Integrated Fault and Security Management

Ehab Al-Shaer and Yan Chenf
School of Computer Science, DePaul University, Chicago, IL, USA
TDepartment of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL, USA

ehab@cs.depaul.edu, ychen @northwestern.edu

1 INTRODUCTION

Network problems such as faults and security attacks are expressed in the network as one or more symp-
toms (e.g., alarms, logs, troupe tickets). Network problem diagnosis is the process of correlating or
analyzing the observed symptoms in order to identify the root cause. As network faults and security
attacks might show similar symptomes, it is possible to misidentify faults as security attacks or vise versa.
For example, host/network reachablility problems could be due to either a denial of service attack or link
or protocol failure. This causes more false alarms and incorrect response actions. Therefore, integrat-
ing fault and security management is important for practical network management systems in order to
diagnose and fix problems accurately.

Fault and security intrusion diagnosis exhibit a similar reasoning process, which includes symptom
collection, correlation and evaluation. This makes the integration of fault and security management even
more sensible. However, to achieve an optimal integration, a number of challenges need to be addressed.
First, the root cause should be accurately identified even with incomplete symptom information. Sec-
ond, problem identification should be fast to handle high-speed networks and wide sensor (e.g., IDS)
distribution.

In Section 2 of this chapter, we present an active problem diagnosis framework for integrating the
reasoning of fault or security alarms within the same engine. The presented framework uses an active

diagnosis approach to deal with incomplete symptom information and identify faults and intrusions. In

Section 3, we show an architecture for network-based intrusion detection systems that analyzes traffic
collected from different sensors on a high speed network, identifies faults and intrusions, and initiates

proper mitigation actions for various intrusions.

2 ACTIVE INTEGRATED FAULT IDENTIFICATION FRAME-
WORK

2.1 Background

Fault localization is a basic component in a fault management system because it identifies the fault
reason which can best explain the observed network disorders (called symptoms). Examples of fault
symptoms include host or network unreachable, slow response, high utilization, efc.. Most fault reason-
ing algorithms use a bipartite directed acylic graph to describe the Symptom-Fault correlation, which
represents the causal relationship between each fault f; and a set of its observed symptoms Sy, [23].
Symptom-Fault causality graph provides a vector of correlation likelihood measure p(s;|f;), to bind a
fault f; to a set of its symptoms Sy,. Similarly, Symptom-intrusion causality graph can be constructed
based on attack graphs [18] to describe the alarm-intrusion correlation. For simplicity, we will focus
in the rest of this section on fault reasoning and diagnosis, however, similar techniques are applied to
security attacks/intrusions identification.

Two approaches are commonly used in fault reasoning and localization: passive diagnosis ([19], [23],
[22], [13] and active probing ([2], [9], [6], [10]). In passive approach, all symptoms are passively col-
lected and then processed to infer the root faults. In active approach, faults are detected by conducting
a set of probing actions. Passive approach causes less intrusiveness in management networks. How-
ever, it may take long time to discover the root faults, particularly if symptom loss ratio is high. On the
other hand, although active probing approach is more efficient to identify faults quickly, probing might
cause significant overhead particularly in large-scale networks. In this section, we will show a novel
fault localization technique that integrates the advantage of both passive and active monitoring into one
framework, called Active Integrated fault Reasoning or AIR. In our approach, if the passive reasoning is
not sufficient to explain the problem, AIR selects optimal probing actions to discover the most critical
symptoms that are important to explain the problem but they have been lost or corrupted during pas-

sive fault reasoning. Our approach significantly improves the performance of fault localization while

Figure 1: Action-Symptom-Fault Model

minimizing the intrusiveness of active fault reasoning.

AIR consists of three modules: Fault Reasoning (F'R); Fidelity Evaluation (F/'E); and Action Se-
lection(AS). Fault reasoning module passively analyzes observed symptoms and generates a fault hy-
pothesis. The fault hypothesis is then sent to fidelity evaluation module to verify if the fidelity value of
the reasoning result is satisfactory. If the correlated symptoms necessary to explain the fault hypothesis
are observed (i.e. high fidelity), then fault reasoning process terminates. Otherwise, a list of most likely
unobserved symptoms that can contribute to the fault hypothesis fidelity is sent to the action selection
module, which then performs selected actions to determine which symptoms has occurred but not ob-
served (i.e. lost) and accordingly adjust hypothesis fidelity value. If the new fidelity value is satisfactory,
then the reasoning process terminates; otherwise, the new symptom evidence is fed into the fault rea-
soning module to create a new hypothesis. This process is recursively invoked until a highly credible
hypothesis is found.

The section is organized as follows. In section 2.2, we discuss our research motivation and the
problem formalization. In section 2.3, we describe the components and algorithms of AIR. In Section 2.4,
we present a simulation study to evaluate AIR performance and accuracy. In Section 2.5, related work is

discussed.

2.2 Challenges and Problem Formalization

In general, active fault management does not scale well when the number of managed nodes or faults in
the network grows significantly. In fact, some faults such as an intermittent reachability problem may
not even be identified if only active fault management is used. However, this can be easily reported using

passive fault management systems because agents are configured to report abnormal system conditions or

Notation Definition
S, a set of all symptoms caused by the fault f;
F, a set of all faults that might cause symptom s;
So a set of all observed symptoms so far
So, a set of observed symptoms caused by fault f;
Su, a set of not-yet-observed (lost) symptoms caused by the fault f;
h; a set of faults that constitute a possible hypothesis that can explain Sp
d a set of all different fault hypotheses, h;, that can explain Sp
SN a set of correlated but not-yet-observed symptoms associated with any fault in a hypothesis
Sy a subset of Sy, which includes symptoms that their existence is confirmed
Su a subset of Sy, which includes symptoms that their non-existence is confirmed

Figure 2: Active Integrated Fault Reasoning Notation

symptoms such as high average packet drop ratio. On the other hand, symptoms can be lost due to noisy
or unreliable communications channels, or they might be corrupted due to spurious (untrue) symptoms
generated as a result of malfunctioning agents or devices. This significantly reduces the accuracy and
the performance of passive fault localization. Only the integration of active and passive reasoning can
provide efficient fault localization solutions.

To incorporate actions into traditional Symptom-Fault model, we propose an extended Symptom-
Fault-Action model as shown in Fig. 1. In our model, actions are properly selected probes or test trans-
actions that are used to detect or verify the existence of observable symptoms. Actions can simply include
commonly used network utilities, like ping and traceroute; or some proprietary fault management sys-
tem, like SMRM [6]. We assume that symptoms are verifiable, which means that, if the symptom ever
occurred, we could verify the symptom existence by executing some probing actions or checking the
system status such as system logs.

In this section, we use F' = {fi, f2,..., fu} to denote the fault set, and S = {s1,82,...,8n} tO
denote the symptom set that can be caused by one or multiple faults in F'. Causality matrix Ppygs =
{p(si|f;)} is used to define causal certainty between fault f;(f; € F') and symptom s;(s; € S). If
p(si|f;) = 0or1forall (4,), we call such causality model a deterministic model; otherwise, we call it a
probabilistic model. We also use A = {ay, ..., ax} to denote the list of actions that can be used to verify
symptom existence. We describe the relation between actions and symptoms using Action Codebook

represented as a bipartite graph as shown in Fig. 1. For example, the symptom s; can be verified using

l

Fault Reasoning
(FR)

P l

Fidelity Evaluation
(FE)

Fidelity < h, 0>
satisfied ?

