of FlowCog lies in how to extract such context, i.e.,
FlowCog needs to establish a relationship between semantics
embedded deeply in an app with each information flow.

The critical insight of FlowCog is that apps embed flow
contexts in these Android GUIs, such as views, which have
direct control over the flow. For example, if the information
flow is that an Android app sends a phone number to
the Internet after the user clicks a submit button, such as
the running example shown in Section 2, the flow context
will be in the view that has the submit button. Particu-
larly, FlowCog performs a static analysis that connects UI
views, such as button and checkbox, of Android apps with
given information flows via control and data dependencies.
FlowCog extracts flow contexts, e.g., texts and images, em-
bedded in UI views via a mostly static approach with an
optional dynamic component.

1. We use the following two terminologies, “information flow” and
“data flow”, interchangeably in this paper.

2

Fig. 1: Registration Interface of S3 World Phone App

Once FlowCog extracts flow contexts, it distills texts from
images via image recognition and then analyzes texts, in-
cluding these extracted from images using an NLP module.
Lastly, FlowCog adopts classifiers to determine the correla-
tion between flow contexts and the flow. A high correlation
indicates that the flow is positive, i.e., the Android app pro-
vides sufficient semantics for the flow, and a low correlation
means negative.

We have implemented a prototype of FlowCog. Our
evaluation against 52,221 flows extracted based on Flow-
Droid [9] framework shows that FlowCog has a 96.4% preci-
sion, a 94.1% recall, and a 95.4% accuracy.

We claim that a conference version of the paper has been
published at the 27th USENIX Security Symposium [15]. In
this paper, we improve on the shortcomings of the original
similarity approach and propose a new model that allows
FlowCog to determine unauthorized flows accurately. Based
on the original Drebin dataset and Android apps from
the Google Play Store, we expand our focus to third-party
Chinese Android app marketplaces. Our experiments show
that the new method provides a significant improvement in
prediction accuracy over the old version.

Besides, FlowCog is open source and available at the
following repository: https://github.com/xcdu/FlowCog.

2 OVERVIEW

This section gives a running example, called the S3 World
Phone app (called S3 app for short), allowing users to make
phone calls worldwide. The S3 app sends a user-provided
phone number to its server after the user sees a registration
page shown in Figure 1 and presses the “Submit” button.
This flow is from the phone number to the Internet, and it is
positive because the app provides sufficient semantics, such
as keywords “Phone Number” and “mobile number,” so
that the app user can acknowledge and authorize the flow.

FlowCog is to extract contexts for each information flow
found by existing static or dynamic analysis and classify
the flow as either positive or negative based on the ex-
tracted contexts. Specifically, as shown in Figure 2, such a
process can be broken down into two stages or six complex
components. According to Figure 2, stage (a) dependency
analysis includes components (i) flow analyzer, (ii) view
content analyzer, (iii) special statement discovery engine,
and(iv) view dependency explorer to resolve data flows and
explore the view contexts related to the data flows. Stage

(b) semantic correlation includes components (v) seman-
tic correlation module and (vi) annotation metric module,
which function on semantically correlating the flows and
view context (i.e., semantics), then automatically provide
judgment on whether app provides enough semantics to
users.

Flow analyzer finds information flows of an Android
app, while view content analyzer helps identify the content
from the app’s layouts. Special statement discovery engine
locates special statements called activation event and guard-
ing condition via control dependency and associated views
(called view dependency) for each information flow. View
dependency explorer recognizes and extracts contexts, e.g.,
texts and images, from those two special statements via data
dependency. The semantic correlation module determines
the correlation between the flow and the contexts via Nat-
ural Language Processing (NLP) technique, and the anno-
tation metric module helps classify the sensitive semantic
context and annotate the flow and view context.

Now we use our running example to illustrate how
the process works. First, FlowCog will rely on the
existing framework, such as FlowDroid, to find the
Android app’s information flow. The phone number
leak of the S3 app, shown in Figure 3, starts from
TelephonyManager.getLine1Number(), i.e., the source,
in Block 1, and flows to HttpClient.execute(), i.e., the
sink, in Block 4. Details are as follows. The phone num-
ber is first stored in an EditText et_regist_phone (Block
1), read by the getText method (Block 2), and then
loaded by S3ServerApi.performRegistration as a param-
eter (Block 3). Then, the S3ServerApi.postData method
reads the phone number and sends it to the Internet via
HttpClient.execute, i.e., the sink (Block 4). All statements
are marked in Figure 3 via circled numbers in sequence
following the information flow.

Second, FlowCog finds two special statements, called
activation event and guarding condition, related to the infor-
mation flow via control and view dependency and can be
used to extract flow contexts. The S3 app contains exam-
ples of both special statements. Block 5 shows an example
of the activation event because an onClick event activates
the performRegistration method in Block 6. The second
statement in Block 2 shows an example of the guarding
condition because this statement prevents the phone number
leak if the condition is unsatisfied. In this example, the
statement only allows the phone number to leak if the
inputted password is strong enough to pass the complexity
test.

Particularly, here is how FlowCog finds both activation
events and guarding conditions for the S3 app. FlowCog
finds that the performRegistration method in Block 6,
an activation event, is connected with Block 2, a block
in the target data flow, via control dependency. FlowCog
finds additional special statements, e.g., another activation
event in Block 5, based on corresponding views, e.g., But-
ton bt_regist_submit, associated with the found activation
event, e.g., performRegistration—such process is defined
as view dependency in this paper. Following both control
and view dependency, FlowCog can also find guarding con-
ditions, such as the if statement in Block 2 and Block 7.

Third, FlowCog finds and extracts contexts, e.g., texts

3

(i) Flow Analyzer

(ii) View Content
Analyzer

(iii) Special Statement
Discovery Engine

Flow Path

Activation Event

Guarding Condition (iv) View
Dependency

Explorer

View Content

Source -> Stmt -> … -> Stmt -> Sink

View Context
“@id/bt_regist_submit” “Submit”

(v) Semantics
Correlation

Module

Pairs Set

Results:

(vi) Annotation
Metric Module

(a) Dependency Analysis (b) Semantic Correlation

Fig. 2: FlowCog Architecture

1. LoginActivity.onCreate

$4 = getLine1Number()
et_passwd = findViewById(…)
et_regist_phone.setText($4)
et_username.addTextChangedListener(
 new RegistrationTextChangedWatcher())

source

6. LoginActivity.performRegistration

$r2=new registrationAsyncTask()
$r2.execute()2.RegistrationAsyncTask.doInBackground

$2 = et_passwd.getText();
if(!isStrongPasswd($2)) return ;
S3ServerApi.performRegistration(
 et_regist_phone.getText())

3. S3ServerApi.performRegistration

$r3 := @parameter1 //phone number
addAdditionalParametersToPost($r3, …)
S3ServerApi.postData($r3, …)

4. S3ServerApi.postData
$r3 := @parameter0 //phone number
HttpClient.execute($r3) sink

5. s3_login.xml (LoginActivity’s Layout)

<Button android:id="@id/bt_regist_submit"
android:onClick="performRegistration"/>

7. RegistrationTextChangedWatcher.
afterTextChanged

if(et_username.getText().length()==0)
 bt_regist_submit.setEnabled(false)
else
 bt_regist_submit.setEnabled(true)

guarding condition stmt

activation event stmt

Data dependency :
Control dependency :
View dependency :

1

2

3

4

5

6
7

Fig. 3: Simplified Code Blocks of S3 World Phone App

and images, starting from activation events and guarding
conditions via data and view dependency. From Block 5,
i.e., the activation event, FlowCog directly finds the Submit
Button and the surrounding texts, i.e., “Submit," via view
dependency. From the second statement in Block 2, FlowCog
performs a data flow analysis upon $2 and finds et_passwd,
a text field, the surrounding texts, “Password”. From the
guarding condition in Block 7, FlowCog finds the user name
field. In all scenarios, FlowCog will find surrounding texts,
such as “Tips: Register with mobile number ...”.

Lastly, FlowCog determines the correlation between
the found flow contexts and the target flow. Specifically,
FlowCog processes the texts, removes stop words corpus
based on the corpus, and distills phrases through con-
stituency parsing [16]. For instance, the texts mentioned
above are formatted into “submit”, “password” and "tips
register mobile number."

FlowCog feeds the flow contexts and flows into the
trained classifier to predict the correlation between them.
According to our correlation, the flow is considered as
positive because “tips register mobile number" is related to
the source while “submit” and “password” are related to
the sink semantically.

3 DEPENDENCY ANALYSIS

This section presents the details of each component of
FlowCog’s architecture in Figure 2 Stage (a). Information
flow analysis, i.e., step (i) in Figure 2, is skipped because
we use existing taint analysis tool, FlowDroid [9]. We
first present the special statement discovery engine in Sec-
tion 3.1, which finds both activation events and guarding

1 LoginActivity.onCreate(...)
2 registrationAsyncTask.doInBackground()
3 S3ServerApi.performRegistration(...,

et_regist_phone.getText())
4 S3ServerApi.postData(\$r3, ...)

Fig. 4: Call Path for the Data Flow in Figure 3

statements. Then we present view dependency explorer in
Section 3.2. Later, we show how to extract semantics from
views and other places in Section 3.3. Lastly, we introduce
an optional dynamic analysis component in Section 3.5.

3.1 Special Statement Discovery Engine

Special statement discovery engine finds activation events
and guarding conditions given a data flow. The reason for
finding these two special statements is that they have direct
control over the given data flow: Activation events decide
whether to trigger the data flow, and guarding conditions
determines whether the source flows to a sink or other
places. The semantics associated with these two special
statements will influence users’ decisions and perceptions
on the data flow. For example, the activation event in Block
5 of Figure 3 is a submit button, which directly controls the
phone number leak and gives users semantics. Next, let us
discuss these two special statements separately.

