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Abstract

Today, web attacks are increasing in frequency, sever-

ity and sophistication. Existing solutions are either host-

based which suffer deployment problems or middlebox ap-

proaches that can only accommodate certain security pro-

tection mechanisms with limited protection. In this paper,

we propose four design principles for general middlebox

frameworks of web protection, and apply these principles to

design WebShield, which can enable various host-based se-

curity mechanisms. In particular, we run all the JavaScript

from remote web servers only at shadow browser instances

inside the middlebox, and only run our trusted JavaScript

rendering agent at client browsers. The trusted rendering

agent turns browsers into a thin web terminal by recon-

structing the encoded DOM of a webpage.

We implement a prototype of WebShield. Evaluation

demonstrates that a general JavaScript rendering agent

can render webpages precisely and be just slightly slower

than direct access. We further demonstrate that our design

can work well with interactive web applications such as

JavaScript games. WebShield can detect attacks deeply em-

bedded in dynamic HTML pages including the ones in com-

plex Web 2.0 applications, and can also detect both known

and unknown vulnerabilities. We further show that Web-

Shield is scalable for deployment.

1 Introduction

1.1 Motivation

Today, the web has become a primary attack target due to

its popularity. The complexity of web systems further cre-

ates a lot of different kinds of vulnerabilities and attacks,

such as drive-by-downloads, cross site scripting (XSS),

cross origin JavaScript capability leaks, cross site request

forgery, etc. As a result, many web attack defense mech-

anisms have been proposed [12, 14, 16, 17, 19, 26, 30, 34,

36]. For most of them, enhanced browsers, virtual machines

(VM) or other defending programs need to be deployed on

the client side. However, users are slow in adopting new

technologies. Many users do not have any motivation to

switch to new software, and are afraid of potential prob-

lems caused by new software. Therefore, almost all major

attacks such as worms and botnets successfully exploit ex-

isting vulnerabilities after the patches have been released

for months or even years. Moreover, the host environments

on the clients are inherently heterogeneous and fragile. It

is difficult to ensure those defense mechanisms do indeed

work in such environments without extensive testing and

high maintenance costs, which will further slow down the

deployment. Even though users may initially agree to use

new software, it is still difficult to persuade them to keep

updating, especially if they have to restart their machines or

browsers.

Researchers have realized the limitations of client-side

deployment and proposed the use of middlebox-based ap-

proaches. In Table 1, we list the benefits of deploying secu-

rity protection at a middlebox instead of at the client side.

However, existing work [23, 31] mainly focuses on the de-

sign of special purpose middleboxes for very specific secu-

rity protection mechanisms rather than a general framework

encompassing various mechanisms.

Rewriting is one such mechanism. The seminal work

BrowserShield [31] takes advantage of a lightweight

middlebox to prevent the exploitation of browser vul-

nerabilities. Although rewriting adds special policies

at the HTML/JavaScript level, it cannot enable detec-

tion/protection approaches that require internal states of

the browser or underlying OS. The other middlebox work

SpyProxy [23] proposes an execution-based approach. It

renders and examines the active web content before the

content reaches an user’s browser. One major limitation,

as admitted in their paper, is that the approach cannot cope

with the non-determinism of web content and user inputs.



Client Middlebox

heterogeneous & co-exist with other software clean installation

high maintenance overhead centralized control

user voluntary update easy update and VM management

Table 1. Comparison between the clientside deployment and the middleboxbased deployment

Fundamentally, if a JavaScript program P in the webpage

gets executed twice (once at the middlebox and the other at

the client side), it is impossible to ensure the two executions

will be exactly the same; thus, the security check can be

bypassed. Many reasons can lead to different outcomes,

such as randomness, and different parameters such as the

current time or the number of CPU clock ticks. It is easy

for attackers to design a JavaScript attack which behaves

normally on SpyProxy and still attacks the client browser,

as we show in Section 2.1.

1.2 Proposed Solution and Contributions

In this paper, we aim to design a general middlebox

framework that can enable different security protection

mechanisms. Our first contribution is to propose the fol-

lowing four design principles and, based on those, to design

WebShield, a general middlebox framework.

Principle I is that a general framework should enable var-

ious protection mechanisms to protect clients from as many

attacks as possible.

Principle II is that we should avoid deploying any addi-

tional programs on clients.

Principle III is that we should not allow any untrusted

script execution at the client side without proper contain-

ment. In general, all scripts from web servers are treated

as untrusted, since even well-known websites may have

compromised webpages [8]. Moreover, JavaScript is very

powerful for launching attacks. For instance, malicious

JavaScript can employ heap-spraying [30] to easily exploit

the browser vulnerability.

Principle IV is that the user’s experience should not be

sacrificed, i.e., users should notice little change while bene-

fiting from the middlebox approach.

We believe a general middlebox framework needs to

consider all the four principles. Examining the exist-

ing middlebox design, BrowserShield violates principle I

whereas SpyProxy does not abide by principle III, which

limits the applicability of other security protection mecha-

nisms.

In this paper, we propose WebShield, a general se-

cure proxy for enabling different security protection mech-

anisms. Based on the four principles above, we make

two design choices. (i) We take a conservative approach.

We prohibit untrusted scripts from executing on the client,

Attacks Defense Schemes

Drive-by-download Nozzle [30], HoneyMon-

key [36], Tahoma [16] and

OP Browser [17]

Cross Site Scripting DSI [26] and Javascript

Taint [34]

Cross Site Request Forgery [14]

Cross-Origin Javascript Ca-

pability Leaks

[12]

Table 2. Examples of web defense ap
proaches that can be deployed with WebShield.

which is more conservative than principle III. Disallowing

JavaScript execution of untrusted scripts greatly limits what

the attackers can do at the client side, even if they have by-

passed the detection on the middlebox. (ii) We would like

to leverage the client side browser as little as possible (i.e.,

a thin browser) because the complexity of browsers makes

them more vulnerable. The idea is similar to thin clients vs.

fat clients. At the client side, we would like to convert the

full-featured fat web browsers to web terminals, which only

handle input and output, and move the real browser logic

into the middlebox.

Table 2 gives a list of some browser security mechanisms

that require client-side modifications. With WebShield, we

can deploy these approaches at the middlebox (proxy) in-

stead and achieve similar protection. To demonstrate our

design in this paper, we mainly focus on detecting drive-by-

download attacks.

In particular, we make the following additional contribu-

tions.

• We propose to run all JavaScript from remote web

servers only at shadow browser instances inside the mid-

dlebox, and only run our trusted JavaScript rendering

agent at client browsers. The trusted rendering agent

turns browsers into a thin web terminal by reconstruct-

ing the encoded DOM of a webpage. Evaluation demon-

strates that a general JavaScript rendering agent can ren-

der webpages precisely and be just slightly slower than

direct access. We further demonstrate that our design

can work well with interactive web applications such as



JavaScript games.

• We design an object pairing mechanism that strictly

masks the URI requests introduced by the middlebox,

which guarantees the correctness of web application

logic. Existing works such as SpyProxy break the ap-

plication logic in some cases (see Section 3.3).

We implement a prototype of WebShield and demon-

strate that this architecture can incorporate different

drive-by-download detection engines easily. Evaluation

results suggest that WebShield with drive-by-download

detection add-ons can accurately detect and filter drive-

by-downloads, and the user-perceived slowdown due to

WebShield is quite low. For the incremental rendering

version on Chrome, the median increase of the rendering

starting delay is 134 milliseconds and the median increase

to the page load time is only 531 milliseconds (25%

increase). These performance are also comparable to

SpyProxy and BrowserShield. In the scalability evaluation,

we show that a single machine with 16 GB of memory can

support 70 active users. With the same machine, if we use

lightweight SELinux-based sandboxes, the creation speed

is about 28 sandboxes per second. The results show that,

with moderate resources, the administrators of an enterprise

can feasibly deploy WebShield to prevent web attacks.