Conclusion
high credible h found)

Action Selection
(AS) < Sy, Sy >

Figure 3: Active Action Integrated Fault Reasoning

action a; or ay. The Action Codebook can be defined by network managers based on symptom type, the
network topology, and the available fault diagnostic tools. The extended Symptom-Fault-Action graph
is viewed as a 5-tuple (S, F, A, E1, E,), where fault set /', symptom set .S, and action set A are three
independent vertex sets. Every edge in F; connects a vertex in S and another vertex in F' to indicate
causality relationship between symptoms and faults. Every edge in E; connects a vertex in A and another
vertex in S to indicate the Action Codebook. For convenience, in Fig. 2, we introduce the notations used
in our discussion throughout this section. The basic Symptom-Fault-Action model can be described as

the following:

e For every action, associate an action vertex a;, a; € A;

For every symptom, associate a symptom vertex s;, s; € S

For every fault, associate a fault vertex f;, f; € F;

For every fault f;, associate an edge to each s; caused by this fault with a weight equal to p(s;|f;);

e For every action a;, associate an edge of weight equal to the action cost to each symptom verifiable

by this action.

The performance and accuracy are the two most important factors for evaluating fault localization
techniques. Performance is measured by fault detection time 7', which is the time between receiving the

fault symptoms and identifying the root faults. The fault diagnostic accuracy depends on two factors:

(1) the detection ratio («), which is the ratio of the number of frue detected root faults (F}; is the total

| FanFp| .

detected fault set) to the number of actual occurred faults £}, formally oo = AR

and (2) false positive
ratio ((3), which is the ratio of the number of false reported faults to the total number of detected faults;
formally 5 = w [23]. Therefore, the goal of any fault management system is to increase o and
reduce (3 in order to achieve high accurate fault reasoning results.

The task of the fault reasoning is to search for root faults in F' based on the observed symptoms Sp.
Our objective is to improve fault reasoning by minimizing the detection time, 7" and the false positive
ratio, 3, and maximizing the detection ratio, «.

In order to develop this system, we have to address the following three problems: (1) Given the Fault-
Symptom correlation matrix and the set of observed symptoms (Sp), construct a set of the most possible
hypotheses, ® = {hi, hg, ..., hy}, h; C F, that can explain the current observed symptoms; (2) Given
a set of possible hypotheses, find the most credible hypothesis A, that can give the best explanation for
the current observed symptoms; (3) If the selected hypothesis does not satisfy fidelity requirement, then
given the unobserved symptoms Sy and select the minimum-cost actions to search for an acceptable

hypothesis. In the following, we will discuss the solution for each problem.

2.3 Integrated Fault-Intrusion Reasoning

The Active Integrated Fault Reasoning (AIR) process (Fig. 3) includes three functional modules: Fault
Reasoning (F'R), Fidelity Evaluation (F'E), and Action Selection (AS). The Fault Reasoning mod-
ule takes passively observed symptoms Sy as input and returns fault hypothesis set ® as output. The
fault/intrusions hypothesis set & might include a set of hypotheses (h1, hs, . . ., h,) where each one con-
tains a set of faults or intrusions that explains all observed symptoms so far. Then, ® is sent to the
Fidelity Evaluation module to check if any hypothesis h; (h; € ®) is satisfactory. If the most correlated
symptoms necessary to explain the fault hypothesis h; are observed (i.e. high fidelity), then the Fault
Reasoning process terminates. Otherwise, a list of unobserved symptoms/alarms, Sy, that contribute to
explain the fault hypothesis h; of the highest fidelity, is sent to the Action Selection module to determine
which symptoms have occurred or to distinguish between faults and security breaches. As a result, the
fidelity value of hypothesis h; is adjusted accordingly. The conducted actions return the test result with
a set of existing symptoms .Sy, and non-existing symptoms Sy;. The corresponding fidelity value might
be increased or decreased based on the action return results. If the newly calculated fidelity is satisfied,

then the reasoning process terminates; otherwise, Sp, Sy are sent as new input to the Fault Reasoning

6

module to create a new hypothesis. This process is repeated until a hypothesis with high fidelity is found.
Fidelity calculation is explained later in this section. In the following, we describe the three modules in

detail, then discuss the complete Active Integrated Fault Reasoning algorithm.

2.3.1 Heuristic Algorithm for Fault Reasoning

In the Fault Reasoning module, we use a contribution function, C(f;), as a criteria to find faults or
intrusions that have the maximal contribution of the observed symptoms. In the probabilistic model,
symptom s; can be caused by a set of faults f;, (f; € F},) with different possibilities p(s;|f;) € (0, 1].
We assume that the Symptom-Fault correlation model is sufficient enough to neglect other undocumented
faults (i.e., prior fault probability is very low). Thus, we can also assume that symptom s; will not occur
if none of the faults in F§, happened. In other words, if s; occurred, at least one f; (f; € F§,) must
have occurred. However conditional probability p(s;| f;) itself may not truly reflect the chance of fault f;
occurrence by observing symptom s;. For example, in Fig. 1, by observing s;, there are three possible
scenarios: f; happened, f, happened or both happened. Based on the heuristic assumption that the
possibility of multiple faults happened simultaneously is low, one of the faults (f; or f5) should explain
the occurrence of s;. In order to measure the contribution of each fault f; to the creation of s;, we
normalize the conditional probability p(s;|f;) to the normalized conditional probability p(s;| f;) to reflect
the relative contribution of each fault f; to the observation of s;.

~ SilJi

B(sil f) = Zﬂf i 'pjc(i' 5 (1)

With p(s;| f;), we can compute normalized posterior probability p(f;|s;) as follows.

O(f:ls;) = ﬁ(82|fl)p(ﬁ) ?
p(filsi) > e, Blsilfip(fi) .

p(fi]s;) shows the relative probability of f; happening by observing s;. For example, in Fig. 1, assuming
all faults have the same prior probability, then p(fi|s1) = 0.9/(0.9 + 0.3) = 0.75 and p(f2|s1) =
0.3/(0.9 + 0.3) = 0.25. The following contribution function C'(f;) evaluates all contribution factors
p(fils:i), si € So, with the observation Sp,, and decides which f; is the best candidate with maximum
contribution value C'(f;) to the currently not yet explained symptoms.

S eveso, PUfils1)

C(fi) = -
) 2siesy, PUfilsi) ¥

Therefore, fault reasoning becomes a process of searching for the fault or security breach (f;) with
maximum C'(f;). This process continues until all observed symptoms are explained. The contribution
function C'(f;) can be used for both deterministic and probabilistic model.

In the deterministic model, the more the number of symptoms observed, the stronger the indication
that the corresponding fault has occurred. Meanwhile, we should not ignore the influence of prior fault
probability p(f;), which represents long-term statistical observation. Since p(s;|f;) = 0 or 1 in the
deterministic model, the normalized conditional probability reflects the influence of prior probability of

fault f;. Thus, the same contribution function can seamlessly combine the effect of p(f;) and the ratio of

ISo,|
ISy,]

together.

In the fault reasoning algorithm, first it finds the fault candidate set F» including all faults that can
explain at least one symptom s; (s; € Sp), then it calls the function HU() to generate and update the
hypothesis set ® until all observed symptoms Sy can be explained. According to the contribution C'(f;)
of each fault f; (f; € Fr), algorithm 1 searches for the best explanation of Sk, which is currently
observed but not yet explained symptom by the hypothesis h; (lines 2-12). Here Sk = So — Uy,ep, So,
and initially S = Sp. If multiple faults have same contribution, multiple hypotheses will be generated
(lines 13-17). The searching process (HU) will recursively run until all observed symptoms explained
(lines 18-24). Notice that only those hypotheses with minimum number of faults that cover all observed
symptoms are included into ® (lines 23-24).

The above Fault Reasoning algorithm can be applied to both deterministic and probabilistic models

with same contribution function C'(f;) but different conditional probability p(s;|f;).

2.3.2 Fidelity Evaluation of Fault Hypotheses

The fault hypotheses created by the Fault Reasoning algorithm may not accurately determine the root
faults because of lost or spurious symptoms. The task of the Fidelity Evaluation is to measure the
credibility of hypothesis created in the reasoning phase given the corresponding observed symptoms.
How to objectively evaluate the reasoning result is crucial in fault localization systems.

