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Abstract—Name-based route lookup is a key function for
Named Data Networking (NDN). The NDN names are hierar-
chical and have variable and unbounded lengths, which are
much longer than IPv4/6 address, making fast name lookup a
challenging issue. In this paper, we propose an effective Name
Component Encoding (NCE) solution with the following two
techniques: (1) A code allocation mechanism is developed to
achieve memory-efficient encoding for name components; (2) We
apply an improved State Transition Arrays to accelerate the
longest name prefix matching and design a fast and incremental
update mechanism which satisfies the special requirements of
NDN forwarding process, namely to insert, modify, and delete
name prefixes frequently. Furthermore, we analyze the memory
consumption and time complexity of NCE. Experimental results
on a name set containing 3,000,000 names demonstrate that
compared with the character trie NCE reduces overall 30%
memory. Besides, NCE performs a few millions lookups per
second (on an Intel 2.8 GHz CPU), a speedup of over 7 times
compared with the character trie. Our evaluation results also
show that NCE can scale to accommodate the potential future
growth of the name set size.

Index Terms—Named Data Networking; Name Prefix Longest
Matching; Name Component Encoding;

I. INTRODUCTION

Named Data Networking (NDN) [1] is proposed recently as
a clean-slate network architecture for future Internet, which no
longer concentrates on “where” the information is located, but
“what” the information (content) is needed. NDN uses names
to identify every piece of contents instead of IP addresses for
hardware devices attached to IP network.

NDN forwards packets by names, which implies a substan-
tial re-engineering of forwarding and its lookup mechanism.
We highlight the challenges as follows:

1) Bounded processing time and high throughput. ND-
N names, unlike fixed-length IP addresses, may have
variable lengths without an externally imposed upper
bound. This makes line-speed name lookup extremely
challenging as arbitrarily long name will cost a lookup
time linear to its length, rather than a fixed time using
traditional tree-based or hash-based method.

2) Longest name prefix matching. NDN names, unlike
today’s classless IP addresses, have hierarchical structure
and coarser granularity, consisting of a series of delim-
ited components. NDN’s longest prefix matching differs
from that of IP in the way that NDN must match a prefix

at the end of a component, rather than at any digit in IP.
Therefore, traditional prefix matching algorithms will be
far less efficient in NDN name lookup.

3) High update rate. NDN name lookup is accompanied
with more frequent updates than Forwarding Informa-
tion Base (FIB) in today’s router, for the reason that,
besides routing refreshing, NDN name table update is
also conducted dynamically no matter when a new
content is inserted or an old content is replaced. As
this information is designed to be stored together with
forwarding information in NDN router, the name lookup
must support fast insertion and deletion with reasonably
low overhead.

Traditionally, character trie is used to represent name prefix-
es. The character trie-based longest prefix matching algorithms
often have O(nm) time complexity in the average case (n
means the number of decomposed name components and m
represents the number of children per node), which cannot sat-
isfy the need of high speed lookup. Besides, the tree structured
implementation is memory-inefficient. An alternative solution
is hashing the name as a whole to an identifier for memory
compression. However, this method cannot be applied to the
longest prefix matching since it takes the whole name as a key.
An improved hash-based approach decomposes the name to
components and encodes each component to an identifier using
hash functions directly. This method is memory-efficient and
suitable for the longest prefix matching. Nevertheless, false
positive caused by hash collision leads to potential lookup
failure. In other words, some name prefixes will be hijacked by
others which have the same identifier sequence. False positive
will destroy the accuracy of routing and the integrity of the
router function, so hash-based methods cannot be well adopted
to name lookup in NDN.

Thus, in this paper, we propose a Name Component En-
coding approach, which effectively reduces the memory cost
and accelerates name lookup in NDN. Especially, we make
the following contributions:

1) We propose an effective name component encoding
mechanism to cut down the number of component codes
and each component’s code length without loss of the
correctness of longest name prefix matching. Mean-
while, the component encoding mechanism separates



the encoding process with the longest prefix matching,
makes it possible to use parallel processing technique
to accelerate name lookup. In addition, this approach
limits the name lookup time to the upper bound of
the maximum time between the component encoding
process and the longest encoded name prefix matching.

2) We develop the State Transition Arrays (STA) to im-
plement the Component Character Trie and Encoded
Name Prefix Trie. State Transition Arrays could reduce
the memory cost while guaranteeing high lookup speed.
Besides, we propose algorithms based on STA to support
fast incremental construct, update, remove and modify.
Further, both the memory cost and time complexity are
analyzed theoretically.

3) Experiments on three datasets are carried out to vali-
date the correctness of the proposed Name Component
Encoding solution. We test Name Component Encoding
in terms of memory compression, average lookup time,
speedup as well as average packet delay and compare
it with the traditional character trie method. The experi-
mental results on 3,000,000 names set demonstrate that
NCE could achieve memory compression ratio greater
than 30%, and it can perform 1.3 million lookups per
second on an Intel 2.8 GHz CPU which can process 2.1
million IP lookups per second. Besides, NCE can handle
more than 20,000 updates per second in the worst case.
Furthermore, average length of a name is shortened from
166 bits to 43 bits. The results also show that NCE could
not only be used for small name sets, but also serve
larger name sets.