2 Overview

2.1 Comparison with Existing Middlebox Ap
proaches

Both SpyProxy and BrowerShield mainly target the

drive-by-download attacks which compromise the host ma-

chines through browser vulnerabilities. With proper pol-

icy engines and/or behavior engines, WebShield can de-

tect drive-by-download attacks as well, including the cases

that cannot be detected by SpyProxy and BrowserShield,

as shown in the example in Figure 1. When an attack tar-

gets an unknown vulnerability, vulnerability details are not

available, so the policy-based approaches, such as Browser-

Shield, cannot be applied. An attack can also employ user

events to bypass the detection of SpyProxy, since it only

checks the initial rendering process. To trigger the attack,

the code can require certain user input patterns, which is

hard to predict beforehand, as shown in Figure 1.

Furthermore, WebShield aims to provide a general

framework for deploying host-based defense schemes (ex-

amples shown in Table 2) without requiring browser/client

modifications. Some defense mechanisms such as those

for cross site scripting or cross site request forgery may

require both client and server modifications. WebShield

at least help eliminate the needs for direct client browser

modifications, which we argue is hard to deploy.

var attackcalled=false;

function attackX() {

// exploit an unknown vulnerability,

//so BrowserShield cannot be applied

}

function loadAttack() {

var el=document.getElementById(Evil);

//use user events to bypass SpyProxy

el.addEventListener(mouseover,

checkMouse,false);

}

function checkMouse() {

if (not attackcalled) {

attackcalled=true;

window.setTimeout(attackX,0);

}

}

Figure 1. The attack code snippet that can cir
cumvent both SpyProxy and BrowserShield.

2.2 Problem Definition

The research problem we target is how to avoid client-

slide deployment while providing web security protection

from a middlebox. The high-level idea is to reduce the

browser to a web terminal, and to let most browser tasks ex-

ecute on a secure proxy (middlebox) so that we can deploy

security protection mechanisms at the proxy. This design

also handles non-determinism and user-input triggered at-

tacks. The key challenge is to maintain good performance

and usability with this design, so that users will not notice

any major difference while achieving high security protec-

tion.

2.3 Threat Model and Assumptions

Most web attacks are from malicious web content,

mainly malicious JavaScript, in webpages. In our threat

model, we assume any webpage going through the proxy

is potentially malicious. Also, system administrators can

define a whitelist of trusted webpages and a blacklist

of webpages to block. We assume that the remaining

webpages contain potentially malicious content, so we will

apply WebShield to them.

WebShield is mainly designed to protect web users in

enterprise networks, such as networks in companies, gov-

ernment agencies, schools, etc. We assume the round trip

time (RTT) between any web user and the proxy is small.

We verify the RTT in the campus network of Northwestern

university. All RTTs of the hosts to our proxy server are

within 2ms. We also assume that web users and the Web-



User Interface (UI)

DOM API

Render Engine

HTML 

Parser

Java-

script 

Engine

CSS 

Parser
Plugins
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Figure 3. Illustration of the basic idea.

Shield proxy are connected to LAN and WLAN networks,

so that the bandwidth to the proxy server is not a bottleneck.

Furthermore, it is assumed that the network administra-

tor can shut down any malicious web user once detected.

Finally, we assume that most web users are benign. In other

words, we do not consider the possibility that a large num-

ber of web users will launch a DoS attack against the proxy.

To demonstrate that security protection mechanisms can

be easily deployed with WebShield, we target to detect

drive-by-download attacks as an example. In the paper we

will show how both a behavior-based detection engine and

a vulnerability filter-based detection engine can be easily

incorporated into WebShield as add-ons.

2.4 Browser Model

In Figure 2, we show an abstract model of a browser.

A browser has an HTML parser, a JavaScript engine, and

a CSS parser. A browser may have one or more plug-

ins. When the browser receives an HTML page, the

HTML parser will parse the page and identify the JavaScript

code in <script> tags. The identified JavaScript will be

sent to the JavaScript engine. Through innerHTML or

document.write, the JavaScript engine can also call

the HTML parser. CSS content is identified by the HTML

parser and is sent to the CSS parser. Similarly, JavaScript

also has APIs to add CSS rules. The HTML parser,

JavaScript engine and CSS parser call the DOM APIs to

update the DOM data structures and render the webpage on

the UI. According to the standardization organization W3C,

“The Document Object Model is a platform- and language-

neutral interface that will allow programs and scripts to dy-

namically access and update the content, structure and style

of documents.” [11]

We take a generalized DOM definition. We consider all

the APIs with UI effects as belonging to the DOM. There-

fore, under our definition, we consider the Window object

of JavaScript, which represents the browser window, also

as a part of the DOM. In a real browser, some non-standard

APIs between the HTML parser (or the CSS parser) and

the DOM data structures may be provided for optimization

purposes, but they can be substituted by W3C standardized

APIs as well. In other words, we can use W3C DOM APIs

to fully reconstruct the DOM data structures, and thus to

fully reconstruct a webpage.

2.5 Basic Scheme

Given the four principles listed in Section 1, we explore

the design space of middleboxes. One possible solution is

to work at the graphic rendering layer as in the case of X11

or VNC. The advantage of this solution is that it will run

almost all browser modules at the middlebox. However, it

is hard to maintain the same user experience, especially for

video content embedded in webpages, which will introduce

large graphic rendering and network overhead. Further-

more, it is hard for a user to upload/download files from/to

their local machine directly because the browser session is

entirely remote. We believe this solution has its value and

may be beneficial in some circumstances.

However, in this paper, we propose an alternative ap-

proach. Our design works at the DOM data structure layer.

The encoded DOM data structures are rendered at the client

side by our JavaScript agent, while a shadow browser inside

the middlebox takes care of the rest. Our design is based on

the following observation. Bugs in different browser com-

ponents enable attackers to execute malicious code, and al-

most all attacks require JavaScript execution for exploita-

tion. Fully eliminating JavaScript execution of untrusted

scripts at client browsers will not only make vulnerability

exploitation harder, but also close the door for bypassing

detection through non-determinism or user-input triggered

execution.

Browser quirks are the parsing deviation from the W3C

standard. Since attackers have already leveraged browser

quirks in HTML and CSS parsing to inject malicious

scripts [18, 33], to process HTML or CSS at client browsers

might give attackers chances to circumvent our system and

to inject malicious scripts. We handle the HTML parsing
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Figure 4. The framework of WebShield.

and the CSS parsing along with JavaScript execution to-

gether to the shadow browser. Although the DOM handling

and rendering still occur on client browsers, they are deter-

ministic and have less ambiguities. Therefore, If we make

sure no attack is detected for the DOM handling and ren-

dering on the shadow browser, the content should be safe

to send to client browsers. W3C has standardized enough

APIs that can be used to fully construct the DOM data

structures using JavaScript. Given this fact, we leverage the

client browser for DOM access, rendering engine and user

interface. In some sense, we split the functionalities of a

web browser. Figure 3 shows the design.

In summary, the reasons we choose DOM as the intercept

layer are as follows. Although the lower layer the better,

graphic rendering layer may impose higher overhead and be

less user-friendly. HTML and CSS processing are at higher

layer than DOM and can employ the DOM API to achieve.

Moreover, direct HTML and CSS processing might not be

very safe due to browser quirks [18, 33]. Even we include

direct HTML and CSS processing, still we need the DOM

API for dynamic contents.

3 WebShield Design

3.1 WebShield Architecture

To enable our basic design scheme, we propose the archi-

tecture shown in Figure 4. The session manager manages

the web sessions, object coherence, and web caching. If a

user sends a non-HTML request (decided based on content

sniffing), the session manager will directly respond with the

object to the user. For actual webpage requests, the session

manager assigns a proxy sandbox instance for each client

IP address. A webpage will also be rendered by the shadow

browser in the proxy sandbox, and the detection engine will

invoke the security protection mechanisms plugged in our

system for security detection and prevention.