We use the fidelity function F'D(h) to measure the credibility of hypothesis i given the symptom

observation Sp. We assume that the occurrence of each fault is independent.

e For deterministic model:

_ Zfieh |SOi‘/‘Sfi‘

FD(h) n

“4)

e For probabilistic model:

MeseUy, o sy, (= Tpyen(= p(sil£i))

FD(h) = [Lsieso(= Ipen(—p(silfi))

()

Obviously in the deterministic model, if the hypothesis h is correct, F'D(h) must be equal to 1
because the corresponding symptoms can be either observed or verified. In the probabilistic model, if
related symptoms are observed or verified, F'D(h) of a credible hypothesis can still be less than 1 because
some symptoms may not happen even when the hypotheses are correct. In either case, our fidelity
algorithm takes in consideration a target Fidelity Threshold, F'Dryrresnorp, that the user can configure
to accept hypothesis. System administrators can define the threshold based on long-term observation and
previous experience. If the threshold is set too high, even correct hypothesis will be ignored; but if the
threshold is too low, then less credible hypothesis might be selected.

Fidelity evaluation function is used to evaluate each hypothesis and decides if the result is satisfactory
by comparing to the pre-defined threshold value. If an acceptable hypothesis that matches the fidelity
threshold exists, the fault localization process can terminate. Otherwise, the best available hypothesis
and a non-empty set of symptoms (Sy) would be verified in order to reach a satisfactory hypothesis in

the next iteration.

2.3.3 Action Selection Heuristic Algorithm

The main purpose of this component is to verify or investigate the existence of symptoms/alarms that
have the most contribution to identify faults or intrusions. We verify symptoms rather than faults be-
cause they are the manifestation of faults in the network and easily trackable. The Action selection also
performs actions to identify if the problem is fault or security intrusion. The Action Selection finds the
least-cost actions to verify Sy (unobserved symptoms) of the hypothesis that has highest fidelity. As the
size of Sy grows very large, the process of selecting the minimal cost action that verifies Sy becomes
non-trivial. The Action-Symptoms correlation graph can be represented as a 3-tuple (A, S, E) graph
such that A and S are two independent vertex sets representing Actions and Symptoms respectively, and
every edge e in F connects a vertex a; € A with a vertex s; € S with a corresponding weight (w;;) to

denote that a; can verify s; with cost w;; = w(s;, a;) > 0. If there is no association between s; and a;,

9

Figure 4: Symptom-Action Bipartite Graph

then w;; = 0. Because a set of actions might be required to verify one symptom, we use a virtual action
vertex, v;, to represent this case. The virtual action vertex v; is used to associate a set of conjunctive
actions to the corresponding symptom(s). However, if multiple actions are directly connected to a symp-
tom, then this means any of these actions can be used disjunctively to verify this symptom (Fig. 4). To
convert this to a bipartite graph, (1) we set the weight of v;, w(s;, v;), to the total cost of the conjunctive
action set, (2) then eliminate the associated conjunctive set to the v;, (3) associate v; with all symptoms
that can be verified by any action in the conjunctive action set.

The Symptom-Action graph in Fig. 4 presents the verification relationship between symptoms { s, s, s3}
and actions {a1, as, az}. Symptom s; can be verified by taking a combination of action a; and as, which
causes a new virtual action vertex v; to be created with weight 2. Action v; can verify all symptoms
(s1, s2) that are verifiable by either a; or a;. After converting action combination to a virtual action,
Symptom-Action correlation can be represented in a bipartite graph.

The goal of the Action Selection algorithm is to select the actions that cover all symptoms Sy with
a minimal action cost. With the representation of Symptom-Action bipartite graph, we can model this
problem as a weighted set-covering problem. Thus, the Action Selection algorithm searches for A; such
that A; includes the set of actions that cover all the symptoms in the Symptoms-Action correlation graph
with total minimum cost. We can formally define A; as the covering set that satisfies the following

conditions: (1) Vs; € S, Ja; € A; s.t. wy; > 0,and (2) > w; is the minimum.

a; EAi,Sj €SN
The weighted set-covering is an NP-complete problem. Thus, we developed a heuristic greedy set-
covering approximation algorithm to solve this problem. The main idea of the Algorithm is simply first

Sa,
|, —, where

selecting the action (a; or v;) that has the maximum relative covering ratio, R; = >
5_7'65(17;]

this action is added to the final set A; and removed from the candidate set A, that includes all actions.
Here, S,, is the set of symptoms that action a; can verify, S,, C Sy. Then, we remove all symptoms
that are covered by this selected action from the unobserved symptom set Sy. This search continues to

find the next action a; (a; € A.), that has the maximum ratio R; until all symptoms are covered (i.e.,

10

Sy is empty). Thus, intuitively, this algorithm appreciates actions that have more symptom correlation

or aggregation. If multiple actions have the same relative covering weight, the action with more covered

symptoms (i.e., larger |S,, | size) will be selected. If multiple actions have the same ratio, R;, and same
|Sa;|» then each action is considered independently to compute the final selected sets for each action and
the set that has the minimum cost is selected. Finally, it is important to notice that each single action in

the Ay set is necessary for the fault determination process because each one covers unique symptoms.

2.3.4 Algorithm for Active Integrated Fault Reasoning

The major contribution of this work is to incorporate active actions into fault reasoning. Passive fault
reasoning could work well if enough symptoms can be observed correctly. However in most cases, we
need to deal with interference from symptom loss and spurious symptoms, which could mislead fault
localization analysis. As a result of fault reasoning, the generated hypothesis suggests a set of selected
symptoms Sy that are unobserved but expected to happen based on the highest fidelity hypothesis. If
fidelity evaluation of such a hypothesis is not acceptable, optimal actions are selected to verify Sy.
Action results will either increase fidelity evaluation of the previous hypothesis or bring new evidence
to generate a new hypothesis. By taking actions selectively, the system can evaluate fault hypotheses
progressively and reach to root faults.

Algorithm 2 illustrates the complete process of the AIR technique. Initially, the system takes ob-
served symptom Sy as input. Fault Reasoning is used to search the best hypothesis ® (Line 3). Fidelity
is the key to associate passive reasoning to active probing. Fidelity Evaluation is used to measure the
correctness of corresponding hypothesis i (h € ®), and produce expected missing symptoms Sy (Line
3). If the result & is satisfied, the process terminates with current hypothesis as output (Line 5 - 6).
Otherwise, AIR waits until Initial Passive Period (/ PP) expired (Line 8) to initiate actions to collect
more evidence of verified symptoms Sy and not-occurred symptoms Sy (Line 10). New evidence will
be added to re-evaluate previous hypothesis (Line 13). If fidelity evaluation is still not satisfied, the new
evidence with previous observation is used to search another hypothesis (Line 3) until the fidelity eval-
uation is satisfied. At any point, the program terminates and returns the current selected hypothesis, if
either the fidelity evaluation does not find symptoms to verify (Sy is (), or none of the verified symp-
tom had occurred (Sy is ()). In either case, this is an indication that the current selected hypothesis is

creditable.

11

(a) (b) (c)

Detection Rate

False Positive Rate

Detection Time (s)
- =)

~smfcive SLR=0% FTH=0G Al
~Xefcive SLR=ID% FTHE0G

- Passive SLR0% FTH:OS - Pas

e SIR=2 FTHD8
0%
o

~e~hcive SLR=10% FTHA0G
4 Passe SLR-D% FTHE0G

Figure 5: The Impact of Symptom Loss Ratio (a) Detection Time 7' (b) Detection rate o (c) False

positive rate (3

2.4 Simulation Study

In this section, we describe our simulation study to evaluate Action Integrated fault Reasoning (AIR)
technique. We conducted a series of experiments to measure how AIR improves the performance and the
accuracy of the fault localization compared with Passive Fault Reasoning (P F'R). The evaluation study
considers fault detection time 7" as a performance parameter and the detection rate o and false positive
rate (3 as accuracy parameters.