3.1.1 Activation Event
Intuitively, an activation event, e.g., the onCreate and
performRegistration methods of the LoginActivity class
in our running example (Figure 3), is a callback method
that initiates a given flow. In other words, the flow happens
after the activation event is invoked. Now, we give a formal
definition of an activation event.

Definition 1. (Activation Event)
Given a data flow, we define an event callback pe as an
activation event if there exists a path pe···pk in the call
graph of the target app where pk is a statement in the
flow’s call path (psrc···pk···psink). Note that a given data
flow call path is defined as all the caller statements, in the
calling sequence, of methods containing each statement
in the data flow.

Now let us discuss how FlowCog finds all the activation
events. First, FlowCog extracts all the registered, possible
event callback methods and stores them into a list called
reg_call_lst. Let us take UI events as an instance. FlowCog
extracts callback methods from both codes and layout files.

4

Algorithm 1 The Algorithm of Finding Flow’s Activation
Event Statements
Input: Data Flow’s Call Path: callPath

Call Graph: callGraph
Set findActivationEvent(callPath, callGraph):
1: rs = createNewStmtSet()
2: queue = createNewStmtQueue()
3: reverse(callPath)
4: for stmt in callPath do
5: if isInvokeStmt(stmt) and isInReg_Call_List(stmt) then
6: rs.add(stmt)
7: else if isF irstStmt(stmt) then
8: queue.add(parent)
9: end if

10: end for
11: while !queue.isEmpty() do
12: stmt = queue.pull()
13: if isInvokeStmt(stmt) and isInReg_Call_List(stmt) then
14: rs.add(stmt)
15: else if !isV isited(stmt) then
16: method = getMethodOfStmt(stmt)
17: for parent in callGraph.getCallerStmtsOf(method) do
18: queue.add(parent)
19: end for
20: end if
21: end while
22: return rs

Specifically, FlowCog parses the app’s codes to identify all
those event listener registration statements (e.g., setOnClick-
Listener(...)) and then gets the callbacks by extracting the
name of the argument class. Then, FlowCog parses the layout
files and saves the values of those event attributes (e.g.,
onClick attribute). Similarly, FlowCog finds lifecycle event
callbacks by looking at subclasses of corresponding lifecycle
related classes, such as Activity, and finding overridden
lifecycle callbacks, such as onCreate.

FlowCog generates call paths for a given data flow, e.g.,
the call path in Figure 4 for the data flow in Figure 3,
and performs Algorithm 1 to find its activation events.
Particularly, FlowCog first reverses the call path for easy
processing (Line 3), and then goes through every statement
in the call path to see whether it is in the reg_call_lst (Line
4–10). If so, FlowCog adds the statement in the result set
(Line 6); if not, and if the statement is the first in the
method compared with others in the call path, FlowCog
adds the parent of this statement in a queue for further
processing. Note that FlowCog only adds the first statement
because other statements will share the same parent with
the first. Next, FlowCog goes through every added statement
in the queue (Line 11–21) until the queue is empty. For
each statement in the queue, FlowCog determines whether
it is in the reg_call_lst (Line 13–14). If so, FlowCog adds the
statement in the result set; if not, and if the statement is
unvisited before (Line 15), FlowCog goes backward through
the call graph and puts its parent in the queue (Line 16–18).

3.1.2 Guarding Condition
Intuitively, a guarding condition of a given data flow is a
conditional statement, e.g., if statement, which may affect
the data flow’s execution. For example, if one branch of an
if statement allows the data flow but another terminates
the flow, we consider such if statement as a guarding
condition—both if statements in Blocks 2 and 7 in Figure 3
are such examples. We now formally define the guarding
condition in Definition 2.

Definition 2. (Guarding Condition)

Given a data flow nsource···nk···nsink, for any nk, we
define a conditional statement ce—at least one branch
of which does not contain nk—as a guarding condition
if either of the following is satisfied:
(1) ce and nk are in the same basic block, or connected in
the interprocedural Control Flow Graph (iCFG);
(2) ce controls the activation events of the data flow via
view dependency, i.e., ce and the activation event are in
the same view.

Based on the definition, there are naturally two phases
to find all guarding condition statements. In the first phase,
FlowCog identifies guarding conditions directly connected
with the data flow in the iCFG; and then, in the second
phase, FlowCog identifies guarding conditions connected
with the data flow’s activation events.

Algorithm 2 shows the first phase in which FlowCog
iterates all the statements in the data flow reversely. During
each iteration, FlowCog extracts two consecutive statements,
prevStmt and curStmt. If these two statements are in
the same method, FlowCog searches the guarding condition
statements, stmt, from those statements, such that there ex-
ists a path P = prevStmt...stmt...curStmt in the method’s
control flow graph (Line 9–10). If these two statements
are from different methods, but prevStmt is the caller of
curStmt’s method, FlowCog searches the guarding condi-
tion statements from those statements in curStmt’s method
that can reach stmt (Line 11–12). If none of the following are
satisfied, i.e., the method of curStmt is a callback method,
FlowCog searches the statements that can reach curStmt in
the program’s inter-procedure control flow graph (Line 13–
14).

We then discuss the search algorithm mentioned in the
previous paragraph in Algorithm 3. Specifically, the algo-
rithm starts from a target node, i.e., the curStmt in Algo-
rithm 2, and conducts a reverse breadth-first search (Line
16–18) in the iCFG to find the conditional statement. For
each found condition statement, the algorithm additionally
checks whether this statement has a child node that cannot
reach the target node (Line 9–14). If there exists such a child,
the conditional statement is a guarding condition.

Next, FlowCog finds all the conditional statements
that control the given data flow’s activation event
in the second phase. Specifically, FlowCog finds all
the view objects that registered the activation events
and then searches for the following control state-
ments in the found views: (i) View.setEnabled(boolean), (ii)
View.setClickable(boolean), (iii) View.setVisibility(boolean), and
(iv) View.setLongClickable(boolean). FlowCog again performs
Algorithm 2, starting from all the found control statements
to identify additional guarding conditions. Consider our
running example in Figure 3 again. The method Login-
Activity.performRegistration(...) is an activation event, and
FlowCog finds corresponding guarding conditions related
to the activation event by identifying the view, i.e., But-
ton bt_login_submit, and then performs Algorithm 2 upon
setEnabled in the view’s code at Block 7 of Figure 3.

3.2 View Dependency Explorer
After FlowCog finds two special statements for a given data
flow, it finds Android views related to the data flow to

5

Algorithm 2 The Algorithm of Finding Guarding Condition
Input:

Flow Data Path: path
Interprocedure Control Flow Graph: iCfg

Set findGuardingCondition(path, graph):
1: rs = createNewStmtSet()
2: for (i = path.size() − 1; i >= 0; i–) do
3: if i == 0 then
4: findGCHelper(path.get(0), null, iCfg, rs)
5: else
6: prevStmt = path.get(i − 1)
7: curStmt = path.get(i)
8: method = getMethodOfStmt(curStmt)
9: if fromSameMethod(prevStmt, curStmt) then

10: findGCHelper(curStmt, prevStmt, iCfg, rs)
11: else if isInvokeStmt(prevStmt) and

method == getInvokedMethod(prevStmt) then
12: findGCHelper(curStmt,method.getF irstStmt(), iCfg, rs)
13: else
14: findGCHelper(curStmt, null, iCfg, rs)
15: end if
16: end if
17: end for
18: return rs

Algorithm 3 The Algorithm of Finding Guarding Condition
Helper Method
Input:

Target Statement: target
End Statement: endStmt
Interprocedure Control Flow Graph: iCfg
Guarding Condition Result Set: rs

void findGCHelper(target, endStmt, iCfg, rs):
1: queue = createNewStmtQueue()
2: queue.add(target)
3: while !queue.isEmpty() do
4: stmt = queue.poll()
5: if stmt == endStmt then
6: continue
7: else if !isV isited(stmt) then
8: if isConditionStmt(stmt) then
9: for child in iCfg.getSuccessors(stmt) do

10: if !canReachStmt(child, target) then
11: rs.add(stmt)
12: break
13: end if
14: end for
15: end if
16: for parent in iCfg.getPredecessors(stmt) do
17: queue.add(parent)
18: end for
19: end if
20: end while

extract semantics. We call such a relationship between views
and the data flow view dependency. Specifically, we classify
view dependencies into the following three categories.
• Data flow related. A view can be dependent on the given

data flow directly. For example, if the data flow source is
obtained from a view (e.g., EditText), such dependency
exists.

• Activation event related. If an activation event of the
given data flow belongs to a view, e.g., registered as an
event handler, we consider such dependency exists.

• Guarding condition related. If a view’s attribute values
(e.g., EditText.getText() or CheckBox.isChecked()) could
change the conditional result in guarding conditions of
the given data flow, we consider such dependency exists.

The view dependency problem can be formalized into
another data flow analysis. The sources in this analysis are
all the possible views, and the sinks are the three scenarios
mentioned earlier, i.e., the given data flow, its activation
events, and its guarding conditions. Now, let us explain in
detail how FlowCog obtains these sources and sinks.

First, FlowCog obtains all the sources by going through
all the view definitions, either static or dynamic. FlowCog
parses layout files that statically define views and treats all
the findViewById(...) and inflate(...) invoke statements related
to these views as the source. Besides, FlowCog adopts a
manually created list about all possible View classes from
the Android documentation and finds all the new statements
that create an object with these classes—these statements are
treated as the source.

Second, FlowCog obtains all the sinks based on the
dependency categories. Statements in the given data
flow and guarding conditions are added directly to the
sink list. FlowCog searches through the entire program
for all activation events’ registration statements, e.g.,
setOnClickListener corresponding to onClick, and adds
these registrations to the sink list. Note that an activation
event may be defined in layout files—in such case, the data
flow analysis is simplified to a directional association of the
activation event and the view defined in the layout file.

3.3 Semantics Extraction

The next step of FlowCog is to extract semantics, e.g., flow
contexts, from views that have the dependency on a given
data flow.