Next, in Section 3.2, we will first introduce content sniff-

ing in WebShield which classifies contents from the web

server into HTML contents and non-HTML contents. Then

we will describe how we deal with HTML and non-HTML

contents in Section 3.3 and 3.4 respectively. At last, we in-

troduce our sandbox mechanism.

3.2 Content Sniffing

With the middlebox, we need to return transformed

DOM objects for all of the HTML pages to the client

browser, but directly return all the non-HTML objects such

as images and videos. As a result, we need to exactly know

which objects are HTML objects. Usually, the browser will

determine the type of an object based on the MIME type

specified in the HTTP Content-Type header, such as im-

age/jpeg. To improve compatibility, browsers also lever-

age content sniffing [13] (i.e., check the first n bytes of

content) to further identify the MIME type for the object.

Barth et al. [13] mention that different browsers may imple-

ment content sniffing differently and they have successfully

extracted the content sniffing models for major browsers.

Leveraging their research in our design, we first identify the

versions of client browsers based on the User-Agent HTTP

header and then apply the corresponding content sniffing

models.

3.3 Processing HTML Content

There are two procedures for handling HTML contents:

initial HTML page transforming and dynamic HTML sup-

port. We summarize how each of these two procedures

works in Section 3.3.1. Given these two procedures are sim-

ilar, and both can be described by a sequence of the same

steps, in Section 3.3.2, we break down these two procedures

into four steps, and introduce them one by one. Essentially,

these steps form the basis of the two procedures.

3.3.1 Two Procedures of Processing HTML Content

When a user requests an HTML webpage, the rendering

process has two major procedures: (a) the initial HTML

page transforming, and (b) Dynamic HTML Interaction

Support.

Initial HTML page transforming. Louw et al. [33] ar-

gue that HTML parsing and CSS parsing have parsing am-

biguities (browser quirks), which can be easily abused to

include malicious JavaScript code. In our design, we have

decided to transfer encoded DOM data structures (gener-

ated by shadow browser execution) instead of transferring

HTML or CSS sources directly or after encoding them.

The HTML page, embedded JavaScript files and em-

bedded CSS files will be parsed and executed to create the

DOM data structures of the webpage. The DOM data struc-

tures include the DOM tree, which defines the structure
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Shield.

of the document, and the CSS objects, which describe the

layout and style of the document. We encode the DOM

data structures as a list of transformed strings S. Instead

of transferring the HTML page, JavaScript and CSS files

to the client browser, we transfer an HTML page with our

JavaScript rendering agent and S. Our JavaScript rendering

agent will parse S and utilize the DOM data structures to

render the page. Furthermore, we achieve incremental ren-

dering by taking advantage of the fact that client browsers

can incrementally render an HTML page. We show how

we implement this and give an example in Figure 6. When

we encode the DOM data structures, we remove all the con-

tent of the <script>, <style>, and <link rel=stylesheet >

nodes; instead, we put empty nodes solely for maintaining

the DOM tree structure. CSS is inserted using the DOM-

CSS API. If the original HTML page is R, we call the new

HTML page we transfer to the client browser T (R). T is the

transforming function that transforms the original HTML

page as well as its embedded JavaScript and CSS files to

a form that includes the JavaScript rendering agent, and the

encoded DOM data structures of the original page rendering

result.

Dynamic HTML Interaction Support. Dynamic HTML

webpages use the event-driven programming model of

JavaScript. The JavaScript code from the website may

register a set of event handlers for different events. When

an event fires, the corresponding event handler is called.

In some cases, the JavaScript code may issue an AJAX

request to the web server to get more data, and based on

the data, update the DOM data structures. In our design,

we do not take the risk of running JavaScript on the client

browser. Instead, we substitute the event handler from the

website to a default event handler written by us. In our

event handler, we wrap the event object and transfer it to

the shadow browser on the proxy. The same event will be

injected to the page on the shadow browser, and the original

JavaScript event handler from the website will be executed.

After that, the changes to the DOM data structures will be

transferred back, and our default event handler will update

the DOM data structures on the client browser to achieve

the same effect. In Figure 5, we show the extra delays

caused by our approach. Mainly, we introduce additional

communication delays to communicate with the proxy and

additional DOM update delays to change the DOM data

structures. We show two cases: the first row is the case

without AJAX calls and the second row is the case with

AJAX calls. The left side is the original timing graph, and

the right side is the timing graph with WebShield.

3.3.2 Breakdown of the HTML Content Processing

Procedures

Handling HTML contents can be divided into four steps:

encoding DOM data structure, transmitting DOM updates,

update DOM at client browser, and transmitting client

events and DOM update back to shadow browser. The ini-

tial HTML page transforming requires the first three steps,

and the dynamic HTML support requires all the four steps.

Step One: Encoding the DOM data structure. As we

have mentioned, HTML and CSS parsing can potentially be

abused by exploiting parsing quirks [18, 33], i.e., by using

unknown parsing behaviors of a browser to hide malicious

JavaScript code. Because we do not want any JavaScript

code from websites directly reaching the client’s browser,

we face the same problem as well. Louw et al. [33] propose

to directly transfer the parsed DOM data structures instead

of JavaScript. We take a similar approach. The major dif-

ference is that they only need to transfer small pieces of

untrusted content blocks, but we need to transfer the entire

DOM tree, all CSS style objects, and any dynamic updates

to them– a much more challenging task.

We must transfer two pieces of the DOM data struc-

tures to the client browser: the DOM tree DT and the CSS

style objects DC. For the dynamic HTML, we need also to

transfer the changes to the DOM data structures: ∆DT and

∆DC.

From the client browser’s point of view, the DOM tree

and CSS style objects are all JavaScript objects. We need

a way to serialize the JavaScript objects for interactions be-

tween the client browser and the shadow browser. Ideally,

we want to use a simple serialization protocol, which it-

self will be subject to fewer parsing quirks than the HTML

and CSS standards. With this goal in mind, we find JSON

(JavaScript Object Notation) [5] to be a good candidate for

our purpose. JSON is a standard for transferring struc-

tured data for web applications. JSON is very simple and



<!--eyJkYXRhIjp7fSwidHlwZSI6InN0eWxlU2h

lZXRzIiwiYWN0aW9uIjoiYWRkIiwibG9jYXRpb2

4iOltdfQ==--><script

id="DOM1"> __dp.apply("DOM1");</script>

Figure 6. An example of the blocks used for
DOM updates

has much less ambiguity. Currently, Firefox 3.5, Chrome

3.0 and Safari 4 all have fast native JSON parsers, making

JSON appealing in terms of performance. To avoid mali-

cious content sent to the JSON parser, we also transform all

the string properties of the DOM data structure. We choose

the escape and unescape functions in JavaScript for this pur-

pose. The functions escape all the JSON control characters

to %XX form, and do so in a fast operation. Moreover,

since both communication endpoints are controlled by us,

it is much harder to subvert the protocol for malicious pur-

poses.

DOM nodes are the internal representation of an HTML

tag in the browser. For example, Element nodes can have

child nodes. Essentially DOM nodes are objects, and the

child relationships are the references between the nodes.

Based on JSON, we define a protocol to serialize a DOM

subtree constructed by DOM nodes. We have defined DOM

subtree addition, deletion and updating primitives. The ref-

erences to the objects have been changed to refer to the ID

of nodes.

For CSS, after parsing a CSS rule, a browser will create

a corresponding style object to represent the rule internally.

JavaScript has an interface to create, read, and write the

style object. In the client browser, we can create an empty

rule (an empty style object) and then assign it properties.

With this way, we can avoid parsing the CSS rule. We still

use JSON to serialize the style objects for communication.

Next, we will introduce how the JSON encoded DOM

updates are transferred during the initial page rendering and

during dynamic HTML interactions.

Step Two: Transmitting DOM updates to client browser.