In our simulation study, the number of monitored network objects D ranged from 60 to 600. We
assume every network object can generate different faults and each fault could be associated with 2 to 5
symptoms uniformly distributed. The number of simulated symptoms vary from 120 to 3000 uniformly
distributed. We use fault cardinality (F'C), symptom cardinality (SC) and action cardinality (AC') to
describe the Symptom-Fault-Action matrix such that £'C' defines the maximal number of symptoms that
can be associated with one specific fault; SC defines the maximal number of faults one symptom might
correlate to; AC' defines the maximal number of symptoms that one action can verify. The independent
prior fault probabilities p(f;) and conditional probabilities p(s;|f;) are uniformly distributed in ranges
[0.001, 0.01] and (0, 1] respectively. Our simulation model also considers the following parameters:
Initial Passive Period (I PP); Symptom Active Collecting Rate (SACR); Symptom Passive Collect-
ing Rate (SPCR); Symptom Loss Ratio (SLR); Spurious Symptom Ratio (S.SR); Fidelity Threshold
FDruresnorp-

The major contribution of this work is to offer an efficient fault reasoning technique that provides
accurate results even in worst cases like when symptom passive collecting rate (SPCR) is low, and/or

symptom loss ratio (S L R) and spurious symptom ratio (S'S R) are high. We show how these factors affect

12

() (b) (c)

8
.

aciive SPCP=2)
$8R=0 SACR=100 //

aclive SPCP=20
SLR=0 SACR = 100

~

Increase Ration of Detection Time(%)
Increase Ratio of Detection Time (%)
Increase Ratio of Detection Time (%)

0 .
W oW W @ W W W™ W w0 W m w @ s M Wm0

w w m om 0 o
Inreas Reo of etk 2 () Intease Raoof Netwo Sze [—

SSAR=5) +SAR=10) ==SAR=20 &-S1R = 30% #-SLR = 20% ¥-SLR = 10% §R=5% 4-SR=3% *SR=1%

Figure 6: The Impact of Network Size (a) Without Symptom loss and spurious symptoms (b) With

symptom loss (c) With Spurious symptoms

the performance (7") and accuracy (« and 3) of our approach and passive fault reasoning approach.

2.4.1 The Impact of Symptom Loss Ratio

Symptom loss hides fault indications, which negatively affects both accuracy and performance of fault
localization process. In order to study the improvement on both the performance and the accuracy
of AIR approach, we fix the value of spurious symptom ratio (SSR = 0), the initial passive period
(IPP = 10sec), symptom active collecting rate (SAC'R = 100 symptoms/sec) and symptom passive
collecting rate (SPC R = 20 symptoms/sec). In this simulation, we use S LR value that varies from 10%
to 30%. With the increase of symptom loss ratio, passive fault reasoning system becomes infeasible.
Therefore, in this experiment, we had to reduce the fidelity threshold to a relatively lower value based on
the symptom loss ratio so the passive reasoning process can converge in reasonable time. From Fig. 5(a),
in contrast to passive approach, AIR system can always reach relatively high fidelity threshold with
average performance improvement of 20% to 40%. Hence, when S LR increases, the advantage of active
fault reasoning in the performance aspect is more evident. In addition to performance improvement, AIR
approach shows high accuracy. With the same settings, Fig. 5(b) and (c) show that active approach gains
20-50% improvement of detection rate and 20-60% improvement of false detection rate, even with much

different fidelity criteria over the passive reasoning approach.

13

~&i-Small Network (50 objects, 5 faults)
—&—Medium Network (200 objects, 20 faults)
~-Large Network (600 objects, 60 faults)

24

Number of Actions

10 15 20 25 30 35
Symptom Loss Ratio (%)

Figure 7: Intrusiveness Evaluation

2.4.2 The Impact of Network Size

In this section, we examine the scalability of AIR when network size and the number of symptoms
significantly increase. To show this, we measure AIR detection time under different scenarios: (1)
without symptom loss and spurious symptom (Fig. 6(a)); (2) with symptom loss only (Fig. 6(b)), and
(3) with spurious symptoms only (Fig. 6(c)). In all three cases, when the network size increases 10
times (from 100% to 1000%), the detection time has slowly increased by 1.7 times (170%) and 3.7 times
(370%) and 5.8 times (580%) in Fig. 6(a), (b) and (c) respectively. This shows that even in the worst

case scenario (Fig. 6(c)), the growth in network size causes a slow linear increases on AIR performance.

2.4.3 The Impact of Symptom Loss on AIR Intrusiveness

AIR intrusiveness is measured by the number of total actions performed to localize faults. As shown
in Section 2.3, the intrusiveness of AIR was algorithmically minimized by (1) considering the fault
hypothesis of high credibility, and (2) selecting the minimum-cost actions based on the greedy algorithm
described in Section 2.3.3. We also conducted experiments to assess the intrusiveness (i.e., action cost)
when the loss ratio increases. Loss ratio and network size are the most significant factors that might
affect the intrusiveness of AIR. Fig. 7 shows that, with different scale of network sizes and prior fault
probability as high as 10%, the number of actions required for fault localization increases slow linearly
(from 1 - 22) even when the loss ratio significantly increases (from 2%-35%). For example, in large-scale
network of size 600 objects and fault rate is 60 faults per iteration, the number of action performed did
not exceed 0.37 action/fault ratio. In addition, AIR was deliberately designed to give the user the control
to adjust the intrusiveness of active probing via configuring the following fault reasoning parameters:

fidelity threshold, IPP and action coverage.

14

2.5 Related Work

Many proposed solution were presented to address fault localization problem in communication net-
works. A number of these techniques use different causality model to infer the observation of network
disorder to the root faults. In our survey, we classify the related work into two general categories:

Passive Approach. Passive fault management techniques typically depended on monitoring agents to
detect and report network abnormality using alarms or symptom events. These events are then analyzed
and correlated in order to reach the root faults. Various event correlation models were proposed including
rule-based analyzing system [7], model-based system [11], case-based diagnosing system and model
traversing techniques. Different techniques are also introduced to improve the performance, accuracy and
resilience of fault localization. In [13], a model-based event correlation engine is designed for multi-layer
fault diagnosis. In [19], coding approach is applied to deterministic model to reduce the reasoning time
and improve system resilience. A novel incremental event-driven fault reasoning technique is presented
in [22] and [23] to improve the robustness of fault localization system by analyzing lost, positive and
spurious symptoms.

The techniques above were developed based on passively received symptoms. If the evidence (symp-
toms) are collected correctly, the fault reasoning results can be accurate. However, in real systems,
symptom loss or spurious symptoms (observation noise) are unavoidable. Even with a good strategy
[23] to deal with observation noise, those techniques have limited resilience to noise because of their
underlying passive approach, which might also increase the fault detection time.

Active Probing Approach. Recently, some researchers incorporate active probings into fault local-
ization. In [2], an active probing fault localization system is introduced, in which pre-planned active
probes are associated with system status by a dependency matrix. An on-line action selection algorithm
is studied in [9] to optimize action selection. In [10], a fault detection and resolution system is proposed
for large distributed transaction processing system.

Active probing approach is more efficient in locating faults in timely fashion and more resilient to

observation noise. However, this approach has the following limitation:

e Lack of integrating passive and active techniques in one framework that can take advantage of both

approaches.
e Lack of a scalable technique that can deal with multiple simultaneous faults.

e Limitation of some approaches to track or isolate intermittent network faults and performance

15

related faults because they solely depend on the active probing model.

e The number of required probes might be increased exponentially to the number of possible faults

([9D.