3.3.1 Flow Context Extraction from Views
There are two types of flow contexts: those from views that
have dependencies on a given data flow; and those from
other views in the same layout of the depended view. Let us
discuss these two separately.

First, semantics exist in views that have dependencies
on a given data flow, directly affecting the flow’s execution.
For example, in Figure 3, the Button view will control
the program in deciding whether to send out the phone
number. Its text, i.e., the “submit” word, is the semantics
about sending behavior. For another example, an “alert”
Dialog view asking for a user’s permission to share her
location decides whether the location is sent to the server
and provides semantics in its text to users.

The semantics extraction for such views has two steps.
(i) FlowCog resolves the identifiers of such views. Specif-
ically, FlowCog resolves the value of findViewById(...) and
inflate(...)’s argument both statically via searching the def-
inition of the parameter backward in the iCFG and dy-
namically via an optional dynamic analysis in Section 3.5.
Note that based on our evaluation, 97.6% of values can be
resolved statically. (ii) FlowCog extracts semantics related to
the views. Specifically, FlowCog finds all the invoke state-
ments with their base object as the view, and the invoked
method as one of the following <init>(...) (the constructor
method’s name in Jimple), setTitle(...) and setTexts(...). Then,
FlowCog resolves the parameter value of the aforementioned
methods following the same way as it does for the view’s
identifier in the previous step. Again, in most cases, i.e., 94%,
such values can be resolved statically; otherwise, FlowCog
relies on the optional dynamic analysis to resolve values.

Second, besides the depended, semantics from other
adjacent views in the same layout may also be flow contexts
because a user-visible screen may contain multiple views
from the same layout. “Tip: Register with your mobile

6

number” in Figure 1 is such an example. Such semantics
extraction has three steps.

(i) FlowCog resolves the layout where the depended view
locates. Specifically, FlowCog looks at the second parameter
of setContentV iew() method in which the first parameter
is the target depended view. (ii) FlowCog finds other views
inside the same layout by looking at other findV iewById()
and inflate() calls and all new statements that create dy-
namic views. (iii) FlowCog extracts semantics from other
views just as what it does for the target depended view.

3.3.2 Flow Context from View’s Layout
Besides views, the layout file of the view having depen-
dency with the given data flow may also contain other
resources, such as texts and images, which could provide
semantics. We divide the resource types into four categories:
(i) texts, (ii) text images, (iii) images without any texts, e.g.,
email and phone icons, and (iv) non-image fragments, e.g.,
maps. Now let us discuss how to extract semantics from
each category.

First, for text resource, FlowCog extracts the values of
android:text and android:hint attributes in the layout file. If the
value is not a string but an identifier of other resources (e.g.,
string/msg), FlowCog further analyzes the corresponding
resource files to resolve the string value and finds the string
value of such identifier.

Second, for image resource, FlowCog extracts an-
droid:background attribute in the layout file. Additionally,
FlowCog also extracts the android:src attribute of all image
views, e.g., ImageButton. All the images are first fed into
Optical Character Recognition (OCR) [17] engine to extract
obvious texts.

Third, FlowCog also adopts Google Image to analyze the
topics of images extracted in the previous step. Specifically,
FlowCog stores each image as a URL, uploads the URL
to Google Image’s server, and uses a headless browser
to obtain a result returned by Google. Note that because
Google Image restricts the number of uploaded images from
each IP address for a given interval, FlowCog only uploads
images when the OCR engine cannot extract texts from the
image.

Lastly, for non-image fragments, FlowCog relies on
a manual-curated list to extract semantics. Let us
take the Google Map as the instance. We specify
two pairs of fragment name and semantics (e.g.,
<com.google.android.gms.maps.SupportMapFragment,
map>, <com.google.android.maps.MapView, map>) to
represent a map object in the list, when FlowCog finds this
fragment in a layout file or related code, a “map” semantics
will be added.

3.4 Inter-Component Communication Analysis for
FlowCog
The Intent mechanism [18] allows Android to communicate
crossing components. The Inter-Component Communica-
tion (ICC) also brings increasing complexity to FlowCog
dependencies analysis. We modified S3 World Phone App
in Figure 1 into an ICC case in Figure 6, and illustrate how
FlowCog performs dependency analysis with ICC.

2. We present the source code in List 1 in Appendix.

APK File

Layouts Files

String Values Android Manifest

Guarding
Condition Stmts

Activition Event
Stmts

Jimple IR

Expaned Jimple IR

ICC Methods

ICC Links

Tainted Flows

Flow-Context Pairs

CFG

Extended ICC Analyzer

(1.1) (1.1)

(1.2)
(1.3)

FlowCog Dependency Analyzer

(2)

(7)

(8.1) (8.3)

(10.1)

(3)(4.1)

(5)

(6.1)

(6.2)

(9)

(10.3) (10.2)

(4.2)

(8.2)

Flow Analyzer

Fig. 5: The FlowCog Dependency Analysis Workflow for
Inter-Component Communication.

onCreate () in LoginActivity

afterTextChanged() in LoginActivity

onClick() in LoginActivity

onStart() in RegActivity

postData in S3ServerApi

“Semantics”

01 sink

String s = getLine1Number()02

View et_username = findViewById(...)05

Button bt_regist_submit = (Button) findViewById(...)06

View et_regist_phone = findViewById(...)07

et_regist_phone.setText(s)08

et_username.addTextChangeListener()09

bt_regist_submit.setOnClickListener()17

if(et_username.getText().length() == 0) … else12

bt_regist_submit.setEnable(true)15

String phoneNumber = et_regist_phone.getText()20

Intent i = new Intent(LoginActivity.this,RegActivity.class)21

i.putExtra("phone_number", phoneNumber)22

LoginActivity.this.startActivity(i)23

Intent i = getIntent()27

String phoneNumber = i.getBoolExtra(" phone_number")28

S3ServerApi.postData(phoneNumber)30

HttpClient.execute()sink

“Phone Number”

“Name”

“Submit”

Tainted Flow

Control Dependency

Data Dependency

Code Line Number

View Content

View Dependency

Guarding Condition Stmt

LegendLayout Semantics

(Activation Event Stmt)

Fig. 6: The FlowCog’s Dependency Analysis Details of
Modified ICC S3 World Phone App Example.2

The Figure 5 prensents the entire workflow of FlowCog’s
dependency analysis for ICC apps. Note that we use the
FlowDroid [9] as flow analyzer and IC3 [19] as extended
ICC analyzer.

When we feed the ICC APK file into the flow analyzer,
the FlowCog will collect the string id definitions, extract the
layout trees for every components, analyze the component
relationships from Manifest file extracted, and decompile
the APK file into Jimple in the Step 1.*. Then FlowCog will
analyze the activition events statements as same as what
FlowCog has done to the non-ICC apps in Step 2. The Step 3
to Step 6 are typical ICC taint analysis steps, and the details
can be refered from [11]. After Step 6, the ICC links will
expand the original controw flow graph generated by flow
analyzer and extend edges, lifecycles and callbacks found
in ICC analysis progress. Then, the FlowCog will collect the
guarding condition statements from expanded IR in Step 7.
In Step 8.*, the special statement discovery engine will help
to locate those two kinds of statements in CFG. In Step 9,
the flow analyzer will help to extract the tainted flows for

7

ICC apps. At last, FlowCog will gather all activation event
statements in Step 10.1, tainted flow paths in Step 10.2, and
search the reachable views on CFG in Step 10.3. The view
dependency explorer will help to extract views related to
the ICC tainted flows in Step 10.3.

We note that this research do not aims on any ICC
taint analysis algorithm improvement and the FlowCog is
compatible enough with the IC3. So we just leverage the
existing IC3 framework in Extended ICC Analyzer in Figure
5 without any further modification.
A Case Study for FlowCog. According to [11], we modified
the example in Figure 3 to explain the workflow in details.
The Figure 6 illustrates the results from FlowCog in depen-
dency analysis stage. we make S3 World Phone App to fetch
phone number and send it in different activities through the
Intent.

Unlike Figure 3, we have explicitly registered the listener
for the button bt_regist_submit via setOnClickListener and the
declared OnClickListener also explicitly constructs an Intent.
At the same time, we receive this Intent in another Activity
RegActivity and extract the password we need inside it. Then
the password is sent out by HttpClient.execute() inside the
same function postData as shown in Figure 3. FlowCog has
found the tainted flow from the source getLine1Number() to
the sink HttpClient.execute().

By bytecode-rewriting from IC3, FlowCog expands the
ICC edges from LoginActivityṫhisṡtartActivity() to onStart(),
which is explicitly declared in RegActivity. Thus, the con-
trol flow graph connects the two activities LoginActivity
and RegActivity. By locating the activition event statements
and guarding conditions, we can resolve the statements of
findViewById() backward through the data dependency and
control dependency. Then we can find the related strings
presented to the user through the string IDs or data flow
analysis, and connect the semantics to the tainted flows.

3.5 View Content Analyzer

FlowCog supports an optional dynamic analysis module to
perform a dynamic value analysis and output certain strings
and view IDs that cannot be resolved statically. Based on
our observation, only 5.3% of statements belong to such
category. The dynamic analysis works in three steps.

First, the dynamic analysis instruments the Android
app by identifying all the text-setting statements and print-
ing the values their parameters and the target text-setting
statement’s location immediately before each text-setting
statement.

The text-setting statements that we currently instru-
mented are listed as follows: setTitle(...), setText(...), setMes-
sage(...), setPositiveButton(...), setNegativeButton(...) and set-
Button(...).

Second, we adopt a customized version of AppsPlay-
ground [20] to install the app on the emulator and auto-
matically explore the app dynamically. In particular, our
customized AppsPlayground adopts an image processing
approach to identify clickable elements and sends event
signals to increase the exploring coverage. We set each app
to be explored for at most 20 mins.