We adopt two approaches to transmit DOM updates. In

the initial page rending stage, we will encapsulate them in

a HTML page. After that, we will use AJAX to transmit

DOM updates.

• Encapsulating the DOM updates in a HTML page

during the initial page rendering: The performance

of the initial page rendering is important for web users.

To take advantage of the incremental rendering avail-

able in all the major browsers, we embed the JSON en-

coded DOM updates in the return HTML page directly,

instead of sending AJAX calls to retrieve them. However,

JSON strings may interfere with the HTML parser. We

need another layer of encoding to avoid this side effect.

We use base64 encoding, because all the major browsers

have implemented fast and native base64 encode func-

tions (a2b, b2a), and base64 will not interfere with the

HTML parser [33].

When loading a page, the shadow browser will render the

page incrementally. We monitor the DOM tree DT and

CSS style object DC changes. Whenever a part of these

data structures become available, we encode and transfer

the ∆DT and ∆DC. In Figure 6 we show an example

of an encoded block. When a block arrives at the client

browser, a JavaScript function will be executed and the

JavaScript function will delete the comment node and the

<script> node, delete the DOM update, and replace it

with the actual DOM data structures. This way, the client

browser can also render the page incrementally.

• Handling Dynamic HTML effects using AJAX: Later

on, after the initial page rendering, the DOM updates will

be transferred through AJAX. Although the AJAX call is

for the proxy, because of the Same Origin Policy (SOP)

in modern browsers, we have to send the AJAX call to

a URI destined on the original web server. AJAX XML-

HTTPRequest allows us to add HTTP headers. We lever-

age this to add a special HTTP header with the session ID

of the webpage to let the proxy know the AJAX request

is an internal POST message. The proxy will not forward

the request to the website; instead, the shadow browser

will process and then reply to this request.

Step Three: Updating DOM at client side. As we have

mentioned, all the HTML tags form a DOM tree, which is

the internal representation of the HTML document. For a

dynamic UI effect, parts of the tree are changed. Formally,

a set of subtrees in the DOM tree may be changed. The

change can be an addition, a deletion or an update. To sync

the DOM trees between the shadow and client browser, we

need to locate the root nodes of the subtrees in the DOM

tree. We implement two solutions to resolve this issue.

For the first approach, we label each element DOM node

with an ID attribute on the client browser. If the original

DOM node on the shadow browser has an ID attribute, we

just reuse the same value of the ID attribute. If the original

DOM node does not have ID attribute, we create a unique

value for the ID attribute. At the client browser side, some

CSS rules may use the ID attribute, so maintaining the same

value of the ID attribute as in the original DOM node is nec-

essary. At the shadow browser side, we need to add another

private DOM node property. We call it MyID because we do

not want to add the ID attribute to the DOM nodes which did

not have an ID attribute earlier, thus breaking the JavaScript

from the website. The ID attribute in the client side DOM

tree is mapped to the MyID property in the shadow browser

side DOM tree. GetElementById and GetElementByMyId

are used in the client browser and the shadow browser to

locate the node. MyID and its related APIs are not visible



in JavaScript on shadow browsers, so that webpages cannot

use these to detect whether it is running inside a shadow

browser.

Because, comment DOM nodes and text DOM nodes

cannot have ID attributes, we must also use a second ap-

proach. A DOM node can be uniquely identified by its co-

ordinates in the tree structure. In general a node in the DOM

tree may have n child nodes. The index i ∈ [0, n − 1] can
be used to identify a specific child node. We can do this

recursively using a vector of the location index to identify

the path from the root node to the specified node.

In our design, we use the location system which is the

most convenient for the node at hand.

Step Four: Transmitting Events and DOMupdates back

to shadow browser.

For Dynamic HTML effects triggered by user events, we

pack the event and changes in the DOM data structures at

the client browser, and send that to the proxy through an

AJAX post message. The shadow browser on the proxy

will then inject the event into the page and apply the ap-

propriate changes to the DOM data structures. The event

will trigger JavaScript to run. Finally, the shadow browser

will reply with the DOM updates made by the JavaScript

code to the client browser. When using AJAX, we do not

need to use base64 encoding for the JSON message in ei-

ther side of messages, because the message is treated as a

string. Furthermore, we do not need to use browser related

parsers for such messages.

For every DOM node that accepts user inputs, such as

<input> and <textarea>, we register an “onchange” event

handler that stores the value of the user input in a global

buffer in JavaScript. For the DOM nodes that have event

handlers registered in the shadow browser, we register the

default event handler that transfers the event and all the

changes of DOM nodes in the global buffer to the shadow

browser through an AJAX call. The shadow browser will

reply with the changes to the DOM data structures triggered

by the event.

3.4 Processing NonHTML Content

The non HTML embedded content such as Flash, im-

ages and videos are returned to the client browser directly

upon request from the client. The same content is still ren-

dered at the shadow browser so as to detect any exploits

that may appear while rendering these objects. Some non-

HTML content may still be scriptable. It is better to trans-

form them before sending them back to client browsers.

Several techniques have been proposed to transform flash

or Java applets [22, 25]. Working with these techniques to-

gether, WebShield will provide better security, as discussed

in 8

When we render a webpage on the shadow browser,

all non-HTML objects will be requested by the shadow

browser. After we transfer T (H) to the client browser,

the client browser will also request the objects excluding

the JavaScript and CSS files, because those files are part

of T (H). One problem that arises here is that an object

e will be requested twice (once from the shadow browser

and again from the client browser). This may have seri-

ous effects on the web application. Actually, all middlebox

designs, including SpyProxy, which run browser instances,

may encounter this problem.

A design trade-off we need to consider is whether the

two browsers can request the same object e independently.

For cacheable objects, with the web cache, the first request

will go to the web server, and the second request will be re-

turned by the web cache. This is actually the policy used by

SpyProxy [23]. However, this may cause problems for dy-

namically generated, non-cacheable objects. In such cases,

both requests will go to the remote web server. This can

be harmful when the requests change the persistent state on

the web server. A simple example is a visit counter image.

Given that this can sometimes lead to serious problems, we

enforce the rule that only one of the two requests for the

same object can reach the web server. To achieve this, we

have to accurately identify the pair of requests for the same

object. Ideally, if each non-cacheable object has a globally

unique URI, it will be easier to pair the requests. However,

in practice this might not be true. For instance, it is hard

to enforce the user to not open two identical windows to

render the same page.

Because of the object coherence problem, we propose to

add a unique identifier to every embedded URI. With the

identifiers, we can separate the URIs that are directly typed

by users from the embedded URIs, and we can also accu-

rately identify the pair of requests for the same object. In

our current design, we use a 256-bit identifier. The first 96

bits are a unique random string to avoid collision from other

possible user-inputted URIs. The middle 128 bits are the

web session ID. Finally, the last 32 bits are used to differ-

entiate the embedded URIs in a page. The 256-bit identifier

is encoded into a URI safe string and attached to the end of

each URI. When constructing the DOM data structures on

the shadow proxy, we rewrite the URIs to append the iden-

tifiers. At the session manager, the embedded URIs will be

identified and paired up.

3.5 Sandbox of the Shadow Browser Instance

Similar to other security prevention schemes that require

dynamic execution of the suspicious content, WebShield

needs to use sandbox techniques to make sure that even

when an attacker compromises the shadow browser, he still

cannot compromise the physical host running the shadow

browsers, let alone the client browser or the client machine.



For this purpose, any state-of-the-art sandbox techniques

can potentially be applied with different tradeoffs on secu-

rity, performance and stability. Our design is not tied to

any particular sandbox technique. Potentially, we can apply

the best available techniques, such as SELinux, Xen virtual

machines (VM), VMware VM, etc. In our current imple-

mentation, we focus on SELinux.