Both passive and active probing approaches have their own good features and limitations. Thus,
integrating passive and active fault reasoning is the ideal approach. Our approach combines the good
features of both passive and active approaches and overcome their limitations by optimizing the fault

reasoning result and action selection process.

3 FAULT AND SECURITY MANAGEMENT ON HIGH-SPEED
NETWORKS

3.1 Background

In this section, we discuss network-level fault (i.e., anomalies) and intrusions detection, particularly
for high-speed networks. It is very important to have such an integrated fault and intrusion detection
because many network faults are often misidentified as intrusions. Such false alerts often make the net-
work administrators turn off the IDS systems. Thus it is of crucial importance to identify both faults
and intrusions rapidly and accurately for network-based IDS systems. With the rapid growth of net-
work bandwidth and fast emergence of new attacks/viruses/worms, existing network intrusion detection
systems (IDS) are insufficient due to lack of the following features.

First, separating anomalies from intrusions for false positive reduction. To detect unknown
attacks and polymorphic worms, statistics-based instead of signature-based intrusion detections have
been adopted widely. However, many network element faults, e.g., router misconfigurations and polluted
DNS entries, can lead to traffic anomalies that may be detected as attacks.

Second, scalability to high-speed networks. Today’s fast propagating viruses/worms (e.g., SQL
Slammer worm) can infect most vulnerable machines within ten minutes [17]. Thus, it is crucial to
identify such outbreaks in their early phases, which is achievable only in high speed routers. However,
existing schemes are not scalable to the link speeds and number of flows for high-speed networks.

It is in general difficult for software-based data recording approaches in IDSes to keep up with the

link speed in a high-speed router. Thus, the data recording of high-speed IDSes has to be hardware

16

implementable, and it is strongly desirable to achieve the following three capabilities: 1) small memory
usage; 2) sparse memory accesses per packet [4]; and 3) scalability to large key size.

Third, attack resiliency. To bypass an IDS, attackers can execute denial-of-service (DoS) attacks, or
fool the IDS to raise many false positives to conceal the real attack. Thus, the attack resiliency of an IDS
is very important. However, existing IDSes often keep per-flow states for detection, which is vulnerable.

Forth, attack root cause analysis for mitigation. Accurate attack mitigation requires IDSes to pin-
point the attack type and flows. This advocates to detect intrusions at the flow level instead of the overall
traffic. Furthermore, we want to differentiate different types of attacks to choose different mitigation
schemes accordingly.

Fifth, aggregated detection over multiple vantage points. Most existing network IDSes assume
detection be on a single router or gateway. However, as multi-homing, load balancing based routing,
and policy routing become prevalent, even for a connection between a certain source and destination,
the packets may traverse different paths [3]. Thus, observation from a single vantage point is often
incomplete and affects detection accuracy. Meanwhile, it is very hard to copy all traffic from one router
to other routers/IDSes due to the huge data volume.

To meet the requirements above, we propose a new paradigm called DoS resilient High-speed Flow-
level INtrusion Detection, HiFIND, leveraging recent work on data streaming computation and in par-
ticular, sketches [21]. Essentially, we want to detect as many attacks as possible. As the first step
towards this ambitious goal, we aim to detect various port scans (which covers most large-scale worm
propagation) and TCP SYN flooding.

While each of these attacks seems relatively easy to be detected, it is indeed very hard to detect
a mixture of attacks online at the flow-level. To the best of our knowledge, HiFIND is the first DoS
resilient high-speed flow-level IDS for port scans and TCP SYN flooding for high-speed networks.

To this end, we leverage and improve sketches to record flow-level traffic as the basis for statistical
intrusion detection. Firstly proposed in [20, 21], sketches have not been applied to building IDSes for

the following challenges:

e Sketches can only record certain aggregated metrics for some given keys. Since it is not feasible
to try all possible combinations of the metrics, what would be the minimal set of metrics for

monitoring?

e Existing sketches are all one dimensional. However, various forms of attacks are often hard to

17

HIiFIND

HIFIND
system

@) ' HIFIND

system

(b) (c)
Figure 8: Attaching the HiFIND systems to high-speed routers. (a) original configuration, (b) distributed con-
figuration for which each port is monitored separately, (c) aggregate configuration for which a splitter is used to

aggregate the traffic from all the ports.

identify with such single dimensional information.

In this section, we address these two challenges and build the HiFIND prototype system to meet the

aforementioned five requirements. We make the following contributions:

e We analyze the attributes in TCP/IP headers and select an optimal small set of metrics for flow-
level sketch-based traffic monitoring and intrusion detection. Based on that, we build the HIFIND

online high-speed flow-level IDS prototype which is DoS resilient.

e To analyze the attack root cause for mitigation, we design efficient two-dimensional (2D) sketches

to distinguish different types of attacks.

e We aggregate the compact sketches from multiple vantage points (e.g., routers) to detect intrusion
in the face of asymmetric routing and multi-path routing caused by per-packet load balancing of

routers.

e For false positive reduction, we propose several heuristics to separate SYN floodings from net-

work/server congestions and misconfigurations.

As shown in Figure 8, HiFIND detection systems can be implemented as black boxes attached to
high-speed routers (edge or backbone routers) of ISPs without affecting the normal operation of the

routers.

18

Approaches | Spoofed | Non-spoofed | HScan | VScan
DoS DoS
HiFIND Yes Yes Yes Yes
TRW(AC) No No Yes (Yes)
CPM Yes, but with high FP No No

with port scans

Backscatter Yes No No No

Superspreader No No Yes No

Table 1: Functionality comparison.

For evaluation, we tested the router traffic traces collected at Northwestern University (NU) and
Lawrence Berkeley National Labs (LBL). We validate the SYN flooding and port scans detected, and
find the HiFIND system is highly accurate. The 2D sketches successfully separate the SYN flooding
from port scans, and the heuristics effectively reduce false positives of SYN flooding. Our approach is

also very fast in terms of data recording and detection.

3.2 Related Work

3.2.1 Intrusion Detection Systems

Some vendors claim to have multi-gigabit statistical IDSes [1], they usually refer to average traffic
conditions and use packet sampling [5]. Recent work has proposed detecting large scale attacks, like
DoS attacks, port scans, etc., based on the statistical traffic patterns. They can roughly be classified into
two categories: Detecting based on the overall traffic [16, 26] and flow level detection [12].

With the first approach, even when we can detect the attack, we still do not have any flow or port
knowledge for mitigation. Moreover, attacks can be easily buried in the background network traffic.
Thus, such detection schemes tend to be inaccurate; for example, CPM [26] will detect port scans as SYN
floodings as verified in Section 3.4. For the second approach, such schemes usually need to maintain
a per-flow table (e.g., a per-source-IP table for TRW [12]) for detection, which is not scalable and thus
provides a vulnerability to DoS attacks with randomly spoofed IP addresses, especially on high-speed
networks. TRW was recently improved by limiting its memory consumption with approximate caches
(TRW-AC) [27]. However, spoofed DoS attacks will still cause collisions in TRW-AC, and leave the real

port scans undetected'.

I As the authors mentioned in [27], when the connection cache size of 1 million entries reaches about 20% full, each new

scan attempt has a 20% chance of not being recorded because it aliases with an already-established connection. Actually,

19

Functions Descriptions k-ary | Reversible

sketch sketch

UPDATEC(S, y, v) | Update the corresponding values of the given key into the sketch in the vV v

monitoring module

v =ESTIMATE | Reconstruct the signal series for statistical detection for a given key in v v
S,y the anomaly detection module
S =COMBINE | Compute the linear combination of multiple sketches S = 22:1 ck-Sk Vv v
(c1, S1se-s iy Sk) | (¢ is coefficient.) to aggregate signals in the anomaly detection module
Y = INFERENCE | Return the keys whose values are larger than the threshold in the Vv
(S, t) anomaly detection module

Table 2: Function of sketches (S-Sketch, v-Value, y-Key, Y'-Set of keys, t-Threshold).