The rest of this paper is organized as follows. The back-
ground of packet forwarding process in NDN is introduced in
Section II. Section III describes longest name prefix lookup
problems caused by NDN names. To solve the problem,
Section IV proposes the Name Component Encoding solution.
In Section V, we analyze the memory cost and time complexity
theoretically. Section VI evaluates NCE in terms of memory
compression, lookup time, speedup and average packet delay
on three different datasets. Section VII is the related work and
we conclude this paper in Section VIII.

II. PACKET FORWARDING IN NDN

A. NDN Background

NDN, formerly known as CCN [2], is a novel network
architecture proposed by [1] recently. Different from current
network practice, it concentrates on the content itself (“what”),
rather than “where” information is located. Despite of its
novelty, NDN operations can be grounded in current practice,
routing and forwarding of NDN network are semantically the
same as that of IP network. What differs is that, every piece
of content in NDN network is assigned a name, and NDN
routes and forwards packets by these names, rather than IP
addresses.

Names used in a NDN network are dependent on appli-
cations and are opaque to the network. An NDN name is
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Fig. 1. Packet Forwarding Process in an NDN Router

hierarchically structured and composed of explicitly delimited
components, while the delimiters, usually slash (‘/’) or dot
(‘.’), are not part of the name. For example, a map service
provided by Google has the name /com/google/maps, and com,
google and maps are three components of the name. The
hierarchical structure, like that of IP address, enables name
aggregation and allows fast name lookup by longest prefix
match, and aggregation in turn is essential to the scalability
of routing and forwarding systems. Applications can use this
hierarchical structure to represent the relationships between
data, and evolve the naming scheme to best fit their demands
independently from the network. In this paper, we utilize the
hierarchically reversed domain names as NDN names.

B. Packet Forwarding in NDN

Communications in NDN are driven by the data requesters,
i.e., the data consumers. A data requester sends out an Interest
packet with the desired content name, routers forward the
Interest packet by looking up its name in the Forwarding
Information Base (FIB), when the Interest packet reaches a
node that has the required data, a Data packet is sent back to
the requester. Fig. 1 illustrates the Interest and Data packets
forwarding process in an NDN router in a high-level. Next we
briefly describe the forwarding process and introduce a few
basic concepts.

Once the Interest reaches a router, the router first searches
the request name in the Content Store (CS), which caches the
data that has been forwarded by this router. If the desired Data
exists in the CS, the router directly returns the requested Data.
Otherwise, the name is checked against the Pending Interest
Table (PIT), where each entry contains the name of the Interest
and a set of interfaces from which the matching Interests
have been received. If the Interest name matches a PIT entry,
it means one Interest for this data has been forwarded to
upstream while the response Data does not arrive. After the
failure of CS and PIT lookup, the Interest is forwarded by
looking up its name in the FIB, and a new PIT entry is assigned
the request name and interface.

When the Data packet arrives, the router finds the matching
entry in the PIT firstly, and forwards the Data packet to all
the interfaces listed in the matching PIT entry or drops the
Data. Then the router removes the corresponding PIT entry,
and caches the Data in the CS.



III. NAME PREFIX TRIE FOR NAME LOOKUP

Intuitively, three tables need three separate indexes, however
we can integrate the indexes of PIT, CS and FIB to a single
one and only one name lookup operation is actually per-
formed when a packet comes, thus improving the forwarding
efficiency. NDN names are composed of explicitly delimited
components. Hence they can be represented by Name Prefix
Trie (NPT). Therefore, we make use of the NPT to organize
the integrated index. NPT is shown in Fig. 2, each edge of
which stands for a name component, and a more illustrative
example is shown in 3. The Name Prefix Trie is of component
granularity, rather than character or bit granularity, since the
longest name prefix lookup of NDN names can only match
a complete component at once, i.e., no match happens in the
middle of a component. It should be pointed out that the Name
Prefix Trie is not necessarily a binary tree, which differs from
that of the IP address prefix tree. Each edge of the NPT stands
for a name component and each node stands for a lookup state.
Name prefix lookups always begin at the root.

When an Interest Packet arrives, the longest prefix lookup
for the NDN name of this packet starts, it firstly checks
if NDN name’s first component matches one of the edges
originated from the root node, i.e., the level-1 edge. If so,
the transfer condition holds and then the lookup state trans-
fers from the root node to the pointed level-2 node. The
subsequent lookup process proceeds iteratively. When the
transfer condition fails to hold or the lookup state reaches
one of the leaf nodes, the lookup process terminates and
outputs the index that the last state corresponds to. For
example, in Fig. 2, the longest prefix lookup for NDN name
/com/parc/videos/USA/2011/B.mpg starts from the root node.
The first component com matches a level-1 edge of the NPT
and the lookup state transfers from root to the corresponding
child node. The second component parc matches a level-2 edge
and it returns an index which points to one specific entry in
FIB. When 6th component B.mpg does not match any level-6
edge, a new node needs to be inserted to the NPT, meanwhile
a corresponding entry is added to PIT. However, if the request
name is /com/parc/videos/USA/2011/A.mpg, this name could
be completely matched in NPT and the corresponding CS entry
index would be found. When a Data Packet arrives, it will
perform the longest prefix lookup for the given NDN name as
stated above, too. Meanwhile it will modify NPT while both
PIT and CS must be updated.