4 Security Analysis

4.1 Subverting the Sandboxes

In an actual deployment setting, WebShield will have one

session manager running on a separate host M and a set of

hosts H for hosting the sandboxes. In our design, for any

host inH , the system administrator can configure the switch

and force it to only communicate with the proxy service on

M . The hosts in H cannot communicate with each other,

the Internet or the internal hosts of the enterprise network

unless going through the session manager.

To compromise a host in H , the attacker needs to first

compromise the shadow browser, which means he must by-

pass the detection of known vulnerabilities as well as the

behavior detection engine (step I). Then, the attacker needs

to exploit another vulnerability in the sandbox to escalate

his privileges and take control of the host OS or VMM

(step II). After step I, the attacker can control one shadow

browser, and after step II, the attacker can control all of the

sandboxes and shadow browsers in a physical machine. In

both cases, he needs to exploit the session manger to take

full control of the proxy. We believe the session manager

should be written in a type-safe language, which will make

the control flow hijacking exploitations much harder. This

will also make the proxy safer.

By taking control of the shadow browsers, the attacker

can also try to send malicious HTTP requests to the Internet

through the proxy to compromise other web servers. Since

the attacker can send such malicious requests without com-

promising the shadow browser, we do not believe this en-

hances the attacker’s power.

After compromising a shadow browser, an attacker can

also try to compromise enterprise web users by returning

malicious content for DOM update requests. In our de-

sign, all of the JavaScript code in the returned webpage, i.e.,

our JavaScript code and the <script> tags for each update

block, is only added by the session manager, but not the

shadow browser. Shadow browsers only provide encoded

DOM updates in JSON. The attacker has to exploit a vulner-

ability in the JSON parser in the client browser to execute

JavaScript directly by the JSON parser. After JSON pars-

ing, but before adding parsed content to the DOM tree or

CSS style objects, we ensure all <script> tags are empty,

and no event handler attributes are present. Therefore, it

is still nontrivial for attackers to compromise web users or

even control the corresponding shadow browser.

4.2 Potential DoS Attack

In our threat model, we do not consider the case where

web users will launch a DoS attack on the proxy. We limit

the number of dynamic HTML webpages that can be con-

currently opened from a single IP. (Note that the limitation

is for a DoS attack. For a legitimate user, the number is

large enough for him to use.) For static webpages, we do not

maintain a long lived webpage in the shadow browser, re-

ducing resource consumption. This will prevent a few users

from overwhelming the proxy by opening a large number of

pages.

Some pages may also open more webpages automati-

cally using JavaScript. For this case, we will not create

the window on the shadow browser directly. Instead, we

will send the open window request to the user. Normally

the client browser will block it and ask permission from the

user. If the user allows the pop-up, an AJAX request will

be sent to the proxy, and the shadow browser will allow the

window to open and transfer the transformed content to the

user. We also limit the number of such pop-up pages for a

given web user (Similar methods has already been adopted

in modern browsers, such as Firefox, which limit the num-

ber of pop-up windows).

4.3 Fingerprinting the Shadow Browser

Some methods can be adopted for the webpage running

inside the shadow browser to fingerprint the environment.

For example, the webpage can detect the browser’s ver-

sion number, support of functionalities, etc. However, it

is still hard for attackers to decide whether the webpage

is running in a shadow browser or in a client browser di-

rectly. Even if they can detect that the webpage runs in a

shadow browser, they still cannot exploit the client directly.

Moreover, they cannot probe the browser version of a client

browser directly, because we do not allow any JavaScript

from the webpage to run on the client browser. Therefore,

it is non-trivial for the attackers to leverage on the possi-

ble version difference between the shadow browser and the

client browser for attack.

4.4 Compatibility with Other Security Protection
Mechanisms

In our design, we explicitly consider compatibility with

other existing security protection mechanisms.

Same Origin Policy: In our design, we do not break the

same origin policy. We keep the origin of each website un-

changed. When we rewrite URIs, we do not alter the parts



related to the origin.

Host Anti-virus Protector: Currently, many anti-virus sys-

tems add security plug-ins to the browser to enhance user

protection. Since the DOM data structures are almost iden-

tical to the originals, WebShield will not influence anti-virus

scanners.

5 Implementation

5.1 DOM Instrumentation

At the client browser side, we leverage JavaScript DOM

APIs to update the DOM data structures. We use the DOM-

CSS interface to add the CSS style objects for the CSS rules.

We also use the element.style object to handle the in-

line CSS style rules.

To implement the shadow browser, we modify WebKit

revision 41242 [10]. We instrument the DOM interface of

WebKit in C++. Once there is an action in the DOM, e.g.,

appendChild, we detect such a change in the DOM and pro-

cess it accordingly.

5.2 Session Manager Implementation

In our current prototype, the session manager is imple-

mented in Python. We use the HTTP client.py and

server.py files from Python 3.1. We implement web

caching, object coherence and session management. For

Web caching, we follow the cache related HTTP headers.

For session management, we assign a session ID to each

HTML object. Later, the session ID will be used to identify

the AJAX call for the event proxy.

5.3 Sandbox Implementation

There are many possible choices for a sandbox environ-

ment. Generally speaking, we consider two factors, perfor-

mance and security. Tahoma [16] uses Xen, a VMM which

has good security protection but the overhead is quite large.

OP Browser [17] and Google Chrome [32] use process level

sandboxing, which has good performance, but weaker secu-

rity. In our current implementation, we adopt SELinux, the

same sandbox used by OP Browser.

In the TE model of SELinux [27], an object, for exam-

ple a program, is assigned a type, which has limited access

privileges to resources within itself and other objects. We

assign a different type to every new sandbox we create. We

then provide the minimum resources required by the sand-

box. If the processes inside the sandbox tries to access a

certain resource for which they does not have permissions,

the event will be logged in our system, indicating contam-

ination of this sandbox. For example, the processes in a

sandbox tries to access a user file with type user t, which

requires having the privilege user t:file read. Since

the processes do not have the proper privileges, access will

be denied. This denial will appear in SELinux logs giving

us a means for detection.

5.4 DriveByDownload Detection

To demonstrate the usefulness of the WebShield frame-

work, we implement two types of detection engines for

drive-by-download attacks: a policy-based engine to detect

known vulnerabilities and a behavior-based engine for un-

known vulnerability detection.

The policy engine for vulnerability filtering. Browser-

Shield [31] leverages HTML and JavaScript rewriting to

add an interposition layer to check the invocation of DOM

APIs and malicious HTML tags. Since we are able to mod-

ify the shadow browser, we directly insert a security check-

ing layer between the DOM APIs and the HTML parser,

CSS parser and JavaScript engine. Therefore, we can fil-

ter out all the DOM nodes or CSS style objects that will

potentially trigger the vulnerabilities before encoding the

DOM data structures and sending the DOM data structures

to the client browser. This way, we “purify” the webpage

and display the remaining safe parts to the end users. The

end users can still access the important information in the

the webpages without any problems.

For the policy engine, we primarily add a security check-

ing layer at two places. The first place is the JavaScript API

binding. Whenever JavaScript tries an API call, such as the

DOM APIs, we will capture the invocation. We then check

whether the parameters to the APIs will trigger any known

vulnerabilities. The second place is the HTML and CSS

parse trees. The vulnerability checkers can be written as a

C++ function. We provide APIs for writing such checkers.

Our present implementation is a regular expression checker,

which checks each passed string using a signature library by

regular expression.

The behavior engine for detecting unknown vulnera-

bilities. Usually, the goal of drive-by download attacks

is to exploit the victim’s browser, and let the attacker in-

stall and run arbitrary software on the victim’s computer.

In [23, 24, 28, 29, 36], a behavior based model is used to

detect drive-by-download attacks toward unknown vulnera-

bilities. The basic idea is that any abnormal behaviors that

violate the browser security model will be counted as at-

tacks. In [23, 24], Moshchuk et al. give a list of abnormal

behaviors, such as attempts to create a new process that does

not belong to the browser, modifications to the file system

other than the cache folder, browser/OS crashes, etc. We

implement a similar behavior detection model on SELinux.