The existing schemes can detect specific types of attacks, but will perform poorly when facing a
mixture of attacks as in the real world. People may attempt to combine TRW-AC and CPM to detect
both scans and SYN flooding attacks. However, each of these two approaches can work properly only
when the other one works well.

Table 1 shows the high-level functionality comparison of our approach to the other methods. Backscat-
ter detects the spoofed SYN flooding attacks by testing the uniform distribution of destination IPs to
which the same source (potential victim) sends SYN/ACK [16]. We use this for validating the SYN
flooding detected by HiFIND. Venkataraman et al.propose efficient algorithms to detect superspread-
ers, sources that connect to a large number of distinct destinations [24]. But they may have high false
positives with P2P traffic where a single host may connect to many peers for download. PCF was recently

proposed for scalable network detection [14]. They do not differentiate among various attacks.

3.2.2 Sketches for Network Monitoring

There is a significant amount of prior work on efficient and online heavy hitter detection [29, 4]. How-
ever, these approaches are limited in their applicability to online intrusion detection in that 1) they lack
the ability to differentiate different types of attacks; 2) they cannot work with Time Series Analysis based
detection algorithms; and 3) they cannot be applied to asymmetric routing environments.

To this end, we designed the original k-ary sketchs [15], and further enhanced them to be reversible
sketches [20, 21], which allow us to have separate stages for update, combine and inference, so that we

can easily solve the problems mentioned before. In Table 2, we summarize the functions supported by

during spoofed DoS attacks, such collisions can become even worse.

20

' Sketches from U
other routers i\ > A regatted

r——z=-== v

Sketch | | Current Aggregated Forecast Statistical False Attack
; p-| positive Atac
recording| | re;’eerséb'/ 7 reversible error detection Bduction mitigation
|

_____________ : A

Real
traffic
strea

\

Recording stage Detection stage
Figure 9: HiFIND System architecture.

sketches.

3.3 Architecture of the HIFIND System
3.3.1 System Architecture

Figure 9 shows the architecture of the HIFIND system. First, we record the network traffic with sketches
in each router. Based on linearity of the sketches, we summarize the sketches over multiple routers into
an aggregate sketch, and apply time series analysis methods for aggregate sketches to obtain the forecast
sketches for change detection. The forecast time series analysis method, e.g.,, EWMA (exponentially
weighted moving average), can help remove noise. By subtracting the forecast sketch from the current
one, we obtain the forecast error sketches. Intuitively, a large forecast error implies there is an anomaly,
thus the forecast error is the key metric for detection in our system. Moreover, we aggregate the 2D
sketches in the same way and adopt them to further distinguish different types of attacks. We also
apply other false positive reduction techniques as discussed in Section 3.3.4. Finally, we use the key
characteristics of the culprit flows revealed by the reversible sketches to mitigate the attacks. Note that
the streaming data recording process needs to be done continuously in real-time, while the detection
process can be run in the background executing only once every interval (e.g., every second or minute)
with more memory (DRAM).

To deal with asymmetric routing (in Figure 10), for most existing IDS systems, all the packet traces
or all connection states have to be transported from one router to the other. Obviously this is very

expensive. Moreover if the link is congested when an attack happens, transmission of this data can be

21

Router 2

Router 3

Router 1

Internal Network

Figure 10: Sample network topology with asymmetric routing and multi-path routing.

very slow. Furthermore, some routers may use per-packet load balancing so that packets of the same
flow may traverse different paths.

In contrast, for HIFIND, we summarize the traffic information with compact sketches at each edge
router, and deliver them quickly to some central site. Then, with the linearity of the sketches, we can
aggregate them and the resulting sketch has all the information as if all the traffics went through the same

router.

3.3.2 The Threat Model

Ultimately, we want to detect as many different types of attacks as possible. As a first step, we focus
on detecting the two most popular intrusions: TCP SYN flooding (DoS) attack and port scans/worm
propagation, which include horizontal scan (Hscan), vertical scan (Vscan), and block scan [25]. It
is also crucial to distinguish them because network administrators need to apply different mitigation

schemes for different attacks.

22

Keys | SYN flooding | Hscan | Vscan | uniqueness
{SIP,Dport} | non-spoofed | Yes No 1.5
{DIP,Dport} Yes No No i

{SIP,DIP} | non-spoofed | No Yes 1.5
{S1IP} | non-spoofed | Yes Yes 25
{DIP} Yes No Yes 2

{Dport} Yes Yes No 2

Table 3: The uniqueness of different types of keys.

3.3.3 Sketch-based Detection Algorithm

We denote the key of a sketch as K, the feature value recorded as V, and the reversible sketch as
RS (K, V). We also denote the number of SYN packets as #SYN, and the number of SYN/ACK packets
as #SYN/ACK.

Here, we only consider the attacks in TCP protocol, i.e., the TCP SYN flooding attacks and TCP port
scans. Normally, attackers can choose source ports arbitrarily, so Sport is not a good metric for attack
detection. For the other three fields, we can consider all the possible combinations of them, but the key
(SIP,DIP, Dport) can only help detect non-spoofed SYN flooding, so we do not use it in the detection
process. Table 3 shows the other combinations and their uniqueness. Here, we define the uniqueness of
a key as the capability of differentiating between different types of attacks. For example, the count of
unsuccessful connections aggregated by {STIP} can be used to detect non-spoofed SYN flooding attacks
(we count it as 0.5), horizontal scans and vertical scans, so its value of uniqueness is 2.5. The best key
would ideally correspond to only one type of attack. Normally a key can be related to several types of
attacks, so we need to use more than one dimension to differentiate these attacks as shown in [28]. In
this section, we use the tree combinations of two fields as keys for the reversible sketches. Our detection
has the following three steps:

Step 1, we use RS ({DIP, Dport}, #SYN-#SYN/ACK) todetect SYN flooding attacks because
it usually targets a certain service as characterized by the Dport on a small set of machine(s). The
value of #SYN-#SYN/ACK means that for each incoming SYN packet, we will update the sketch by
incrementing one, while for each outgoing SYN/ACK packet, the sketch will be updated by decrementing

one. In fact, similar structures can be applied to detect any partial completion attacks [14]. The reversible

23

sketch can further provide the victim IP and port number for mitigation as in Section 3.3.2. We denote
this set of DIPs as FLOODING_DIP_SET.

Step 2, we use RS ({SIP, DIP}, #SYN-#SYN/ACK) to detect any intruder trying to attack
a particular IP address. The detected attacks can be non-spoofed SYN flooding attacks or vertical
scans. For each {SIP, DIP} entry, if DIP € FLOODING_DIP_SET, we put the SIP into the
FLOODING_SIP_SET for the next step; otherwise the {SIP, DIP} is the attacker’s IP and victim
IP of a vertical scan.

Step 3, we use RS ({SIP, Dport}, #SYN-#SYN/ACK) to detect any source IP which causes
a large number of uncompleted connections to a particular destination port. For each {SIP, Dport}
entry,if SIP € FLOODING_SIP_SET,itis anon-spoofed SYN flooding; otherwise, it is a horizontal
scan.

Here we apply EWMA algorithm as the forecast models to do change detection. We denote Mj(t)
as the current #SYN—#SYN/ACK at the time interval ¢, and M(¢) as the forecasted # SYN-#SYN/ACK
at the time interval ¢, we have

aMp(t—1)+ (1 —a)My(t—1) t>2

My (t) = { (6)
Mo(1) =2

The difference between the forecasted value and the actual value, e, = My (t) — M¢(t), is then used for

detection.

3.3.4 Separating Faults/Anomalies from SYN Flooding

There can be a number of factors other than SYN flooding that may cause a particular destination IP
and port with a large number of unacknowledged SYNs. For instance, flash crowds, network/server
congestions/failures, and even polluted or outdated DNS entries may cause a large number of SYNs
without SYN/ACK at the edge routers. These may cause high false positives in our detection scheme.
For the flash crowds, it is difficult, if not impossible, to differentiate it from the SYN flooding attacks
without payload information as discussed in [12]. Thus we aim at reducing the false positives caused by
the other two behaviors listed above.