NPT can be constructed as Name Character Trie (NCT)
which needs a large amount of memory to store the states and
transitions. And one longest prefix matching needs O(mn) in
the average case, m is the average number of children per
node and n is the average length of names.

B. Michel et al. [3] and Z. Zhou et al. [4] apply hash
function to compress URL components, which has good
compression performance. But false positive arises from the
hash collision, which causes the confusion of distinguishing
the real prefix with the false prefix. For example, suppose
/com/parc and /edu/cmu are both hashed to the same identifier
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5612, and /com/parc is added to the hash table earlier than
/edu/cmu. When the lookup algorithm takes /edu/cmu as input,
it will return a pointer to /com/parc, and /edu/cmu will never be
found. The false positive will destroy the exactness of routing
and integrity of the router function, so hash based methods
are not suitable for name prefix lookup in NDN.

Based on the observation that an NDN name set has
limited number of components, there is an opportunity to use
encoding based method to compress the memory and improve
the lookup performance. Applying encoding based method to
NPT, we should solve the following problems.

1) High-speed longest name prefix matching. Accelerating
the name lookup in NDN is the major objective of name
component encoding mechanism.

2) Fast component code lookup. When a packet arrives, the
corresponding codes of the name’s components must be
looked up before starting the longest prefix matching.
The router’s throughput and packets’ delay are affected
by the speed of component code lookup process.

3) Low memory cost. An effective encoding based method
should reduce the total memory cost, which includes
two basic parts, the memory used to store names’ codes
lookup table and the storage used to implement NPT.

4) Good update performance. As we have described above,
NPT is updated frequently. Poor update performance
will become the bottleneck of the longest name prefix
matching.

IV. NAME COMPONENT ENCODING (NCE)

In this section, we propose the Name Component Encoding
(NCE) solution to solve the problems stated above. In NCE,
a memory efficient Code Allocation Mechanism is designed
to shorten the bytes which represent a code by reducing the
total number of codes. Then we ameliorate the State Transition
Arrays (STA) techniques for trie structure to compress memory
size and accelerate longest prefix lookup. At last, we present
the algorithms of managing the STA to satisfy the frequent
name update in NDN.

In order to describe the Code Allocation Mechanism clearly,
three definitions are given first.

Definition 1: A component (edge) Ci belongs to a state
(node) Sj when Ci leaves Sj to another state in a trie.
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Definition 2: Original Collision Set is a set of components,
and all the components belong to a given state Sj . Each
component in the set should be encoded with different codes
to avoid collision.

Definition 3: Merged Collision Set is a component set. Let
CSi, CSj be an Original Collision Set or a Merged Collision
Set. CSm = CSi

⊕
CSj means CSi, CSj are merged to

CSm by re-encoding the collision components.
In the rest part of this section, we introduce the four major

parts of NCE: 1) allocate a code to each name component and
transfer NPT to ENPT; 2) construct STA to represent ENPT;
3) map a single name component to its corresponding code;
4) manage STA to support incremental insertion, removal and
modification of name prefixes.

A. Code Allocation Mechanism

As mentioned in Section III, names are represented by NPT.
For example, as shown in Fig. 3, the given 9 names can be
organized as an NPT with 14 nodes. Different components
(edges) leaving a given node should be encoded differently
and these components comprise an Original Collision Set
according to Definition 2. In Fig. 3, yahoo and google which
both belong to node 2 can be encoded as <yahoo,1>1 and
<google,2> respectively. The component set {yahoo,google}
is an Original Collision Set of state 2.

If the component codes are produced at the granularity of
Original Collision Set, that is, different Original Collision Sets
are encoded independently, the produced code depends on both
the component itself and its corresponding node. For example,
the level-2 components starting from node 2 and node 9
are {yahoo, google} and {google, sina, baidu}, respectively.
Suppose they are encoded as {<yahoo, 1>, <google, 2>}
and {<baidu, 1>, <sina, 2>, <google, 3>}. We can find
that the same component google is encoded differently in the
two Original Collision Set (google is encoded as 2 in the first
Original Collision Set and 3 in the second Original Collision
Set). So given a component without node information, we
cannot predict the corresponding code. Thus we need alterative
solutions.

One straightforward method is to assign unique codes to all
the components in NPT, which constitute a Merged Collision
Set. However, there will be a large amount of codes and its
code is of great length.

1yahoo is encoded as 1.

Based on the fact that components of domains are sepa-
rated by special delimiters, we can get which level a given
component belongs to. The component code lookup process
could be carried out at each level. The Original Collision Sets
at the same level are merged to a Merged Collision Set. If a
specific component is assigned different codes in at least two
Original Collision Sets, we re-assign the component’s code
as the maximal code number of these Original Collision Sets
plus 1 (i.e., if the maximal code number of the two Original
Collision Sets is N , the component will be encoded as N+1).
Fig. 3 illustrates the procedure of merging Original Collision
Sets to larger Merged Collision Set.