We mainly rely on two mechanisms: the SELinux log and a

process monitor. The SELinux log detects a potential nor-

mal profile violation, including attempts to execute a dif-



ferent binary to create a process, etc. The process monitor

monitors whether the process has crashed, or uses too much

memory, etc. When either of these two reports a problem,

we will consider it as a vulnerability.

5.5 Implementation Summary

We add 6000 lines of C++ code to WebKit in order to

construct the proxy-side sandbox, with 200 lines used to

inject the DOM interface. Session Manager also contains

3700 lines of Python code. The client side program contains

722 lines of JavaScript code.

6 Evaluation

We evaluate WebShield with seven different metrics: (i)

compatibility of representative webpages with our imple-

mentation, i.e., how accurately webpages through our proxy

render at the client side, (ii) the latency overhead, (iii) the

communication overhead, (iv) the memory overhead, (v)

the interactive performance for dynamic HTML, (vi) scal-

ability and (vii) accuracy of the detection engine. The first

five metrics are simply to evaluate how transparent Web-

Shield is to the user. Then, we discuss how well our sys-

tem scales. Finally, as a demonstration, we show the accu-

racy of the detection engine plugins for detecting drive-by-

download attacks. The proxy server was installed on a 2.5

GHz Intel Xeon server with 16 GB RAM running CentOS

5. For the client, we used a 2.66 GHz Intel Core2Duo ma-

chine with 3.25 GB of memory and running Windows XP

SP3. For some tests using the Safari browser, we used a

2.2 GHz Intel Core2Duo based MacBook with Mac OS X

version 10.6 and 4 GB memory as the client side machine.

The client machines and the server were connected on Giga-

bit Ethernet. Unless indicated otherwise, the client browser

used is Google Chrome. Next, we discuss the evaluation

results.

6.1 Compatibility Tests

In this section, we evaluate whether webpages render

correctly when viewed through the proxy. The notion of

rendering correctness is relative to the rendering without go-

ing though our proxy. For all of the webpages, we manually

test the visual correctness of the rendering.

We note that not all of the websites are actually entirely

compatible with our current implementation of WebShield.

91 of the top 100 websites and 19 of the top 20 as given by

Alexa were compatible, and the rest have some rendering is-

sues. The webpage at http://www.aol.com cannot be

rendered by the WebKit version we used for the WebShield

implementation. For the remaining websites, the reasons

are mainly implementation stability issues (crashes) and the

websites using unsupported features such as iframes with

the HTTPS protocol.

6.2 Latency Overhead

The timing overheads are computed as the latencies be-

tween the start and finish time of page rendering relative to

the page request time. We selected the webpages passing

the compatibility test and rendered each of them in Fire-

fox, Chrome and Safari and measured the rendering start

and finish times. Due to the limited space, we show only

the results for Firefox and Chrome here; the results for Sa-

fari are similar. When accessing the pages through Web-

Shield, we used JavaScript functions to get the start and end

times. The browser may issue the onload event before the

page response has already completed. So we report ren-

dering finish time as the maximum of HTTP response end

time and the onload event time. When directly accessing

the webpage without using WebShield, we use the page re-

sponse start and finish times to approximate the rendering

time. Each URL is rendered five times and the medians of

individual results of these runs are used as the rendering la-

tencies for the URL. For this metric, we do a detailed evalu-

ation for two versions of WebShield: incremental and non-

incremental. The incremental version transmits a webpage

part by part to the client browser once it has rendered these

parts in the shadow browser. It does not wait for the entire

webpage to be downloaded and rendered before transmit-

ting it to the client. The non-incremental version is a sim-

pler one, presented here only for the sake of a comparison.

It transmits responses to the client, only after the webpage

has been completely rendered at the proxy.

Figure 7 presents the cumulative distribution of ren-

dering start times. The incremental version sends partial

rendered contents to the client starting earlier than non-

incremental one. As expected, the incremental version re-

sponds earlier than the non-incremental version for more

than 50% of the pages.

Figure 8 shows us the cumulative distribution of ren-

dering finish times. We note from the CDF that there

is not much difference between the incremental and non-

incremental versions. This is easily understood because the

rendering end time depends on the last chunk of the page

response which depends on the response from the original

webserver; both the incremental and non-incremental ver-

sion end up transmitting this last chunk at nearly the same

times. Effectively, the incremental version only helps in

improving the responsiveness of the webpage and not in the

net load time.

To summarize the comparison between access through

the incremental version of WebShield and direct access, we

present the following numbers. The median difference of

rendering starting latency is 133.5 milliseconds. For 90%
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of the cases the difference is less than 1.083 seconds. For

the rendering finish times, the median difference is 382 mil-

liseconds and the 90 percentile cutoff comes at 2.459 sec-

onds. For a few rare cases, the difference is larger than five

seconds; we attribute those rare cases to some implementa-

tion problems in our current prototype.

6.3 Communication Overhead

Communication overhead is calculated as the data trans-

ferred over the network to and from the client. For a web-

page, we captured the network traces when accessing the

webpage with and without our proxy and obtained the sizes

of those traces.

Figure 11 depicts the communication overhead. Web-

Shield does not always have larger communication over-

head comparing with direct access. For some of the web-

pages, we see that the amount of data transferred to the

client when going through WebShield is less than direct

access. On the one hand, Direct access needs to trans-

fer HTML content, JavaScript files, and CSS style sheets,

whereas WebShield needs to transfer encoded DOM up-

dates related to visual affect, such as a text area, visible ele-

ments, and so on. Our transfer of user-visible components is

not as effective as that of direct access because we transfer

parsed data in JSON, which is less dense than HTML nota-

tion, and during incremental rendering we need to provide

location information and other tokens. On the other hand,

however, we do not need to transfer JavaScripts, which con-

tain application logic, because JavaScripts are executed by

the JavaScript engine of shadow browsers in WebShield and

only the final results are sent back to users. This reduce the

transfer overhead. As seen in the Figure 11, there are mixed

results when comparing WebShield with direct access. We

incur more overhead on Youtube as compared to direct ac-

cess because there are few script tags in Youtube, but for

Google Maps, we achieve smaller overhead because there

are many JavaScript scripts.

6.4 Memory Overhead

To evaluate memory overhead, we selected ten complex

webpages. For every webpage, we report the memory over-

head as the difference in memory usage of the browser be-

fore and after the page load. The initial and after the page

load memory usages are gathered using the Windows Task
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Manager. While this approach is only approximate in the

sense that we do not gather the data exactly before page re-

quest and after page load, but wait for the Task Manager to

show the results, we find this approach to be quite reason-

able as we received consistent results over multiple loadings

of a webpage.

In Figure 12, we compare the memory consumption

of the transformed webpage with the corresponding native

webpages. For our system, memory is consumed mostly by

JavaScript and DOM, because we use JavaScript to recon-

struct DOM. For a native webpage, there are many places,

for example the HTML parser, CSS parser, and JavaScript

engine, which consume memory. If a page is very large and

contains many elements, parsing the native web pages can

use a lot of memory. If a page is fairly small, our JavaScript

program itself may take up a fairly large amount of memory

compared to the webpage itself.

Figure 12 shows that our memory overhead is just a lit-

tle higher than those of native webpages, which means the

memory usage of our JavaScript program is nearly the same

as native webpages. We look at some webpages as exam-

ples. We have more memory overhead on Facebook because

the native Facebook page has a few elements for parsing and

our JavaScript render agent on client side will take compar-

atively more memory. But, for Amazon, we have less mem-

ory overhead for the transformed webpage than the native

page. This is because Amazon has many user effect ele-

ments and the browser will consume a lot of memory to

parse the contents.