Lastly, during the dynamic app exploration, when any
text-setting statement is encountered, its string argument

value and the statement’s location will be printed out.
After execution, these logs will be extracted and stored in
a NoSql database. Each record’s key is the app’s name and
the statement’s location, while the value includes the texts
associated with the corresponding statements’ arguments. If
FlowCog encounters a string argument whose value cannot
be resolved during the static analysis, it will look up the
database built from dynamic analysis.

4 SEMANTICS CORRELATION

This section illustrates the details of semantics correlation
stage in Figure 2 Stage (b). We first explain the problems
that arise when we apply FlowCog to a larger dataset in
Section 4.1. Then, we present the details of the semantic
correlation module in Section 4.2. Finally, we introduce the
annotation metric module and ground-truth-based annota-
tion method in Section 4.3.

4.1 Problems in Data Increasing
The semantic correlation module helps determine the se-
mantic connection between the flow and flow context3 pairs.
It mimics the user to determine if the user has been given
enough semantic information to realize that data is being
leaked out through the flow. However, as the number of
data increases, the old semantic correlation model used in
[15], shown in Figure 8, reveals its shortcomings.

First, the method of comparing flow and semantics used
in [15] causes the similarity obtained from similarity clas-
sifier to tend towards its value domain boundary as the
amount of context increases. It causes the similarity of posi-
tive and negative flow to be crowded into a narrow interval,
which prevents the logistic regression from reaching a high
accuracy.

Second, the step of mimicking the user’s judgment of
whether the semantics extracted along with the flow pro-
vides sufficient semantic information is very subjective.
The supervised learning model requires a large amount
of annotation data, and annotating data requires time to
review flow. They lead to an inefficient annotation process
and inconsistent annotation standards.

To solve the above problems, FlowCog proposes a fea-
ture method based on behavioral ontology. The feature
method establishes a link between flow and semantics in
both the semantic correlation module and the annotation
metric module. We then determine the legitimacy of flow
by using existing NLP techniques and deep learning text
classification model, combined with the annotation set we
built upon ground-truth via the annotation metric module.

4.2 Semantic Correlation
4.2.1 Behavioral Ontology
We use the so-called behavioral ontology to compare flow
and flow context semantically. This ontology is used in our
previous work [15], called Bag of Words Similarity Model
(BoWSiM), shown in Figure 8, and then improved to extract
valuable information on the pairs and to accommodate large
amounts of data annotating.

3. We also use term semantics to refer to flow text or flow context.

8

Behavior is a pair of phrases consisting of action and
resource. Action is a verb or verb phrase representing the
action performed, while the resource is a noun phrase that
represents the object of the action. For the example flow
illustrated in Figure 3, FlowCog can extract “post data”
from S3ServerApi.postData in flow, and “register mobile
number” from “Tips: with mobile number ...”.

FlowCog can identify potentially sensitive information.
By comparing flow’s and semantics’ behaviors, it can de-
termine whether flow and semantics describe one or a
class of behaviors simultaneously and semantically, i.e.,
whether sufficient semantics information is provided for
the purpose. For the above example, the “register phone
number” provides enough information to inform the “post
data” behavior, which indicates it is a positive flow then.

4.2.2 Preprocessing and Semantic Expansion

As illustrated in Figure 7, the preprocessing module receives
the flow and semantics pair extracted from the dependency
analysis stage to eliminate the unnecessary characters. Then
FlowCog splits the words that are joined together in flow
and semantics. After that, FlowCog splits flow by statement
and semantics by sentence. Named entity recognition and
stemming of words are used to avoid interference from
proper nouns and tense. Since we leverage the behavior
ontology as the criterion for comparison, irrelevant actions
and resources should be excluded in the preprocessing.

The semantic expansion module consists of three key
components, as shown in Figure 7, behavior extraction,
synonym expansion, and semantic alignment. The behav-
ior extraction component extracts the pairs of actions and
resources. Furthermore, FlowCog appends the pairs after
the original flow or semantics. Synonym expansion is the
component that addresses the domain-specific synonym
similarity problem. It cooperates with the sensitivity level
mechanism to attach possible synonyms to flow or seman-
tics. For example, the contact list and address book usually
refer to the same part in the Android system but do not
appear together in the same flow. The additional synonyms
increase co-occurrence and inform the model that they per-
form the same sensitive behavior or potentially threaten the
same resource.

Linguistic alignment is to provide consistent support for
multilingual contexts. Typically, developers tend to provide
multilingual support for apps that are not in the English
market. Often, characters belonging to different languages
will appear simultaneously. For this mixture of characters,
we translate the text into the same language to align the
semantics so that the behavior comparison mechanism can
function properly.

4.3 Annotation Metric

4.3.1 Sensitivity Level Mechanism

We adopt the so-called sensitivity level mechanism to im-
prove the efficiency of annotating numerous flow-semantics
pairs and reduce the annotating process’s subjective. To
clearly define when semantics provides enough information
to the user, we define the relationship between the behaviors
described by flow and semantics as follows.

First, each behavior has its sensitivity level, which is
categorized by its relevance to permission. Sensitivity lev-
els include: restricted, noticed, and unrelated. The restricted
behavior indicates that it is significantly related to dan-
gerous or signature permission. If it occurs in the flow or
semantics, the same or similar semantic information needs
to be present on the other side. The noticed behavior means
that the behavior is related to the normal permission. If it
occurs in the flow, the same or similar semantic information
needs to be present in the semantics, but not vice versa. The
unrelated behaviors should be ignored in both comparison
and updating.

The basis for deciding whether flow and semantics are
the same or similar is considered in two dimensions: action
and resource. Behavior action cannot be directionally incon-
sistent, such as “post” and “fetch”. FlowCog only requires re-
sources to be semantically the same or similar for noticed be-
havior, provided there is no directional inconsistency. In the
case of restricted behavior, both action and resources need to
be semantically the same or similar. The semantic similarity
is provided by the fine-tuned embedding model [21].

4.3.2 Constructing Annotation Criterion
We obtain the annotation of pairs by constructing annotation
criteria and checking annotation in sequence. Constructing
annotation criterion includes initializing and updating.

To obtain ground truth, we first need to extract the
sensitivity level mapping table from the API archives. For
the flow analyzer used in the dependency analysis of 2,
all sources and sinks must be pre-defined. Their associ-
ated permission types and their sensitivity level are also
accessible from the official documentation. We treat the
source or sink as a flow consisting of one statement and
the information describing those APIs as semantics. Then
we can initialize a set of behavioral sensitivity levels from
that. Simultaneously, we construct the embedding model
and expand the vocabulary via Wiki Corpus [22], and then
fine-tune the semantic distance of words in the embedding
model via synonyms dictionary. Later, we continue to fine-
tune the embedding model by using the pair set obtained
from the dependency analysis in 2 and the annotated data
set obtained from the BoWSiM. Ultimately FlowCog obtains
a similarity estimation of behavior. We note that it is not the
final prediction. Since the process of acquiring the pairs set
may have a bias in the number of pairs. The method based
on a given observation, such as what is used in BoWSiM, is
not applicable here.

With this embedding model, we obtain a rough inference
of the sensitivity of behavior. It allows us to convert the
work of annotating the training set of thousands of flow
pairs into labeling the behaviors with sensitivity levels. This
kind of annotation criterion obtained is ground-truth based,
and each subjective determination of flow is constrained
within a single behavior and does not affect the annotating
for different kinds of permission, making the impact of
subjectivity minimized.

5 IMPLEMENTATION

Now we discuss the implementation of FlowCog in this
section.

9

Flow Semantics

Pairs Set

Semantics Behaviors

Synonym Bilingual
Semantics

Flow Behaviors

Synonym Bilingual
Semantics Legitimate

Privacy Leakage

TextCNN Model
Character Elimination Segmentation

Named Entity RecognitionStemming

Preprocessing Module

Embedding

Semantic Expansion Module

Behavior
Extraction

Behaviors

Synonym
Expansion

Synonym

Linguistic
Alignment

Bilingual
Semantics

Function

Description

Permission

Comparison

API Archives

Restricted

Noticed

Unrelated

Sensitivity Level

Annotation
Metrics Module

Stmt

Annotation

Semantic Correlation Module

Fig. 7: FlowCog’s Semantic Correlation Module and Annotation Metric Module

Flow API
Doc

NLP

Module

Raw

Texts

Extracted

Text-based

Semantics

Logistic
Reg

Result

Word2Vec
Semantic

Model

Calc

Similarity

Score
[V,., V]

Similarity Classifier

Classifier Module
[<Action,Res>,

…,

<Action,Res>]
Rescaled

training set

size [0-1)

Gradient
Boosting

SVM

Learning-based Classifier

Logistic

Reg

N-gram,

TF-IDF

Vectorizer

Translator

Res

Filter

[V,., V]

Fig. 8: Bag of Words Similarity Model

First, as discussed, we adopt FlowDroid, a precise and ef-
ficient Java-implemented static analysis system, to discover
all information flows. All analysis steps operate on Jimple
intermediate representation (IR) [23], a typed 3-address IR
suitable for optimization and easy to understand. FlowCog
uses Soot framework [24] to transform an app into Jimple
codes, a widely used Java optimization framework. In text
extraction engine, FlowCog also needs to run data flow
analysis to find flow’s related views. Such data flow analysis
component is also based on the taint analysis framework
provided by FlowDroid.

Second, we implement a crawler using Beautiful-
Soup [25] to crawl API documents for methods associated
with each flow. Then we use Stanford Parser Wrapper [26],
a Python wrapper of Stanford Parser, to cleanse these raw
texts, transform them into a set of valid none-verb pairs,
serving as the inputs for classifiers. Before feeding texts into
classifier, we use mtranslate package [27], a Python wrap-
per of Google Translate API, to translate non-English texts
into English. FlowCog leverages Gensim [28] pre-trained
Word2Vec model to embed texts into vectors. FlowCog uses
Python’s Tensorflow [29] and Scikit-learn library [30], which
integrates all the machine learning modules we have used
in our implementation and evaluation.