Please note that different components in a Merged Collision
Set may have the same code. For example, in Fig. 3, baidu
and yahoo are both encoded as 1 after the merging procedure.
This property will shorten the number of produced codes and
each code’s length. Besides, Theorem 1 proves that the Code
Allocation Mechanism keeps the correctness of name lookup.

Theorem 1: The Code Allocation Mechanism keeps the
correctness of the longest name prefix lookup.

Proof: Suppose two names A = Ca1..Cai..Cam and
B = Cb1..Cbi..Cbm′ are encoded to two code sequences
Ea1..Eai..Eam and Eb1..Ebi..Ebm′ . Two components Cai and
Cbi form the same level i (Cai ̸= Cbi) have the same code
Eai = Ebi. Let Sa1..Sai..Sam+1 and Sb1..Sbi..Sbm′+1 be
the lookup path of A and B. If and only if Sai = Sbi, the
same code Ei of Cai and Cbi causes collision. Because the
lookup path starts from the root of a trie, we can deduce that
Ej = Eaj = Ebj where j < i. Since there is only one Original
Collision Set in the first level, according to the definition of
Original Collision Set and Ea1 = Ea2, we can get Ca1 = Cb1

and S2 = Sa2 = Sb2. Ca2 and Cb2 are transited from the same
state S2 with the same label E2, so Ca2 and Cb2 belong to
the same Original Collision Set, i.e., Ca2 = Cb2. Recursive
derivation to the level-i, we can get that Cai and Cbi belong
to the same Original Collision Set. Since Eai = Ebi, we
get Cai = Cbi, which is in contradiction with the previous
assumption Cai ̸= Cbi.

We assign the produced codes to the corresponding com-
ponents (edges) in NPT and the new trie is called Encoded
Name Prefix Trie (ENPT). For example, the trie illustrated in
Fig. 4 is the corresponding ENPT of the NPT shown in Fig. 3.
In the next subsection, we will introduce the State Transition
Arrays mechanism for ENPT.
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B. State Transition Arrays for Encoded Name Prefix Trie
(ENPT-STA)

As shown in Fig. 4, State Transition Arrays are used to
implement ENPT. There are 3 types of arrays: Base Array,
Transition Array, and Manage Array. Transition Array includes
three arrays which have different entry size. For convenience,
suppose all the arrays discussed in this paper are indexed from
1 and we refer the i-th entry of array A as A:i.

The entry of Base Array is 4 bytes. Base:i represents state
i in ENPT. The first two bits of the Base entry mean in which
Transition Array the associated state’s information is stored.
00 means the information is stored in Transition1, 01 means
Transition2 and 10 means Transition4. The left bits represent
the offset value of the targeted array. Due to the fact that
components are encoded to variable-length codes, the entry
size of Transition1, Transition2 and Transtion4 is 5 bytes, 6
bytes and 8 bytes, respectively. A node’s transitions are stored
in three Transition Arrays according to the maximal code of
the transitions. When the maximal code is less than 28, all
transitions of the node can be stored in Transition1. If the
maximal code is equal or greater than 28 and less than 216,
the node’s transitions are store in Transition2. Otherwise, all
transitions of the node are store in Transition4. For example,
in Fig. 4, Base:7 is 0x80000001, that means the information
about state 7 of the ENPT is stored in Transition4 and
Transition4:1 records the information about state 7 since the
left bits of Base:7 equals to 1.

Transition Array has two types of entries (denoted as indi-
cator and transition). Indicator records the state’s transition
number k (represented by the first number of the entry) and
the entry pointer (represented by the second number). If the
state points no entry in FIB, PIT or CS, the pointer is assign to
0. The following k entries’ type is transition. The first number
of transition represents the component code produced by the
Code Allocation Mechanism and the second number represents
next state. The transitions are sorted according to the first
number to support binary search. For instance, Transition4:1
is an indicator. The first number of this entry means there is
1 transition leaving state 7. The second number of this entry
points to the 4th entry of FIB.

The entry in Manage Array indicates the free entries in
the Transition Arrays. The first two bits of a Manage entry
have the same meaning with Base Array. The odd-numbered

entry of Manage indicates the start position of a segment of
free entries, and the next even-numbered entry of Manage
indicates the end position of this segment. In Fig. 4, Manage:5
and Manager:6 mean that the entries from Transition1:8 to
Transition1:11 are free.

We take an example to illustrate how ENPT-STA works.
In Fig. 4, suppose the given name is /com/google with code
sequence /1/4. We will explain the lookup procedure step by
step.

1) Step 1, the lookup procedure starts from Base:1 which
corresponds to state 1 (root) of the ENPT.

2) Step 2, Base:1=0x00000001 means state 1 (root) infor-
mation is store in Transition1:1.

3) Step 3, Transition1:1 is an indicator. The first number
of this entry means there are two transitions from state 1
and the following 2 entries are transitions. After binary
searching in the follow two entries, code 1 is matched
with the first number in Transition1:2. Then it turns to
Base:2 since the second number of Transition1:2 is 2.

4) The lookup procedure proceeds iteratively. Finally code
sequence /1/4 is completely matched, and an entry index
which points to the 4th entry of FIB is returned.