6.5 Interactive Performance for Dynamic HTML

As shown in Figure 5, the normal JavaScript event

response time is the time for a browser to execute the

JavaScript event handler bound to the special event. If the

JavaScript event triggers an AJAX call, an AJAX connec-

tion to the remote web server will occur, and thus the net-

work round trip time as well as the server response time

need to be included in the respond time. This cost is in-

evitable in any client-server system. The extra time cost is

the cost introduced by our secure proxy.

In this section, we present interactivity evaluation with

microbenchmarks and a real-world JavaScript game. In the

microbenchmarks, we will investigate the extra time cost.

Regardless whether there is an AJAX connection to the re-

mote server, the extra event response time introduced by

WebShield can be classified as communication delay and

DOM update delay. Communication delay is the time cost

for transferring the triggered events from the client to the

shadow browser in the secure proxy and transfering back the

result (DOM updates) from the shadow browser to the client

browser. DOM update delay is the time cost for updating

the aforementioned shadow browser DOM updates into the

webpage’s DOM in the client browser. For the JavaScript

game evaluation, from the user’s perspective, we measure

the time delay caused by the user’s actions.

6.5.1 Microbenchmarks

With microbenchmarks, we measure the atomic event trans-

mission delay. We write a test webpage to test the event

response time. In the testing webpage, the user can enter



Start Game Move Mouse Drop a Piece Game Over

Additional Delay 41ms 7ms 10ms 7ms

Table 3. Time Delay in Game Connect 4

texts into a textarea. After the user clicks the button on the

client browser, the text in the textarea will be updated to

a text node inside a <div> node. With our security proxy,

when the user clicks the button, the changes in textarea node

and the “click” event will be packaged in JSON and trans-

ferred to the shadow browser in the proxy. The shadow

browser updates a textnode with the receiving textarea con-

tent. Then, the changes of the DOM tree will be sent back

to the client browser and the client-side DOM is updated.

Communication delay: The communication delay time

is decided by two factors, the network delay and the data

transfer size. Network delay will influence the communi-

cation delay. We use the network emulator netem [9] to

emulate different network environments with latencies of 0,

1, 2, 3 and 4ms on the gateway. Here, we change the gate-

way latency, and trigger the click event with a 2 kilobyte

textarea. As seen in Figure 9, the response delay increases

linearly with the growth of local latency. The response de-

lay is within 20ms when local latency is 4ms. So the user

will not perceive this extra delay.

Then, we will test the communication delay with dif-

ferent DOM node sizes. As Figure 10 shows, we change

the length of textarea in a test webpage, and trigger the

click event while measuring the delay time with the Date()

function. We can see that the response delay increases

linearly with the growth of textarea size. Even as the

textarea reaches 64 kilobytes, the communication delay is

still within 50ms.

In an intra-network environment, the latency between the

client browser and proxy is usually small (less than 5ms).

As the above evaluation shows, the event response time is

just tens of milliseconds, which will not affect the user’s

experience.

DOM update delay: In the above evaluation, we update

one node for each event. Here, we evaluate the time cost for

updating one DOM node. In our experiment, we repeatedly

insert a textnode with a length of 2 kilobytes to the first

child of body tag 10000 times, and use the Date() function

to get the duration. The average time cost for updating a

single node is 0.04ms. For state-of-the-art web applications,

one event usually incur an update of less than 100 DOM

nodes. Therefore, DOM update delay is negligible in our

implementation.

6.5.2 Test on a Real Game

We chose a real-world high-interactive JavaScript game,

Connect Four, to benchmark WebShield. We downloaded

this game from the front page of the top website when

querying Google for “javascript games”. We measure the

delay on the client side based on different user opera-

tions. Connect Four is a mid-size (about 7K) two-player

JavaScript game we found at a popular JavaScript games

site [4]. Each player can place a piece on a square. When a

player has four connected pieces, he will win. In our exper-

iment, we will measure time delay introduced by our proxy

with various user actions taking effect on the user screen.

In this game, four kinds of activities are measured.

First, we measure the time difference between when a user

presses the button to start the game and when the game

is started. Next, we measure the time difference between

when a user moves a mouse and when the visual effect is

shown on the screen. Third, time delay is the time differ-

ence between when the user drops a piece and when the

piece is shown on the screen. Lastly, how long it takes for

the game’s end to be shown when someone has four con-

nected pieces, It is generally acceptable that delays under

200ms are tolerable for an interactive application [15]; As

shown in table 3, the delay incurred in our case is much

smaller. Therefore, we believe our scheme is good for even

high interactive web applications.

6.6 Scalability

WebShield is designed to be used in an enterprise net-

work such as a company, a government agency or a uni-

versity. We consider the sandbox creation speed and sand-

box memory usage for the scalability of WebShield. Sand-

box creation speed will influence how many new users that

that can be supported in a short amount of time because a

new sandbox is created for each new user. This depends

on the startup time of a sandbox, which is 0.035 seconds

per sandbox in our system. The total number of sandboxes

will influence the total amount users we can support because

each sandbox will take a certain amount of memory. In our

system, one sandbox takes 100MB and one page takes 10-

25MB. We use a sample of one day of traffic in Northwest-

ern university to observe the scalability of our system.

At Northwestern university, there are 39 new web users

on average in one second and at most 82 new web users in

one second. With our sandbox creation speed, 28 sandboxes



Exploit Description Behavior Monitor Signature Detection

1 CVE-2009-0945: SVG null-pointer dereference Y N

2 CVE-2009-1690: Use-after-free vulnerability Y Y

3 CVE-2009-1698: Incorrectly parsing attr() N Y

4 CVE-2009-1700: Local file theft Y Y

5 WebKit Bug 19588:Crash doing open on destroyed window Y N

6 Cross-site scripting across frames Y Y

7 Opening an arbitrary amount of windows N Y

8 Parsing arbitrarily large integer Y Y

False Positive 0/500 1/500

Table 4. Exploit Description and Detection Results(Y means Can Detect, N means the Opposite)

are created per second. Using the maximum amount of new

users, we need 3 computers to support that number of new

users. For some margin, no more than five computers are

needed to sustain the new user rate.

From our measurement, we find Northwestern Univer-

sity has 2720 live web users on average, and each user vis-

its five websites per minute on average. We assume we use

16GB memory machines to support users. Assuming the

OS uses 2GB of the memory, one sandbox uses 100MB of

memory, and five webpages count for about 100MB, each

machine can sustain 70 users(sandboxes). Thus, we will

need 39 machines for a middle size enterprise network such

as the campus network of Northwestern university.

Sandbox creation speed is not a big problem for our sys-

tem because we use process-level sandboxes, but sandbox

memory usage is the system bottleneck. However, we be-

lieve less than 40 machines are moderate for an enterprise

network.

6.7 DriveByDownload Evaluation

To demonstrate the usefulness of WebShield, we also

evaluate the detection accuracy of two detection engines

when pluging them in WebShield framework.

As there is no good source of publicly available or pop-

ular WebKit exploits, several exploits were written target-

ing both real, reported vulnerabilities (such as those with a

CVE number) and fake one that were introduced into the

WebKit engine by modifying its code. With the four real

and four fake exploits, listed in Table 4, targeting cross-site

scripting, denial of service, and other kinds of attacks, the

detection engine was evaluated on its success in detecting

the exploits.

There are two components to the detection engine: the

behavior monitor and the signature engine. The behavior

monitor keeps track of potentially suspicious behavior such

as file accesses, new processes, and browser termination.

The signature engine resides inside the web browser and

uses regular expressions along with signatures to detect sus-

picious webpages. When either or both of the components

report something, the webpage is considered to have an ex-

ploit.

The results of the evaluation are in Table 4. As seen

in the table, the behavior monitor and the signature engine

both detected several of the exploits. Though each compo-

nent by itself was not able to detect all the exploits, consid-

ering the results from both components led to a full cover-

age of the exploits.