First, we add filters to reduce false positives caused by bursty network/server congestions/failures
based on the ratio of #SYN comparing with #SYN/ACK and the fact that attacks may last some time.
Second, we add filters to reduce the false positives caused by misconfigurations or related problems

based on the fact that DoS attacks attack some active IP addresses and services.

24

3.4 Evaluation
3.4.1 Evaluation Methodology

In this section, we evaluate HIFIND with two dataset. One is the router traffic traces collected at the
Lawrence Berkeley National Laboratory (LBL) which consists of about 900M netflow records. The
other is the traffic traces of Northwestern University (NU, which has several Class B networks) edge
routers. The router exports netflow data continuously which is recorded with sketches of HIFIND on the
fly. The one day experiment in May 2005 consists of 239M netflow records, which comes 1.8T total
traffic.

Unless denoted otherwise, the default time interval for constructing the time series is one minute.
The data recording part of the HiFIND system consists of 1) three reversible sketches (RS), one for
{SIP, Dport},one for {DIP, Dport}, and the other for {SIP, DIP}, 2) one original sketch (OS) for
{DIP, Dport}, and 3) two 2D sketches for {SIP, Dport} x {DIP} and {SIP,DIP} X {Dport}.
For all the RS and 2D sketches we update #SYN — #SYN/ACK as the value, and only for the OS, we
use #SYN as the value.

The following parameters are chosen based on systematic study as in [21, 15]. We adopt 6 stages for
each RS and OS, and 5 stages for each 2D sketch in our system. We use 2'? buckets for each stage in
48-bit RS, 2'6 buckets for each stage in the 64-bit RS, and 24 buckets for all their verification sketches.
24 buckets are applied for each stage in OS. We also use 2'2 x 64 buckets for each stage of the 2D
sketches. Therefore, the total memory is 13.2MB.

Both NU and LBL have a large amount of traffic, so we set the detection threshold to be one un-

responded SYN packet per second.

3.4.2 Sketches Highly Accurate in Recording Traffic for Detection

Table 4 shows the three phases of our detection results. We first detect attacks using reversible sketches
with algorithms described in Section 3.3.3. The results are shown as “Raw results”(“Phase 1) in Table 4.
2D sketches reduce the false positives for port scans introduced by SYN flooding attacks (‘“Phase 2”) of
Table 4. The heuristics in Section 3.3.4 reduce false positives of SYN flooding attacks(‘“Phase 37).

To evaluate the errors introduced by sketches, we compare the results obtained from the same detec-
tion algorithm but with two different types of traffic recording: 1) sketches; 2) accurate flow table to hold

per-flow information (we call it non-sketch method). We find that we detect exactly the same attacks for

25

Attack Phasel: FP reduction
Traces
type Raw Phase2: | Phase3:
results | Port scan | Flooding
SYN flooding 157 157 32
NU Hscan 988 936 936
Vscan 73 19 19
SYN flooding 35 35 0
LBL Hscan 736 699 699
Vscan 40 1 1

Table 4: Detection results under three phases.

Data | TRW | HIFIND | Overlap number Data | CPM | HiFIND | Overlap number
NU | 497 512 488 NU | 1422 | 1427 1422
LBL | 695 699 692 LBL | 1426 0 0
Table 5: Horizontal scans detection comparison of Table 6: TCP SYN flooding detection comparison
HiFIND and TRW aggregated by source IP. of HiFIND and CPM.

the two configurations with very different amounts of memory (see memory consumption discussion
in Section 3.4.5). There is no false positive in our results. This shows sketches are highly accurate in

recording the traffic for detection.

3.4.3 HiFIND Outperforms Other Existing Network IDSes

Detection Over a Single Router We compare the HIFIND with other state-of-the-art work as intro-
duced in Section 3.2: the TRW [12] for port scan detection and the CPM [26] for SYN flooding detection.

For TRW experiments, we choose similar parameters as those in their paper. We apply the TRW on
both datasets with the same threshold. Repeated alerts are removed from the results of both methods.
Table 5 shows the comparison results of our methods with TRW for Hscan detection. = We observe
that the scans detected by these two methods have very good overlap, except for a few special cases.
There are a small number of Hscans detected by HiFIND but not TRW, because some attacks have both
successful and unsuccessful connection attempts, but TRW cannot detect those suspicious ones in this
category. There are also a very small number of Hscans detected by TRW but not HiIFIND, because they

are the combination of multiple small scans, which are too stealthy to be captured by our threshold. It

26

Anonymized SIP | Dport | #DIP Cause

204.10.110.38 | 1433 | 56275 | SQLSnake scan
109.132.101.199 | 22 45014 Scan SSH

95.30.62.202 3306 | 25964 | MySQL Bot scans

162.39.147.51 6101 | 24741 Unknown scan

15.192.50.153 4899 | 23687 Rahack worm

Table 7: Five major senarios of the top 10 Hscans in NU experiment.

Anonymized SIP | Dport | #DIP Cause

08.198.251.168 135 64 | Nachi or MSBlast worm

3.66.52.227 445 64 | Sasser and Korgo worm
2.0.28.90 139 64 NetBIOS scan
98.198.0.101 135 64 | Nachi or MSBlast worm

165.5.42.10 5554 62 Sasser worm

Table 8: 5 major scenarios of the bottom 10 Hscans in NU experiment.

is our future work to further investigate it.

Next, we compare our method with CPM for SYN flooding attack detection. The results are shown
in Table 6. In the LBL traces, there is no SYN flooding, but a very large number of scans. CPM cannot
differentiate them. On the other hand, CPM and HiFIND have very similar results for the NU data
because most time intervals contain SYN flooding. Meanwhile, there is a small number of intervals in

which SYN flooding is buried in the rest of the normal traffic, so CPM cannot detect them.

Aggregated Detection over Multiple Routers In this section, we consider the network topology of
Figure 10 discussed in Section 3.3 and evaluate the performance of HIFIND and TRW under such sce-
narios. To simulate asymmetric routing and multi-path routing caused by per-packet load balancing on
routers, we split the packet level trace from a Northwestern University edge router into three routers
randomly, for both inbound and outbound packets. For each packet, we randomly select an edge router
to deliver, i.e., for any single connection, the incoming SYN packet and the outgoing SYN/ACK packet
have 2/3 probability to go through different routers.

For HiFIND , we obtain the same results as those when the traffic goes through the same router, i.e.,

27

2.5Gbps 10Gbps
Methods

1min Smin Imin Smin

HiFIND w/ sketch 13.2M 13.2M

HiFIND w/ complete info | 10.3G | 51.6G | 41.25G | 206G

TRW 5.63G | 28G 22.5G | 112.5G

Table 9: Memory comparison(bytes).

the results in Section 3.4.3. In comparison, we apply TRW to the data on each router for detection and

then sum the result up. We found their approach had high false positives or negatives in this case.

3.4.4 Detected Intrusions Successfully Validated

In this section we manually examine a certain number of attacks for validation.

SYN Flooding We validate our SYN flooding detection results with backscatter [16]. Among the 32
SYN floodings detected, there are 21 matched with backscatter results. For the other 11 attacks, three

are due to threshold boundary effect.

Horizontal Scans We manually validate horizontal scans, in particular, the top 5 and bottom 5 attacks
in terms of their change difference. Due to limited space, Table 7 shows the top 5 Hscans, and Table 8
shows the bottom 5 Hscans from the NU experiment. Detailed evaluation can be found in our technical

report [8].