C. State Transition Arrays for Component Character Trie
(CCT-STA)

A given name is firstly decomposed to several components.
Before the longest name prefix lookup, we need to look up
each component’s code first. The component entry includes the
corresponding code and a state list to which this component
belongs. The component set is constructed as a Component
Character Trie (CCT), which also can be implemented by STA.
The STA for CCT are similar to those of STA for ENPT. Fig. 5
shows an example of State Transition Arrays for CCT.

There are two types of arrays in STA. One is the Base Array
and the other is Transition Array. Transition Array includes
two types of entries : indicator and transition, which have the
same meaning with ENPT-STA. The component code lookup
process in CCT-STA is similar to the lookup in ENPT-STA.
For example, in Fig. 5, if cn is the input component, the lookup
starts from Base:1, i.e., root of the Component Character
Trie. The first number of Transition:1 is 1, this means only
1 transition leaving the root. The first number of Transition:2
matches character c and it turns to Base:2 since the second
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number is 2. It performs the above procedure and finally the
matching entry of cn is returned.

D. Management of the State Transition Arrays

The name insertion process is formally described in Al-
gorithm 1. Name represents the input name that will be
decomposed into k components, which are denoted as C1, C2,
· · ·, Ck. CCTi is the level-i CCT, and S represents the current
state in an ENPT-STA T . Given CCTi and the i-th component
Ci, lookup operation is performed to get Ci’s corresponding
code and the state list Lists to which Ci belongs. If the code
does exists and S ∈ Lists, it turns to the next state in ENPT-
STA. Otherwise, add Ci to CCTi and create a new state as
well as the corresponding transition to ENPT-STA.

The Decompose(name) function splits the input name
to components by recognizing the delimiters. The procedure
of looking up the component’s code is implemented by
LookupCode(CCTi, Ci), which returns a code Ei and a
state list Lists. It is probable that S has a component Cj

encoded to Ei when Ci ̸= Cj . So we must confirm whether
S ∈ Lists to guarantee the correctness. If S ∈ Lists, it
suggests Ci, Cj belong to the same state S, and we can get
Ci = Cj according to the definition of Original Collision
Set. The Addc(CCTi, S, Ci) function is used to insert a new
component Ci (belongs to S) to the level-i CCT, and the
AddS(T, S,Ei) function creates a new state (node) S′ to
ENPT-STA T which transfers from S with label Ei, and
returns S′ as current node S.

For example, in Fig. 4, /cn/google is inserted to the ENPT-
STA as a new name. It is decomposed to cn and google firstly.
Then we get the cn’s code E1 = 2 and a state list {1}. Because
the list {1} contains S = 1, we transfer to the next state S =
9 and look up next component google. The LookupCode()
function returns the code E2 = 2 and list {2}. However, S = 9
is not in list {2}, that we should add google to CCT2. At the
same time, we need to re-assign a code to google, since CCT2

already contains google’s code 2. Suppose the maximal code
in state 2 and state 3 are 2 and 3, respectively. Then we assign
E2 = 4 = 3 + 1 to google. At last, a new state A is created
and a transition from 9 to A with label E2 = 4 is inserted to
ENPT-STA.

We can build ENPT incrementally by inserting names one
by one as described in Algorithm 2. The delete process can be
implemented by setting the second number of corresponding
transition entry to 0. And the updated process could be

Algorithm 1 Insert a Name to ENPT-STA (INENPT)
1: procedure INENPT(name, T, CCT1, · · ·, CCTK)
2: S ← 1
3: (C1, C2, · · ·, Ck)← Decompose(name)
4: for i← 1 to k do ◃ k is the number of components
5: (Ei, Lists)← LookupCode(CCTi, Ci)
6: if Ei ̸= NULL and S ∈ Lists then
7: S ← Transition(T, S,Ei)
8: else
9: CCTi ← AddC(CCTi, S, Ci)

10: (T, S)← AddT (T, S,Ei)
11: end if
12: end for
13: end procedure

Algorithm 2 Bulidng ENPT-STA
1: procedure BENPT(name1, name2, · · ·, nameN )
2: (CCT1, CCT2, · · ·, CCTK)← NULL, T ← NULL
3: for i← 1 to N do ◃ N is the number of Names
4: INENPT (namei, T, CCT1, · · ·, CCTK)
5: end for
6: return T,CCT1, · · ·, CCTk

7: end procedure

implemented by modifying the Transition Array directly.

V. ANALYSIS

For convenience, we summarize the main notations used in
this section in TABLE I.

TABLE I
TABLE OF NOTATIONS

Nodes(A) calculates the number of nodes in A, which can be a trie or an array
Edges(A) calculates the number of edges in A, which can be a trie or an array

n the average length of a name
m the average number of children per node in ENPT
k the average number of components in a name
nc the average number of characters in a component
mc the average number of children per node in CCT
mt the average number of children per node in NCT
ms the average number of states which a component belongs to
P the number of parallel encoding modules
α the base memory size of a node
β the base memory size of an edge

A. Space Complexity Analysis

In a trie T , Nodes(T ) = Edges(T ) + 1. The memory size
of a trie can be calculated according to the following Equation,

Memory = Nodes(T ) ∗ α+ Edges(T ) ∗ β
= Nodes(T ) ∗ (α+ β)− β (1)

For the traditional Name Character Trie, every node at least
needs a pointer to the edges list, a pointer to the matching entry
(CS, PIT, FIB entry), and a list of edges which includes a key
(character), and a pointer to the next trie node and a pointer to
its brother edge. Every pointer needs 4 bytes, a character needs
1 byte, and the total memory can be calculated by Equation 1.