Lastly, we use apktool [31] to decompile Android apk
files. Then we write Python scripts to parse the XML re-

source files extracted from decompiled apk files. To extract
texts from image, we adopt pytesseract package [32], a
Python wrapper for google’s Tesseract-OCR, one of the
most popular open-source OCR tools. For dynamic anal-
ysis, we write a Soot-based Java program to automatically
instrument apps and then manage and customize AppsPlay-
Ground [20] to dynamically explore the instrumented apps.

6 EVALUATION

In this section, we evaluate FlowCog by answering the fol-
lowing five research questions.
• RQ1: How accurate is FlowCog in identifying positive

and negative flows?
• RQ2: What’s the performance in both Dependency Anal-

ysis Stages?
• RQ3: How effective is FlowCog in extracting flow con-

texts?
• RQ4: What’s the insight of the classified flow context

from FlowCog?
• RQ5: How does FlowCog’s classification algorithm com-

pare with other alternatives, naïve approaches?

6.1 Experiment Setup, Dataset and Ground Truth

The composition of the evaluation dataset is incrementally
growing as the version of FlowCog is iterated. Currently, the
evaluation dataset consists of the following parts:

• Large-scale annotated dataset for semantic correla-
tion accuracy evaluation and practical applications.

• Modified ICC-Bench dataset [33] for ICC perfor-
mance evaluation. We added view components for
each type of ICC types.

• A small-scaled annotated dataset randomly sampled
for model selection.

The first large-scale annotated dataset consists of two
parts: A small Android app set we formerly used in the [15]
and evaluated by BoWSiM. And a large bilingual Android

10

app set we used in the latest version of FlowCog and evalu-
ated by TextCNN model. The former small app set contains
4500 apps randomly crawled from Google Play and 1500
malicious ones randomly selected from Drebin dataset [34],
[35]. Because we only parsed the English characters4 for
evaluation from this app set, we call it the Monolingual App
Set.

The latter large bilingual Android appset not only in-
cludes the English Android apps from Google Play App
market and Drebin malicious dataset, but also includes Chi-
nese Android apps from the third-party Chinese Android
app market and collected malicious Chinese Android app
dataset of our other projects. This Android app set contains
total 20000 apps, and we call this app set the Bilingual App
Set.

For dependency analysis, we run experiments on a
Ubuntu 16.04 server with Intel Xeon 2.8G, 16 cores CPU,
and 64G memory. For semantic correlation, we perform our
NLP experiments on a Ubuntu 16.04 server with Intel i7-
7700k 4.5GHz, Nvidia GTX 1080Ti, and 32G memory.

For large-scale analysis, FlowCog uses FlowDroid [9]
with default setting, i.e. flow-sensitive and context-sensitive,
as the existing static analysis tool to extract tainted flows.
Specifically, we use latest version of FlowDroid with the ‘-
im’ parameter and IC3 [19] to evaluation ICC dependency
analysis on our Modified ICC-Bench dataset. We run Flow-
Droid on each app for 20 minutes and then terminate it if
there are no results.

We did try to run FlowDroid for a longer time, such as
four hours on a small set of unfinished apps—it turns out
that FlowDroid cannot finish analyzing these apps either.
We want to emphasize that because the flows found by
FlowDroid contain all possible pairs of sources and sinks,
we believe that we have already tested FlowCog on varieties
of flows.

For TextCNN model, the FlowCog is tuned with various
value of hyperparameters. Finally, the semantic correlation
TextCNN model sets batch size as 25, dropout rate as 0.5,
embedding dimension as 200, filter size as {3, 4, 5}, number of
hidden unit as 300, and number of filters as 32. The other
parameters use the default value. Usually, we can reach the
claimed accuracy within 30 minutes.

In the end, as to the Monolingual App Set, 1885 apps
terminate successfully, and 947 of them (361 from Google
Play and 586 from Drebin) generate 2342 flows in total. As
to the Bilingual App Set, 7871 apps terminate successfully,
and 4624 generates 52221 flows. We spent around three
months to annotate all those flows manually based on our
Annotation Metric Module.

6.2 RQ1: Precision, Recall and Accuracy

In this research question, we measure FlowCog’s true positive
(TP), true negative (TN), false positive (FP), and false negative
(FN) based on our manually annotated ground truth. We
further calculate the precision, recall and accuracy from TP,
TN, FP, and FN. Precision is defined as TP/(TP + FP),

4. The English characters include the English letters, the symbolic,
and the numeric characters used in the English context. The Chinese
characters include the Chinese characters, the symbolic, and also nu-
meric characters used in the Chinese context.

recall as (TP/(TP + FN), accuracy as (TP + TN)/(TP +
TN +FP +FN), and F1 score as 2TP/(2TP +FP +FN).

As shown in Table 1, we conducted four rounds of ex-
periments to demonstrate the TextCNN correlation model’s
performance and to compare it with the BoWSiM. For the
former Monolingual App Set, we used 1242 of 2342 annotated
flows as the test set, which is the same size as the test set we
used in [15]. For the new Bilingual App Set, we used 10455
of 52221 annotated flows as the test set, which means the
Bilingual App Set’s test rate is 20%.

The first row in Table 1 shows the result from [15], which
we obtained 90.2% accuracy, 90.1% precision, and 93.1% re-
call. We replaced the correlation module from BoWSiM into
TextCNN, and the accuracy, precision, and recall increase to
95.1%, 97.4%, and 94.0%, respectively. In the third row of
Table 1, we feed the larger amount of data, Bilingual App Set
into BoWSiM, as we explained in Section 4.1, the accuracy,
precision, and recall rates drop to 72.0%, 74.2%, and 71.0%.
Finally, when we use the TextCNN semantic correlation
model to the Bilingual App Set, the accuracy, precision, and
recall rates are 95.4%, 96.4%, and 94.1%.

The result demonstrates that the BoWSiM from [15]
can have a performance drop with more flows and flow
texts. However, the TextCNN improves the prediction per-
formance and is robust in semantic correlation with multiple
languages.

6.3 RQ2: Performance in Dependency Analysis

We selected 3 dimensions to evaluate the performance of the
dependency analysis stage: runtime, Android application
size, and the number of discovered flow-context pairs.

As shown in Figure 9, we cyclically compared such three
dimensions on randomly sampled 1428 pairs from the pairs
set of Bilingual App Set. The Figure 9a compares runtime
in dependency analysis for each app with apk file size and
number of found pairs. The Figure 9b compare the size with
runtime and found pairs number. And Figure 9c compare
the pairs number found in dependency analysis stage with
the runtime and size.

We use such redundant comparison to intuitionally rep-
resent the distribution of each dimension, and the relation-
ship between each two pairs of dimension.

Then we summarize on each dimension. In Figure 9a, the
runtimes of processed Android apps are clustered below 300
seconds and among 700 to 1200 second. The number of pairs
is more dispersed compared to the file size. In Figure 9b,
the majority of the APK file size is below 100MB. Based on
that distribution, we manually checked the entire file size
of our entire Bilingual App Set, we found that most of the
apps larger than 100MB can not reach to the result under 20
minutes. In Figure 9c, the majority of the pairs number is
below 75. When the size is closer to the zero, the number of
pairs is more sparse.

Alongside the runtime performance of dependency anal-
ysis, according to the the Table 4 and our manually checked
results, the network access and credential access will ex-
tremely increase the number of control flow graph edges.
It would leads to the challenge for terminating dependency
analysis in acceptable time, as well as the challenges in user-
awared tainted flow classification.

11TABLE 1: Manually-annotated Ground Truth and Overall Performance of FlowCog against the Ground Truth

No. Correlation Model App Diversity Total Pos. Total Neg. TP TN FP FN Precision Recall Accuracy F1 Score

1 BoWSiM Monolingual(EN) 713 529 664 456 73 49 90.1% 93.1% 90.2% 0.916

2 TextCNN Monolingual(EN) 713 529 670 511 18 43 97.4% 94.0% 95.1% 0.956

3 BoWSiM Bilingual(EN+ZH) 5230 5215 3,883 3,538 1,677 1,347 69.8% 74.2% 71.0% 0.720

4 TextCNN Bilingual(EN+ZH) 5136 5309 4,833 5,130 179 303 96.4% 94.1% 95.4% 0.953
*Monolingual app set only feeds English (EN) characters as input, while bilingual app set feeds both English and Chinese (ZH) characters as input.

(a) Dependency Analysis Runtime
Comparison

(b) Processed Android Application Size
Comparison

(c) Found Android Pairs Number
Comparison

Fig. 9: Cycle Comparison Scatter Figures of FlowCog Dependency Analysis Stage.

TABLE 2: Accuracy in Extracting Flow-related Texts

App Type #Flows* #TManually
† #TFlowCog

‡ Accuracy

Benign 27 288 273 94.5%
Malicious 41 337 331 98.3%

* number of flows. † number of text blocks found mannually. ‡ number of text blocks found by FlowCog.

6.4 RQ3: Effectiveness of Contexts Extraction

In this experiment, we study the accuracy of FlowCog in
extracting flow contexts. Here is how we obtain the ground
truth.

We manually inspect 68 flows, i.e., these from ten benign
apps in Google Play and ten malicious apps in the Drebin
dataset. In particular, we first instrument FlowDroid to
display the detailed information of each flow, including
the data path and call path, to know how to trigger the
information flow. Then, we install and play with each app
to trigger the information flow and record all the semantics
that we see during the triggering process. Next, we decom-
pile the apps using apktool [31] to find the classes that each
statement in the call path resides and map the semantics that
we see to the corresponding text blocks or non-text items in
the apps. These text or non-text resources are the ground
truth used in this subsection.

Table 2 shows FlowCog’s accuracy in extracting text-
related contexts. In particular, FlowCog can extract 94.5%
of flow-related texts from benign apps and 98.3% of flow-
related texts from malicious apps. We do not find any false
positives, i.e., texts extracted by FlowCog are all related to
the views.