To test for false positives, the detection engine was

tested on the index pages of the top 500 websites listed on

Alexa [1], which are supposedly benign. The procedure

to evaluate the effectiveness of the engine on the exploits

was also used on these top ranked pages to determine if any

of these were incorrectly determined to be malicious web-

pages. As seen in Table 4, the behavior monitor did not con-

sider any of those pages suspicious and the signature engine

considered only one of those pages as malicious. Further-

more, the signature engine may be improved by using better,

more accurate signatures.

7 Related Work

7.1 Web Attack Defense Techniques

Host-based approaches: Many techniques have been

proposed for defending web attacks. The majority of

them are host-based approaches which require browser or

client-side modification [12, 14, 16, 17, 19, 26, 30, 34, 36].

Several research efforts propose to modify the client

browser architecture for better security protection [16, 17,

32, 35]. At a high level, they propose to use proper

sandboxes to isolate different instances (browser modules,

browser tabs, principals etc.), which require browser modi-

fication. Their design can be easily deployed in our shadow



browsers, which will help improve the security of web

users. WebShield is different in that it is not a new browser

architecture, but rather a framework for deploying security

defense techniques without client modification.

There are also many works proposed for different

types of web attacks. HoneyMonkey [36] requires a BHO

(browser helper object) and VM monitors for behavior-

based drive-by-download detection. Barth et al. propose

to add an origin header for preventing cross site request

forgery [14]. In [12], a reference monitor is proposed

to solve cross origin JavaScript capability leaks. Both

DSI [26] and JavaScript Taint [34] require taint checking in

JavaScript engines to prevent cross side scripting attacks.

All these cases require client side deployment. WebShield

can help deploy them at a middlebox without client side

modification.

Middlebox Approaches: Middlebox approaches are an

alternative to host based approached for web defense. Exist-

ing middleboxes focus on drive-by-download attack detec-

tion. SpyProxy [23] and BrowserShield [31] are two such

examples. We have compared with these two in Section 2.1.

Malicious URI Labeling: Many industrial vendors, such

as Google [28], McAfee [6], and BlueCoat [2], attempt

to statically label URIs as either benign or malicious us-

ing [36] or similar approaches. Two major problems exist

with this approach. First, similar to SpyProxy, the detec-

tion is static, and thus can easily be bypassed with non-

determinism or user inputs. Second, attackers can leverage

URI polymorphism to make URI based detection harder.

We believe that WebShield and URI labeling approaches

can potentially be combined together. The URI labeling can

increase efficiency while our approach can improve the ac-

curacy.

7.2 Remote Browsing

Malkhi et al. [22] propose to run Java Applets in a re-

mote playground and proxy the visual effect back to client

browsers. FlashProxy [25] aims to rewrite Flash to an

AJAX JavaScript program to display the same visual effect

without requiring flash support on client browsers. Our ap-

proach is similar to their in philosophy; it works by sending

the visual effect in the form of DOM updates back to client

browsers. However, to design a proxy for the visual effects

of webpages has its own challenges, such as the aforemen-

tioned object coherence problem. Moreover, by incorporat-

ing these two approaches, we can have a more complete de-

sign which can even handle mobile code in plug-ins. Opera

Mini [7] is one of the most widely deployed systems that

have browsers inside middleboxes. Opera Mini partially

renders a webpage and convert to a internal format (e.g.,

OBML) in a middlebox before transferring it to the Opera

Mini client on smartphones. Opera Mini is designed for

a totally different purpose and requires client-side modifi-

cations. Ripley [20] executes JavaScript at the client and

server sides in parallel in order to validate the correctness

of the application. Their goal is different from ours in that

they aim to prevent malicious users from tampering with

the web application logic. Co-browsing [21] also investi-

gates different options for synchronizing two different web

browser instances. Due to an entirely different goal they

choose a quite different approach by synchronizing the in-

puts to JavaScript functions. We also need to synchronize

the shadow browser with the client browser. However, be-

cause we want to prohibit JavaScript execution on the client

side, we choose a different way for synchronization.

8 Discussion

Privacy Issues: Similar to many security checking de-

vices, WebShield needs to check the content related to

users, primarily the webpages visited by users. We believe

WebShield does not raise more privacy issues than tradi-

tional network based intrusion detection/prevention systems

(NIPSes), which are currently deployed by most enterprise

networks. Similar to NIPSes, WebShield examines the user

related content through automated programs and filters out

the attacks automatically. Therefore, we believe deploying

WebShield in enterprise networks will not bring new pri-

vacy issues.

Dealing with User Scripts: Bookmarklets and Grease-

monkey [3] allow the user to run custom JavaScript on a

webpage to do some tasks or change the appearance of the

webpage. Since these tools interact with the page’s DOM in

some way, and our approach keeps the original DOM intact,

the behavior of user scripts remains unchanged.

Dealing withMultiple Brands and Versions of Browsers:

Different users may favor different browsers. A deployed

system should support all major brands of browsers. There-

fore, WebShield need to have shadow browsers of major

brands of browsers, such as IE, Firefox and Chrome. Most

modules of shadow browsers are independent from the ac-

tual browser. The browser dependent module is mainly a

DOM monitor which can access DOM nodes and events

with they are created.

Note that only the most recent versions of browsers need

to be supported in the shadow browser collection. Known

vulnerabilities are detected by policy-based engines, which

check the DOM updates and cannot be bypassed regard-

less of whether the versions of shadow browsers and client

browsers match exactly. Behavior engines are mainly used



to detect zero day vulnerabilities. It is very rare to have zero

day vulnerabilities only in an older version but not in the

current version of browsers. We therefore need to support

only recent versions of a handful of major browsers.

Limitations: One major limitation of our approach is: if

the event triggered DOM updates happen too frequently, our

remote execution potentially cannot keep up with updating

the webpage on time. Given the RTT of enterprise is low,

only extremely high event streams will cause such prob-

lems. We examined top 100 sites from Alexa. None of them

triggered such high event streams. Therefore, we believe for

most web pages our scheme will not have a problem.

Moreover, our current implementation does not intercept

the HTTPS protocol. Currently, some commercial NIPSes

have already done that. In theory, if the enterprise can

get the users’ private keys, or the enterprise fakes the web

server’s key in the middle, this can be done. Therefore, we

can work in a similar way as these NIPSes for HTTPS.

Our current prototype offers limited protection against

malicious plugin content. All the attacks which target data-

only plugins such as video codecs, can be detected accu-

rately using WebShield since the data will be examined in

the shadow browser. Both policy and behavior based ap-

proaches can work in such cases. However, some plugins

such as Flash have their own script languages. With scripts,

an attacker can potentially hide they malicious intent from

shadow browsers by using non-determinism or user input.

To counter this type of attacks, we need to intercept the

flash content in a way similar to what we do for the web-

pages. Flash rewriting has been used by FlashProxy [25] in

the past, though for a different purpose. it is possible to ex-

tend their technique to transfer visual effects of Flash back

to the client browser and run ActionScript (Flash scripts)

inside shadow browsers. Although in theory there are a lot

of different plugins, the popular ones are limited. Covering

popular plugins can already protect most web users. It is

our future work to design scalable solutions for supporting

a large number of plugins.

9 Conclusion

Detecting attacks in dynamic webpages has been a

great challenge, especially when the web content is non-

deterministic. Existing host-based solutions suffer from

deployment problems due to slow user adoption, while

the current middlebox approaches can only accommodate

certain limited security protection mechanisms. In this

paper, aiming to design a general middlebox framework

that can enable different security protection mechanisms,

we developed four design principles and, based on them,

designed WebShield, a general secure proxy with shadow

browsers. In WebShield, we ensure no untrusted scripts

can be run on client browsers, and thus close the door

for attacks that employ non-determinism or user input to

bypass detection. This way, we can filter out malicious

parts of a web page while rendering the rest of the page

at the user-side. Evaluation shows that WebShield can be

applied to an enterprise network to prevent attacks, even

those with non-deterministic behavior or involving user

interaction, and protect the end-user browsers from both

known and unknown vulnerabilities.
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