Here α = 8 and β = 9, so the memory cost of a character trie
is 17 ∗Nodes(NCT )− 9.

Let State Transition Arrays construct the NCT, one entry
in Base Array and one entry in the Transition Array are
needed to represent a node. And an edge needs one entry
in Transition array. Here, one Base Array entry needs 4 bytes
and one Transition Array entry occupies 5 bytes. Therefore,
we have α = 9 and β = 5, and the total memory is
14 ∗Nodes(NCT )− 5.

We use one Base Array and three Transition Arrays to
organize the ENPT. If the state’s transitions are stored in
Transition1, we get α = 9, β = 5. Similarly, α = 10, β =
6 for Transition2 and α = 12, β = 8 for Transition4.
We use Equation 1 to calculate the total memory. Thus,
the memory cost of ENPT is 14 ∗ Nodes(Transition1) +
16 ∗ Nodes(Transition2) + 20 ∗ Nodes(Transition4) −
19, where Nodes(Transition1) + Nodes(Transition2) +
Nodes(Transition4) = Nodes(ENPT ).

In summary, compared with NCT, NCE utilizes the follow-
ing three parts to reduce storage overhead.

1) NCE uses State Transition Arrays to construct the NCT,
and the memory cost can be reduced at least save 1 −
14∗Num(nodes)−5
17∗Num(nodes)−9 ≈ 17.64%.

2) Code Allocation Mechanism reduces the number of
components by merging the Original Collision Set at
the same level.

3) NCE stores the transitions in different sizes of Transition
Arrays. Compared with the method that uses Transition4
only, it can reduce the memory overhead further.

B. Time Complexity Analysis

In NCE, the longest name prefix matching contains two
steps, (1) finds the components’ corresponding codes in CCT-
STA and (2) looks up codes in ENPT-STA. The basic lookup
process of a component in CCT-STA has O(nc log(mc))
complexity in the average case, since binary search can be
proceeded to find the matching key in the node’s transitions
which have been sorted. Similarly, a longest prefix matching
in ENPT-STA needs O(k log(m)). So, a name lookup has
O(knc log(mc) + k log(m)) complexity when the lookup
is proceeded serially. If there are P parallel code lookup
modules, the complexity can be reduced to O(knc log(mc)

P +

k log(m)) = O(n log(mc)
P + k log(m)) (Since components are

decomposed from a name, we get n = knc).
In a character trie, the average lookup performance is

O(nmt). Compared with character trie, NCE can gains
n log(mc)+Pk log(m)

Pnmt
speedup for longest name prefix lookup.

In the worst case, all transitions of a state in Transition
Array should be moved to new entries when a new transition
is inserted, and states which contain the inserted component
need to update the component’s code. Therefore, the insertion
procedure of CCT-STA has O(ncmc +ms) complexity in the
worst case. And the worst insertion performance of ENPT-
STA is O(kncmc+km+kms) = O(nmc+km+kms). But
in the average case, the complexity of insertion procedure is
O(n log(mc) + k log(m) + k log(ms)). As described above,

deletion and modification operation has the same performance
of lookup, O(n logmc + k log(m)).

As described in Algorithm 2, the building procedure of
ENPT-STA invokes insertion operation (Algorithm 1) to com-
plete the work. So, a set has N names needs O(N(nmc +
km + kms)) to build ENPT-STA in the worst case, or
O(N(n log(mc)+k log(m)+k log(ms))) in the average case.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of NCE and
compare it with the NCT in terms of memory compression,
building time, lookup speedup, update time, and average
packet delay, etc.

TABLE II
NUMBER OF DOMAINS WITH DIFFERENT COMPONENTS’ NUMBER

Number of Components 1 2 3 4 5 6 7
DMOZ 0 10 170,709 2,325,677 454,953 48,702 4,193

Blacklist 0 0 1,334 1,449,493 272,693 322,689 3,772
ALEXA 0 0 177 870,108 117,468 10,646 1,328

Number of Components 8 9 10 11 12 13 14
DMOZ 132 10 2 0 0 0 0

Blacklist 458 311 51 12 2 24 47
ALEXA 147 86 33 4 3 0 0

A. Experimental Setup

NCT and NCE mechanism are implemented in C language,
and the core programs include about 100 and 800 lines of
code, respectively. The memory cost and time performance
are measured on a PC with an Intel Core 2 Duo CPU of 2.8
GHz and DDR2 SDRAM of 8 GB.