Here are two reasons that FlowCog fails to extract some
of the texts. First, three of the failed scenarios are caused by
encoding issues of our implementation: some texts can be
correctly rendered during our dynamic evaluation but turn
out to be garbled when extracted by FlowCog.

TABLE 3: Accuracy in Extracting Flow-related Non-text
Informative Elements

Type # of Items # of Items Accuracy
in Total solved by FlowCog

Image with Texts 30 27 90.0%
Image without Texts 23 23 100%
Non-image Views 2 2 100%

Second, the remaining 18 texts that FlowCog fails to
extract are caused by the limitations of static value analysis:
completely solving value analysis is still a fundamental chal-
lenge suffered by all static analysis tools. FlowCog adopts a
bunch of heuristic rules to try our best to resolve those non-
constant string values, but there are still 7 cases that we
cannot resolve. Moreover, we also find 11 dynamic texts:
the texts are dynamically loaded and cannot be found in
the app’s package. Static analysis cannot solve dynamically-
loaded texts and the dynamic analysis tool that we use, i.e.,
AppsPlayground, does not trigger this specific code branch.
Fortunately, most dynamic texts have default values, which
can be discovered by FlowCog and are usually sufficiently
informative. For example, one gaming app will display
various promotional texts during loading. Its default string
value is “Now loading,” which is sufficient to let the user
know that the app is using the Internet.

Next, Table 3 shows the accuracy of FlowCog in extracting
information from informative non-text items: (i) images
with texts, (ii) images without texts, such as mail icons, and
(iii) non-image fragments, such as ads and maps. FlowCog
can successfully extract 27 out of 30 texts embedded in im-
ages through the OCR tool. The rest three images’ texts are
extracted as garbled texts. As for non-text images, 23 images
are informative to users. Google Images can successfully
extract all of their semantic meanings.

For non-image views, we have seen many ad fragments,

12

TABLE 4: Flow Classification Metrics by Permissions

Permission Number TP TN FP FN Precision Recall Accuracy F1 Score

Location 173 64 73 16 20 80% 76.2% 79.2% 0.78
Contact 132 48 57 14 13 77.4% 78.7% 79.5% 0.78
Credential 443 320 106 15 2 95.5% 99.4% 96.2% 0.97
Calendar 12 3 5 1 3 75% 50% 66.7% 0.60
Device/Card ID 373 161 180 22 10 88.0% 94.2% 91.4% 0.91
Phone Number 103 66 31 5 1 93.0% 98.5% 94.2% 0.96

Internet 1,009 606 319 52 32 92.1% 95.0% 91.7% 0.94
SMS 233 58 137 21 17 73.4% 77.3% 83.7% 0.75

but we do not consider them as informative. Some advertise
libraries will send the user’s location to the Internet for user
targeting. However, we believe most users do not expect
such location-leaking activities, and thus we classify such
flows as negative unless other informative texts are given.
We also see two map fragments in this experiment, which
FlowCog can recognize.

At last, for contexts extraction on ICC apps, the FlowCog
passes all test cases in ICC-Bench. Note that for each test
case, we just simply registered the views and view strings.
Then we added a view box by findViewById in the Intent
broadcasting activity. Then we build a data dependency
crossing the ICC tainted flow by fetching the string value
of the view.

However, we have notice that some other work, such as
[36], reported the disadvantages of IC3 framework of the

FlowDroid. Since the goal of our work is to detect user-
unwared leakage among innumerous tainted flows but not
to improve the ICC algorithm, we can still looking forward
to the further improvement of the FlowDroid performance.

6.5 RQ5: Insight of Classified Flow Context

Table 4 presents the permission-categorized results of the
metrics. Top 6 rows show source permissions, and the
bottom 2 rows show the sink permissions. According to
[15], we noticed that there are two interestring findings

here. First, the general trend excluding some exceptions is
that larger training data FlowCog has, the better accuracy
results we can get for FlowCog. In the source permission
categories, “Credential” has the highest accuracy while the
“Calendar” the lowest. In the sink permission categories,
the accuracy number in “Internet” category is higher than
the on in “SMS”. Second, flows that have different semantics
presentations have lower accuracy than those do not. Take
flows with a “Location” permission for example. Such flows
can be interpreted in many different ways, such as “map”,
“location”, and “local weather”. Hence the accuracy for
“Location” is lower than that for “Phone Number”, which
is usually represented in literal.

6.6 RQ5: Comparison with Alternative Classification
Approaches

In this subsection, we would like to justify why we make
such a choice in designing the semantic correlation module
of FlowCog. Specifically, we want to select a better semantic
correlation algorithm for the correlation module.

Table 5 shows the comparison results of different al-
gorithms. The F1 scores of efficient algorithms, including
Logistic Regression (LR), Decision Tree (DT), and Naïve
Bayes, are all bad, i.e., below 0.85. Linear Support Vector

TABLE 5: Performance of Different Correlation Module
Algorithm Precision Recall Accuracy F1 Score

Logistic Regression (LR) 84.2% 84.3% 81.9% 0.842
Decision Tree (DT) 73.8% 84.3% 73.8% 0.787
Naive Bayes (NB) 84.3% 83.3% 81.4% 0.838
Support Vector Machine (SVM) 86.8% 86.1% 84.5% 0.864
Gradient Boosting (GB) 84.2% 91.7% 85.3% 0.878
LR + DT 82.0% 84.5% 84.5% 0.832
LR + NB 84.5% 81.1% 80.6% 0.828
DT + SVM 85.3% 88.9% 86.0% 0.871
GB + NB 84.5% 88.9% 84.5% 0.868
GB + SVM 90.1% 93.1% 90.2% 0.916

TextCNN 96.4% 94.1% 95.4% 0.953

Fig. 10: FlowCog TextCNN Metrics of the Semantic
Correlation

Machine (SVM) and Gradient Boosting (GB) perform better
with 0.864 and 0.878, respectively, but are still not satis-
fying. Therefore, we evaluated combinations of different
algorithms in Rows 6–11 of Table 5. The combinations of
different algorithms obtained accuracy rates ranging from
80.6% to 90.2%. The combinations of Gradient Boosting and
SVM is what we used to correlate the semantics in the
BoWSiM. Among all the combinations that we evaluated,
the TextCNN achieves the best results (95.4% accuracy and
0.953 F1 score). Note that we also attempt the other deep-
learning neural networks such as TextRNN and TextCNN-
RNN joint network. The accuracies of those neural net-
works are around 95.5%, but the RNN and CNN-RNN
joint network are much slower than TextCNN when we are
training. In Figure 10, we present the performance metric of
our TextCNN. The model can fastly converged within 1000
epoches. Finally, we chose TextCNN as the algorithm of our
correlation module.

7 CASE STUDY

In this section, we perform a case study on various data
flows in different types of apps and discuss whether the
app provides enough semantics for the flow, i.e., classified
as positive or negative by FlowCog.
• Positive and negative flows in the same app. Due Date

Calculator, shown in Figure 11a, is an app that allows
a mother or mother-to-be to calculate her due date of
an incoming baby. This app contains two flows, both

13

(a) Due Date Calculator (b) Home of Ocarina (c) Digital Clock Disc (d) SMS Irrirate (e) Merry Christmas

Fig. 11: Screenshots of Different Apps in the Case Study

from the database to the Internet. One flow is sending
the user’s email address to the Internet, and the other is
sending URLs in another database to the Internet. FlowCog
classifies the former as positive as flow contexts like
“Send” and “Email Address” are available to the user, but
the latter is negative due to lack of flow contexts. In fact,
our manual inspection reveals that the database belongs
to a third party library called Urban Airship, which aims
to deliver third-party ads. The app user has no knowledge
of such an information leak. Note that existing app-level
semantics correlation tools will not differentiate such two
flows because they will ask for the same permissions.

• A positive flow but not mentioned in the app descrip-
tion. Home of Ocarina, shown in Figure 11b, is an official
app of a company. This app contains a flow that leaks out
users’ geo-location. Interestingly, the app description only
introduces some background information of the company,
i.e., nothing related to geo-location. This flow is positive
because the app allows a user to navigate to the Ocarina
headquarter when she clicks the “Map” button in the
app. FlowCog can successfully extract flow contexts, such
as “location of Home of Ocarina” and a Google map
fragment, thus classifying the flow as positive. Note that
this example is a good illustration of why we need flow
contexts in addition to app descriptions.

• A negative flow in a benign app. Digital Clock Disc
Widget (pl.thalion.mobile.holo.digitalclock) in Figure 11c
is a benign app with a negative flow.
Specifically, the app leaks out users’ geo-location as well
as the device ID to the Internet in an onCreate lifecycle
callback. The app’s description only shows how to add
this clock widget to users’ home screen, and the GUI of
the app is about the clock only. Although the app sends
out users’ geo-location and device ID, no flow contexts
are provided in the app.
FlowCog marks this flow as negative because FlowCog only
extracts “Set Alarm”, “Text clock on Widget”, “Change
Color Theme”, “–:–”, “ON”, “OFF” and “Designed by
Thalion” from the app for the flow. None of the afore-
mentioned texts are related to geo-location or device ID,
and thus FlowCog cannot correlate the flow with the texts.

• A positive flow in a malicious app. SMS Irritate,
shown in Figure 11d, is a malicious app from the Drebin
dataset [34], [35] with a positive flow leaking out user-

specified information via a short message. This app aims
to send a large amount of user-specified messages to
a designated phone number repeated and “irritate” the
recipient. Although this is a malicious app, the flow is
positive because the app’s user will understand that the
app is used to send out messages. FlowCog will also
mark the specific flow as positive because FlowCog can
successfully extract all the aforementioned texts, such as
“Send to” and “Number of SMS to flood”.