Then we utilize the domain name information from D-
MOZ [5], Blacklist [6] and ALEXA [7] to construct three
datasets as our experiments’ input. We extract 3,004,388
different domains from DMOZ’s 4,328,389 different URL to
construct DMOZ dataset. Using all the domain and URL
collections in June, 2011 from Blacklist , we construct the
Blacklist dataset which contains 2,050,886 domains. Similarly,
we utilize the top 1,000,000 sites’ domains form ALEXA
as the ALEXA dataset. Besides, an IP lookup table from
RRIP [8] which contains 354,641 IP prefixes is used to
compare the lookup performance between name lookup and IP
lookup. TABLE II shows the number of domains with different
components’ number obtained from these three datasets.

B. Effects of Code Allocation Mechanism

The Code Allocation Mechanism can effectively reduce
the number of codes and shorten the length of each code.
Fig. 6 shows the number of components and codes with
different name collections sizes, and the compression ratio of
Code Allocation Mechanism. Compared with the method that
directly assigning one code to one component, our allocation
method can save more than 50% codes when the size of name
set is larger than 2,000K. The average encoded name length
on three datasets is shown is TABLE III. We can see the
encoded name length in NCE is much shorter than the average
name length in NCT. For example, the average name length
is reduced by 75.15% after encoding on DMOZ.



TABLE III
COMPARISON OF MEMORY USAGE

Dataset Total
Domains

Total
Components

Avrage
Name
Length
(bits)

NCT Size
(MBytes)

NCT-STA
(MBytes)

NCE Size(MBytes) Compression
Ratio
(NCT

vs NCE)

Compression
Ratio

(NCT-STA
vs NCE)

CCT-STA ENPT-STA Total
Size

Encoded
Name Length

(bits)

DMOZ 3,000,000 12,392,934 165.11 403.05 331.93 199.81 72.45 272.27 41.03 32.45% 17.97%
ALEXA 1,000,000 4,143,835 158.17 132.492 109.11 63.69 15.95 79.64 43.50 39.89% 27.01%
Blacklist 2,050,886 9,136,076 171.55 272.737 224.61 113.21 55.30 168.51 45.21 38.22% 24.98%
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Fig. 6. The number of different components and codes, and the compression
ratio of Code Allocate Mechanism on DMOZ dataset
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DMOZ dataset

C. Memory Compression

The memory cost in NCE includes two parts, (1) State
Transition Arrays for ENPT and (2) State Transition Arrays for
CCT. TABLE III presents the memory compression results of
NCE. It shows ENPT only needs 18% memory size compared
with the NPT , which is constructed as NCT. In other words,
the memory cost of a FIB table can be compressed 82%. We
can observe from TABLE III that compared with NCT, the
memory cost of NCE is reduced by 30%. Even if NCT is
implemented by State Transition Arrays, NCE still cuts down
the memory usage by 20%.

As stated above, we use three types of Transition Arrays to
implement ENPT. Fig. 7 illustrates the number of entries for
these three kinds of Transition Arrays used on DMOZ dataset.
When there are 3,000K domains, 66.3% of the total entries are
Transition4, 28.79% of the total entries are Transtion2 and the
left 4.91% are Transition1. Compared with the method that
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Fig. 8. The Memory Cost of NCE and NCT on DMOZ dataset

implements the Transition Array with Transtioin4 only, the
solution which uses three sized arrays to construct Transition
Arrays can reduce the memory cost by 33.7%.

Fig. 8 depicts the memory cost of NCE, which includes
the space of CCT-STA and ENPT-STA on DMOZ dataset.
We can observe that with the increase of the number of
names, NCE’s memory compression ratio gradually grows too.
Fig. 8 reveals that when the number of domains increases,
NCE’s components number and states number grows more
slowly than those of NCT. Consequently, NCE’s memory cost
increases slower than that of NCT, which demonstrates that
NCE is memory-efficient on both small domain set and quite
large domain set.

D. Lookup Time and Speedup

In this subsection, we investigate the lookup performance
of NCE. In order to get the average name lookup time,
we input 100K random names each time and get the total
execution time. Then names’ average lookup time can be
obtained. As illustrated in Fig. 9 and TABLE IV, when there
are three parallel code lookup modules, NCE’s average lookup
time is about 1,800∼3,250 CPU cycles, which equals to
643ns∼1161ns since the CPU frequency is 2.8 GHz. And it
needs 1,332.57 CPU cycles to look up an IP prefix in an IP
table which is constructed by trie (2.1 million lookups per
second), in the average case. So, NCE is an effective approach
for accelerating the longest name prefix lookup.

Then we investigate the relationship between NCE’s average
lookup time and the number of parallel CCT lookup modules.
We extract 1,000K names form DMOZ, Blacklist and Alexa
respectively. Repeat the experiments and get the corresponding
average lookup time. The experimental results are shown in
Fig. 10.



TABLE IV
COMPARISON OF NCT AND NCE’S PROCESSING PERFORMANCE

Dataset Total
Domains

NCT NCE(P=3) Speedup
Building
Time(s)

Average Packet
Lookup Time
(CPU Cycle)

Packet
Delay(us)

Building
Time(s)

Average Packet
Lookup Time
(CPU Cycle)

Packet
Delay(us)

DMOZ 3,000,000 43.69 23,112.78 8.25 34.91 2,975.26 1.90 7.77
ALEXA 1,000,000 18.62 12,154.76 4.34 12.32 2,881.78 1.23 4.22
Blacklist 2,050,886 31.58 9,699.37 4.15 23.53 2,335.51 1.65 4.15
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Next we study the relationship between NCE’s speedup and
the number of parallel encoding modules. 3,000K names in
DMOZ are constructed into three sets, which have 1,000K,
2,000K, and 3,000K names, respectively. Fig. 11 illustrates
the results, which shows that the speedup performance of NCE
gets better when the number of names increases. It also shows
that NCE’s speedup grows gradually accompanied with the
increase of the number of CCT lookup modules.

E. Average Packet Delay

We extract 1,000K different names and calculate NCE’s
average packet delay using different number of parallel C-
CT lookup modules. The experimental results are shown in
Fig. 12.

In our experiments, there are several parallel CCT lookup
modules and one ENPT lookup module. Using parallel CCT
lookup modules, the CCT lookup delay could be reduced.
However, as is shown in Fig. 12, when the number of parallel
CCT lookup modules is greater than 6, NCE’s average packet
delay almost stay at the same level. Because the packet delay
is determined by the maximal component code lookup time
of a name when the number of parallel CCT modules is
greater than the number of a name’s components. When the
number of parallel CCT lookup modules is greater than 6,
almost all the components of a given name could be looked
up concurrently since 99% of the existing domains have no
more than 6 components (See Table II).

F. Update Performance

Fig. 13 shows the update time in the worst case. The time
is calculated by inserting 100K new names to the exiting NCE
with different initial NCE scales. It spends 142,143.46 CPU
cycles (50.77 us) on inserting a new name to NCE which
already has 2,900K names. In other words, NCE can handle
more than 20,000 updates per second in the worst case.
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Fig. 12. The relationship between NCE’s packet delay and the number of
parallel CCT lookup modules

VII. RELATED WORK

In NDN Proposal [1], L. Zhang et al. propose a fast scalable
name lookup mechanism that uses Ternary Content Address-
able Memory (TCAM) as the basic hardware components. But
this method directly loads names to TCAM which causes great
waste of the valuable TCAM memory and leads to excessive
power consumption.

Z. Genova et al. [9] and X. Li et al. [10] hash URLs to the
fixed-length signatures, and look up the signature in the hash
table, which has good URL lookup performance. However,
these methods consider an URL as an indivisible entity, thus
cannot provide longest prefix matching capability. In order to
overcome the problem caused by longest prefix matching, Y.
Yu et al. [11] propose a mechanism to map a whole name
to a code, but it needs additional protocol to exchange codes
tables between routers. Similarly, A. Singla et al. [12] and S.
Jain et al. [13] apply the flat name (ID) to replace IP address
in the future networks, their work focused on the routing
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Fig. 13. The worst case update performance of three name collections

mechanism, and the performance of flat name forwarding is
still unsatisfactory.

Some other methods try to decompose an URL into com-
ponents and build a component tree to aggregate URLs [14].
The URL component tree is similar to our Name Prefix
Trie, which can only offer basic prefix lookup and cannot
satisfy the name lookup performance requirement in NDN. B.
Michel et al. [3] design a compression algorithm named Hash
Chain, which is based on a hierarchical URL decomposition,
to aggregate URLs sharing common prefixes. Hash Chain
uses an incremental hashing function to compress common
prefixes length and minimize collisions between prefixes. Z.
Zhou et al. [4] use CRC32 hash function to compress the
URL components, and combine a multiple string matching
algorithm for URL lookup engine. Hashing functions not only
compress the memory of URL sets, but also accelerate the
search speed by computing the searching keys. However, these
hash-based algorithms have a fatal drawback, hash collision
(false positive), making it cannot be applied to name lookup
in NDN. False positive will cause the Interest packet cannot
be forwarded to the right destination. Any possibility of hash
collision will undermine the integrity of the basic functions of
the NDN router.

VIII. FURTHER WORK AND CONCLUSIONS

A. Further Work

The entry length in the Ternary Content Addressable Mem-
ory (TCAM) can be effectively cut down by the encoding
method as discussed in Section IV. For example, in our DMOZ
dataset, a TCAM entry needs about 165.11 bits to store a
name. Using Code Allocation Mechanism, the length of an
entry is shortened to 41.03 bits. It can save 75.15% precious
TCAM memory by using codes to replace names, and reduce
the power consumption of TCAM which is proportional to the
length of TCAM entry. Besides, we can apply Binary Content
Addressable Memory (BCAM) to implement CCT lookup to
improve the overall name lookup performance.

B. Conclusion

In this paper, we have proposed an effective Name Com-
ponents Encoding approach named NCE to reduce memory
overhead and accelerate lookup speed for longest name prefix
lookup in NDN. The technique involves a Code Allocation
Mechanism and an evolutionary State Transition Arrays. Code
Allocation Mechanism reuses the codes as much as possible.
The evolutionary State Transition Arrays for Encoded Name
Prefix Trie and Component Character Trie reduces the memory
cost further while accelerating lookup speed. Both theoretical
analysis and experiments on real domain sets demonstrate
that NCE could effectively reduce the memory cost while
guaranteeing high-speed of longest name prefix lookup.
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