• A negative flow in a malicious app. Merry Christmas
is another malicious app from the Drebin dataset, which
sends out users’ information without their knowledge.
Specifically, this app is a trojan that pretends to be a
gaming app but hijacks the user’s phone and leaks out
confidential data when the user is playing the game.
Figure 11e shows the interface of the trojan app. This mali-
cious app has many information flows, including sending
users’ phone number, contacts, sim serial number, and
device ID to the Internet. FlowCog mark all the informa-
tion flows in this app as negative because no semantics
are provided to justify these flows. Specifically, FlowCog
successfully finds that all these flows are triggered by an
onCreate() callback of the activity in the app and then
extract semantics, which only includes gaming tips, such
as “Move the box to the target empty position ...”, and app
control information, such as “Are you sure you would like
to exit?”.

8 LIMITATIONS

In this section, we discuss the limitation in both dependency
analysis and semantic correlation stages.
Dependency Analysis Stage. First we discuss the inter-
component analysis performed in FlowCog. The static anal-
ysis of FlowCog relies on the FlowDroid [9]. Since currently
FlowDroid has integrated the IC3, the FlowDroid is capable
for the ICC analysis, which has the same ability of IC3 [19].
However, the inter-component analysis of IC3 is still limited
by the ability of ICC method analysis [36], which is unable
to resolve the undocumented ICC cases.

Second, we discuss the value analysis performed in
FlowCog. We are aware that value analysis is a tradition-
ally hard problem and cannot be solved solely by static
analysis. FlowCog can resolve most, i.e., 95%, values for
view IDs and strings because these values are mostly static

14

and pre-defined in Android apps. Even if they are defined
dynamically in a rare case, FlowCog also relies on an optional
dynamic analysis component to resolve the values.

Third, we discuss how clickjacking attacks, or in general
UI redress attacks, influence our results. Simply put, these
attacks are out of the scope of the paper—all the information
flows have already been given permissions in Android apps,
and thus the apps do not need a UI redress attack to fool the
user to click something. More importantly, because FlowCog
only identifies views that are related to a specific flow, other
invisible views above or below are skipped by FlowCog and
not considered in the semantics extraction stage.

Then, FlowCog requires to be able to detect any potential
information leakage. Compared to the dynamic, static taint
flow analysis provide a more comprehensive analysis of
Android applications. However, FlowCog does not address
the inherent shortcomings from static methodology, such as
extracting runtime content. Thus, FlowCog does not reject
optional dynamic analysis to detect information flows.

Lastly, we talk about native code or JavaScript code
in Android apps. FlowDroid does not support such non-
Java code, and thus FlowCog cannot deal with information
flows related to native code or WebView-based JavaScript
code either. We believe that FlowCog can be integrated with
any future work that considers non-Java code because the
semantics of Android apps are mostly provided in Java
code.
Semantic Correlation Stage. To our knowledge, we also
know other the state-of-the-art works in NLP, such as
BERT [37], GPT-3 [38] reporting improvement in natural
language semantic understanding. Theoretically, all those
works can potentially help to improve the classification
results. However, we do not have enough effort to try each
of them. Thus we only selected simple models that can
already reach the high accuracy.

9 RELATED WORK

We discuss related works that apply either programming
analysis or natural language processing on Android apps.

First, many works aim to detect information flows of
Android apps [9], [10], [12]–[14], [19], [19], [36], [39]–[49].
FlowDroid [9] is a static precise taint analysis systems
based on the Soot framework. It is context-, flow-, field-
and object-sensitive while still very efficient: FlowDroid
transforms taint analysis’s information flow problem into
an IFDS problem, and then uses an efficient IFDS solver
to find the solution. Recently, the FlowDroid has sup-
ported the inter-component analysis based on IC3 [19].
Static analysis systems Amandroid [10], DroidSafe [12], Ic-
cTA [11], and RAICC [36] are proposed to provide Android
inter-component taint analysis to address this limitation.
In addition to static analysis, dynamic analysis systems
are also proposed to detect Android information flows.
TaintDroid [14] conducts the taint analysis dynamically by
proposing a customized Android framework. Uranine [45],
on the other hand, detects information leakage by instru-
menting the app without modifying the operating system.
EdgeMiner [50] is an approach that detects implicit control
flow transitions in the Android framework but does not

analyze Android apps directly. Cadage [46] is a context-
aware approach for GUI testing of Android application. It
leverages probabilistic algorithm to select testing event to
solve the non-determinism problem. Reardon et al. [48]
summarize evidence of side and convert channels by ana-
lyzing unauthorized sensitive data sent to network through
their dynamic analysis system. None of these works attempt
to infer whether an Android app provides sufficient se-
mantics for user to authorize information flows. That said,
FlowCog can work with any such systems to determine
whether enough semantics is provided.

Second, the Android app’s execution context is an im-
portant indicator to analyze the app’s behaviors. Several
works are proposed to detect malicious Android apps
based on execution contexts. SemaDroid [51] detects sensor
contexts and reinforces sensor management policy-wise.
6thSense [52] performs observation for a specific set of
sensorsáctivation activity-wise or task-wise. AppContex [53]
finds the contexts related to a set of suspicious actions and
then classifies the app as benign or malicious according
to these actions as well as their corresponding behaviors.
Similarly, TriggerScope [54] identifies narrow conditional
statements, called triggers, and infers possible suspicious
actions based on these triggers. DroidSift [55] classifies An-
droid malware using weighted contextual API dependency
graphs. PIKADROID [49] identifies the malware based on
contextual information from entrypoints and sensitive API.
As a comparison, FlowCog goes beyond the app’s execution
contexts, i.e., activation events and guarding conditions, to
find Android views and extract semantics related to these
views.

Third, NLP techniques are also used in Android privacy.
WHYPER [6] is the first work that aims to bridge the
gap between semantics and behaviors of Android apps
by using NLP techniques. Specifically, it extracts semantics
from the app’s descriptions and API documents, and then
determines whether the descriptions justify the usage of
certain permissions. Another research work, AutoCog [7],
tried to solve a similar problem with NLP on descriptions
but used a learning-based approach using the Android
app’s descriptions but not API documents. CHABADA [5]
also extracts semantics from an app’s descriptions, and then
determines whether the app’s API usages are consistent
with the extracted semantics. Zimmeck et al. [8] propose
another NLP system that extracts the semantics from the
app’s privacy requirements and predicts whether an app
is compliant with its privacy requirement. Apart from An-
droid, NLP techniques have also been used in IoT devices to
study privacy correlations [56]. AsDroid [57] correlates the
stealthy behaviors of Android apps, such as a malware, with
the app’s descriptions. DescribeMe [58] generates security-
centric descriptions for Android Apps. As a comparison,
FlowCog is the first system that analyzes the correlation
between information flows and the semantics—FlowCog
faces additional challenges such as extracting flow-specific
semantics.

10 CONCLUSION

Prior works correlating app behaviors and semantics are
coarse-grained, i.e., on the app-level, which cannot provide

15

insights for fine-grained information flow. Specifically, prior
works cannot differentiate two flows, one with sufficient
semantics provided in the GUI, i.e., available to the app
users, and the other hiding secretly in the background.

In this paper, we propose an automatic, flow-level se-
mantics extraction and inference system, called FlowCog.
Given an information flow, FlowCog can extract all the
related semantics, such as texts and images, in the app via
a mostly static approach with an optional dynamic com-
ponent. Then, FlowCog adopts natural language processing
(NLP) techniques to infer whether the app provide sufficient
semantics for users to understand the privacy risks, i.e., the
information flow. We implement an open-source version of
FlowCog available at https://github.com/xcdu/FlowCog.
Our evaluation results show that FlowCog can achieve a
accuracy of 95.4% and an F1 score of 0.953.

REFERENCES

[1] J. Y. Tsai, S. Egelman, L. Cranor, and A. Acquisti, “The effect of
online privacy information on purchasing behavior: An experi-
mental study,” Information systems research, vol. 22, no. 2, pp. 254–
268, 2011.

[2] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey
of mobile malware in the wild,” in Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices.
ACM, 2011, pp. 3–14.

[3] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. Wagner,
N. Good, and J.-W. Chen, “Turtle guard: Helping android users
apply contextual privacy preferences,” in Thirteenth Symposium on
Usable Privacy and Security (SOUPS 2017), 2017, pp. 145–162.

[4] I. Reyes, P. Wijesekera, J. Reardon, A. Elazari Bar On, A. Razagh-
panah, N. Vallina-Rodriguez, S. Egelman et al., ““won’t somebody
think of the children?” examining coppa compliance at scale,” in
The 18th Privacy Enhancing Technologies Symposium (PETS 2018),
2018.

[5] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
1025–1035.

[6] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper:
Towards automating risk assessment of mobile applications.” in
USENIX security, vol. 13, no. 20, 2013.

[7] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Au-
tocog: Measuring the description-to-permission fidelity in android
applications,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 1354–1365.

[8] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub,
S. Wilson, N. Sadeh, S. Bellovin, and J. Reidenberg, “Automated
analysis of privacy requirements for mobile apps,” in 2016 AAAI
Fall Symposium Series, 2016.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” in Acm Sigplan Notices, vol. 49, no. 6. ACM,
2014, pp. 259–269.

[10] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general
inter-component data flow analysis framework for security vet-
ting of android apps,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014,
pp. 1329–1341.

[11] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detect-
ing inter-component privacy leaks in android apps,” in Proceedings
of the 37th International Conference on Software Engineering-Volume 1.
IEEE Press, 2015, pp. 280–291.

[12] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of android applications
in droidsafe.” in NDSS, vol. 15, no. 201, 2015, p. 110.

[13] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android
taint flow analysis for app sets,” in Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in Java
Program Analysis. ACM, 2014, pp. 1–6.

[14] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones,” ACM Transactions on Computer Systems (TOCS), vol. 32,
no. 2, p. 5, 2014.

[15] X. Pan, Y. Cao, X. Du, B. He, G. Fang, R. Shao, and Y. Chen,
“Flowcog: context-aware semantics extraction and analysis of in-
formation flow leaks in android apps,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 1669–1685.

[16] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[17] R. Mithe, S. Indalkar, and N. Divekar, “Optical character recog-
nition,” International journal of recent technology and engineering
(IJRTE), vol. 2, no. 1, pp. 72–75, 2013.

[18] Google Inc., “Intent | android developers,” 2021, [Online;
accessed 29-Nov-2021]. [Online]. Available: https://developer.an
droid.com/reference/android/content/Intent

[19] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel,
“Composite constant propagation: Application to android inter-
component communication analysis,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1. IEEE,
2015, pp. 77–88.

[20] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic
security analysis of smartphone applications,” in Proceedings of the
third ACM conference on Data and application security and privacy
(CODASPY). ACM, 2013, pp. 209–220.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[22] S. Reese, G. Boleda, M. Cuadros, L. Padró, and G. Rigau, “Wi-
kicorpus: A word-sense disambiguated multilingual wikipedia
corpus,” in Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), 2010.

[23] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode
for analyses and transformations,” 1998.

[24] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot frame-
work for java program analysis: a retrospective,” in Cetus Users
and Compiler Infastructure Workshop (CETUS 2011), vol. 15, 2011,
p. 35.

[25] Beautiful soup documentation. https://www.crummy.com/sof
tware/BeautifulSoup/bs4/doc/.

[26] Python interface to stanford core nlp tools. https://github.com/d
asmith/stanford-corenlp-python.

[27] Mtranslate: A simple api for google translate. https://github.com
/mouuff/mtranslate.

[28] Gensim: topic modeling for human. https://radimrehurek.com
/gensim/index.html.

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), 2016, pp.
265–283.

[30] Scikit-learn: Machine learning in python. http://scikit-learn.org
/stable/.

[31] A tool for reverse engineering android apk files. https://ibotpeac
hes.github.io/Apktool/.

[32] Python-tesseract: a python wrapper for google’s tesseract-ocr. ht
tps://pypi.python.org/pypi/pytesseract.

[33] fgwei, “Icc-bench,” 2021, [Online; accessed 29-Nov-2021]. [Online].
Available: https://github.com/fgwei/ICC-Bench

[34] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection of
android malware in your pocket.” in NDSS, 2014.

[35] S. Michael, E. Florian, C. F. Felix, and J. Hoffmann, “Mobilesand-
box: looking deeper into android applications,” in Proceedings of
the 28th International ACM Symposium on Applied Computing (SAC).

[36] J. Samhi, A. Bartel, T. F. Bissyandé, and J. Klein, “Raicc: Revealing
atypical inter-component communication in android apps,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE). IEEE, 2021, pp. 1398–1409.

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[38] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,

16

A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” 2020.

[39] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of
the 9th international conference on Mobile systems, applications, and
services, 2011, pp. 239–252.

[40] D. Octeau, S. Jha, and P. McDaniel, “Retargeting android applica-
tions to java bytecode,” in Proceedings of the ACM SIGSOFT 20th
international symposium on the foundations of software engineering,
2012, pp. 1–11.

[41] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective inter-component communication mapping
in android: An essential step towards holistic security analysis,” in
22nd {USENIX} Security Symposium ({USENIX} Security 13), 2013,
pp. 543–558.

[42] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “Scandal: Static
analyzer for detecting privacy leaks in android applications,”
MoST, vol. 12, no. 110, p. 1, 2012.

[43] M. Zhang and H. Yin, “Efficient, context-aware privacy leakage
confinement for android applications without firmware mod-
ding,” in Proceedings of the 9th ACM symposium on Information,
computer and communications security, 2014, pp. 259–270.

[44] A. Merlo and G. C. Georgiu, “Riskindroid: Machine learning-
based risk analysis on android,” in Ifip international conference on ict
systems security and privacy protection. Springer, 2017, pp. 538–552.

[45] V. Rastogi, Z. Qu, J. McClurg, Y. Cao, and Y. Chen, “Uranine: Real-
time privacy leakage monitoring without system modification
for android,” in International Conference on Security and Privacy in
Communication Systems. Springer, 2015, pp. 256–276.

[46] H. Zhu, X. Ye, X. Zhang, and K. Shen, “A context-aware approach
for dynamic gui testing of android applications,” in 2015 IEEE 39th
Annual Computer Software and Applications Conference, vol. 2. IEEE,
2015, pp. 248–253.

[47] J. Schütte, R. Fedler, and D. Titze, “Condroid: Targeted dynamic
analysis of android applications,” in 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications.
IEEE, 2015, pp. 571–578.

[48] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-
Rodriguez, and S. Egelman, “50 ways to leak your data: An
exploration of apps’ circumvention of the android permissions
system,” in 28th USENIX security symposium (USENIX security 19),
2019, pp. 603–620.

[49] J. Allen, M. Landen, S. Chaba, Y. Ji, S. P. H. Chung, and
W. Lee, “Improving accuracy of android malware detection with
lightweight contextual awareness,” in Proceedings of the 34th An-
nual Computer Security Applications Conference, 2018, pp. 210–221.

[50] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control
flow transitions through the android framework,” in 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015, 2015.

[51] Z. Xu and S. Zhu, “Semadroid: A privacy-aware sensor manage-
ment framework for smartphones,” in Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, 2015, pp.
61–72.

[52] A. K. Sikder, H. Aksu, and A. S. Uluagac, “{6thSense}: A context-
aware sensor-based attack detector for smart devices,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp. 397–
414.

[53] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors
using context,” in 37th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2015, 2015.

[54] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna, “TriggerScope: Towards Detecting Logic Bombs in
Android Apps,” in Proceedings of the IEEE Symposium on Security
and Privacy (S&P), San Jose, CA, May 2016.

[55] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware an-
droid malware classification using weighted contextual api depen-
dency graphs,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 1105–1116.

[56] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and
P. Tague, “Smartauth: User-centered authorization for the internet

of things,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, 2017, pp. 361–378.

[57] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid:
Detecting stealthy behaviors in android applications by user in-
terface and program behavior contradiction,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 1036–1046.

[58] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic
generation of security-centric descriptions for android apps,” in
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. New York, NY, USA: ACM,
2015, pp. 518–529.

17

Xuechao Du received his B.Eng. on computer
science from Xian Jiaotong University, Xian,
China, in 2016. He is currently a Ph.D. candidate
in the college of Computer Science, Zhejiang
University, China. His research interests include
mobile security, Internet of Things security and
software security based on program analysis.

Xiang Pan is a software engineer at Google.
He earned his Ph.D. in computer science from
Northwestern University. His research interests
lie in cybersecurity with the special focus on:
Web privacy/security, Android app privacy/secu-
rity.

Dr. Yinzhi Cao is an assistant professor at
Johns Hopkins University. He earned his Ph.D.
in Computer Science at Northwestern University
and worked at Columbia University as a post-
doc. Before that, he obtained his B.E. degree in
Electronics Engineering at Tsinghua University
in China. His research mainly focuses on the
security and privacy of the Web, smartphones,
and machine learning.

Boyuan He is a postdoctoral research asso-
ciate at Department of Electrical Engineering
and Computer Science, Northwestern Univer-
sity. He earned his a Ph.D. in computer science
from Zhejiang University. His research interests
lie in cybersecurity with the special focus on:
logic vulnerability detection, Android app secu-
rity, blockchain security, IoT device security, mal-
ware detection and forensic analysis.

Yan Chen received his Ph.D. in Computer Sci-
ence from University of California at Berkeley in
2003 and after that he joined Northwestern Uni-
versity USA where he became a Full Professor in
2014. His research interests are in security and
measurement for networking systems. Based on
Google Scholar, his papers have been cited over
14,000 times, and the h-index of his publications
is 56. He is a Fellow of IEEE.

Gan Fang is a Sr. Staff Research Engineer at
Palo Alto Networks Inc. He earned his M.S.
in computer science from Northwestern Univer-
sity in 2017. He mainly works in areas includ-
ing network traffic analysis & identification, pay-
load inspection, protocol evasion prevention and
SCADA protocols.

DaiGang Xu is a chief engineer and chief sci-
entist of microservice platform of ZTE Corpo-
ration. He earned a master’s degree in com-
puter science from Sichuan University. His re-
search interests lie in telecom software archi-
tecture with the special focus on: cloud native
technology, microservice system, service mesh,
telecom network cloudizatino and servitization,
SDN/NFV/5G intelligent operation technology.

18

APPENDIX

1 class LoginActivity extends Activity {
2 void onCreate (Bundle state) {
3 // Source
4 String s = getLine1Number();
5 View et_username = findViewById(...);
6 Button bt_regist_submit = (Button)

findViewById(...);
7 View et_regist_phone = findViewById(...);
8 et_regist_phone.setText(s);
9 et_username.addTextChangeListener(new

RegistrationTextChangedWatcher() {
10 void afterTextChanged() {
11 // Guarding condition
12 if(et_username.getText().length() == 0)
13 bt_regist_submit.setEnable(false);
14 else
15 bt_regist_submit.setEnable(true);
16 }});
17 bt_regist_submit.setOnClickListener(new

OnClickListener() {
18 // Activation Event
19 void onClick(View v) {
20 String phoneNumber = et_regist_phone.

getText();
21 Intent i = new Intent(LoginActivity.this,

RegActivity.class);
22 i.putExtra("phone_number", phoneNumber);
23 LoginActivity.this.startActivity(i);
24 }});}}
25 class RegActivity extends Activity {
26 void onStart() {
27 Intent i = getIntent();
28 String phoneNumber = i.getBoolExtra("

phone_number");
29 // Sink is HttpClient.execute() in postData
30 S3ServerApi.postData(phoneNumber);
31 } }

Listing 1: Inter-Component Communication Example’s
Source Modified from S3 World Phone App.