Vertical Scans We also manually validate vertical scans. In the LBL trace, we found one vertical scan.
It scanned some well-known service ports, such as HTTPS(81), HTTP-Proxy(8000,8001,8081). In the
NU experiment, we found in total 19 vertical scans. We manually checked all of them and found the

vertical scans are mostly interested in the well known service ports and Trojan/Backdoor ports.

3.4.5 Evaluation Results for Online Performance Constraints

Small Memory Consumption In our experiments, we only use a total memory of 13.2MB for traffic
recording. Note that such settings work well for a large range of link speeds.
On the other hand, if hash tables are used to record every flow, much larger memory is required as

shown in Table 9. We consider the worst-case traffic of all-40-byte packet streams with 100% utilization

28

of the link capacity. There is a spoofed SYN flooding attack with a different source IP for each packet.
For the method without sketch, it needs at least three hash tables corresponding to the three reversible

sketches in our detection methods.

Small Memory Access per Packet There are 15 memory accesses per packet for 48 bit reversible
sketches and 16 per packet for 64-bit reversible sketches (see [21] for details). For each two-dimensional
sketch, we only need 5 memory accesses per packet, one for each 2D hash matrix. Thus, when recording
these sketches in parallel or in pipeline, the HIFIND system has a very small number of memory accesses

per packet and is capable of online monitoring.

High Speed Traffic Monitoring In HiFIND system, the speed of 2D sketches is much faster than that
of the reversible sketches. Thus, the speed is dominated by the latter. With our prototype single FPGA
board implementation, we are able to sustain 16.2 Gbps throughput for recording all-40-byte packet
streams (the worst case) with a reversible sketch.

We can also use multi-processors to record multiple sketches simultaneously in software. We record
239M items with one reversible sketch in 20.6 seconds, i.e., 11M insertions/sec. For the worst case
scenario with all 40-byte packets, this translates to around 3.7 Gbps. These results are obtained from
code that is not fully optimized and from a machine that is not dedicated to this process.

For the on-site NU experiments, the HIFIND system used 0.34 seconds on average to perform detec-
tion for each one-minute interval, and the standard deviation is 0.64 seconds. The maximum detection
time (for which the interval contains the largest number of attacks) is 12.91 seconds, which is still far
less than one minute. In order to show the scalability of HIFIND, we further do some stress experiments.
We compress the NU data by the factor of 60, and detect the top 100 anomalies in each interval. The
HiFIND system used 35.61 seconds on average in detection for each interval. The maximum detection

time is 46.90 seconds.

4 SUMMARY

Analyzing fault and security alarms is very crucial for identifying and localizing network problems such
as failure or intrusions. In this chapter, we show how to integrate fault and security management to
relieve the heavy burden of manual diagnosis by system administrators and improve the accuracy of

fault and intrusion identification. In the first section, a novel technique called ACTIVE INTEGRATED

29

FAULT REASONING or AIR is presented. This technique is the first to seamlessly integrate passive and
active fault reasoning in order to reduce fault detection time as well as improve the accuracy of fault
diagnosis. AIR can be similarly used to correlate security alarms and identify potential intrusions or
attacks. When there are incomplete symptoms to identify the root cause, AIR initiates an optimal active
probing to investigate and identify the problem with reasonable certainly. The AIR approach is designed
to minimize the intrusiveness of active probing via enhancing the fault hypothesis and optimizing the
action selection process. Our simulation results show that AIR is robust and scalable even in extreme
scenarios such as large network size and high spurious and symptom loss rate.

In the second section, we show how network-level intrusion detection systems can integrate fault
and intrusion detection to avoid misidentifying faults as intrusions. This decreases false alerts which
often make the network administrators turn off the IDS systems. Thus it is of crucial importance to
identify both faults and intrusions rapidly and accurately for network-based IDS systems. Leveraging
data streaming techniques such as the reversible sketch, we propose HiFIND, a High-speed Flow-level
Intrusion Detection system. In contrast to existing intrusion detection systems, HiFIND 1) separates
anomalies to limit false positives in detection; 2) is scalable to flow-level detection on high-speed net-
works; 3) is DoS resilient; 4) can distinguish SYN flooding and various port scans (mostly for worm
propagation) for effective mitigation; and 5) enables aggregate detection over multiple routers/gateways.
Both theoretical analysis and evaluation with several router traces show that HiFIND achieves these

properties.

References

[1] Arbor Networks. Intelligent Network Management with Peakflow Traffic. http://www.

arbornetworks.com/download.php.

[2] R. I. Brodie, M. and S. Ma. Optimizing probe selection for fault localization. In IEEE/IFIP
(DSOM), 2001.

[3] Cisco Inc. Per-Packet Load Balancing, 2003. http://www.cisco.com/univercd/
cc/td/doc/product/software/i0s120/120newft/1201imit/120s/120s21/
pplb.pdf.

30

[4] G. Cormode and S. Muthukrishnan. What’s new: Finding significant differences in network data
streams. In Proc. of IEEE Infocom, 2004.

[5] N. Duffield, C. Lund, and M. Thorup. Flow sampling under hard resource constraints. In Proc. of
ACM SIGMETRICS, 2004.

[6] Y. T. Ehab Al-Shaer. Qos path monitoring for multicast networks. In Journal of Network and
System Management (JNSM), 2002.

[7] A. K. M. G. Liu and E. J. Yang. Composite events for network event correlation. In Integrated

Network Management VI, pages p247-260, Boston, MA, 1999.

[8] Y. Gao, Z. Li, and Y. Chen. Towards a high-speed router-based anomaly/intrusion detection system.

http://list.cs.northwestern.edu/hpnaidm.html.

[9] N. O.S. M. G. G. I. Rish, M. Brodie. Real-time problem determination in distributed systems using
active probing. In IEEE/IFIP (NOMS), Soul, Korea, 2004.

[10] G. K.J. Guo and P. Kermani. Approaches to building self healing system using dependency analy-
sis. In IEEE/IFIP (NOMS), Soul, Korea, 2004.

[11] . Jakobson and M. D. Weissman. Alarm correlation. In IEEE Network, pages p52-59, 1993.

[12] J. Jung et al. Fast portscan detection using sequential hypothesis testing. In Proc. of the IEEE

Symposium on Security and Privacy, 2004.

[13] M. S. K. Appleby, G. Goldszmidt. Yemanja - a layered fault localization system for multi-domain

computing utilities. In Journal of Network and Systems Management, 2002.

[14] R. R. Kompella, S. Singh, and G. Varghese. On scalable attack detection in the network. In Proc.
of ACM/USENIX IMC, 2004.

[15] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change detection: Methods, eval-
uation, and applications. In Proc. of ACM SIGCOMM Internet Measurement Conference (IMC),
2003.

[16] D. Moore et al. Inferring Internet denial of service activity. In Proceedings of the 2001 USENIX
Security Symposium, Aug. 2001.

31

[17] D. Moore et al. The spread of the Sapphire/Slammer worm. http://www.caida.org, 2003.

[18] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to attack graph generation. In
13th ACM Conference on Computer and Communications Security (CCS 2006), Alexandria, VA,
October 2006.

[19] Y. Y.D.O.S. Kliger, S. Yemini and S. Stolfo. A coding approach to event correlation. In Proceed-

ings of the Fourth International Symposium on Intelligent Network Management, 1995.

[20] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible sketches for efficient and accurate

change detection over network data streams. In IMC, 2004.

[21] R. Schweller, Z. Li, Y. Chen, et al. Reverse hashing for high-speed network monitoring: Algo-

rithms, evaluation, and applications. In Proc. of IEEE Infocom, 2006.

[22] M. Steinder and A. S. Sethi. Increasing robustness of fault localization through analysis of lost,

spurious, and positive symptoms. In In Proc. of IEEE INFOCOM, New York, NY, 2002.

[23] M. Steinder and A. S. Sethi. Probabilistic fault diagnosis in communication systems through incre-

mental hypothesis updating. In Computer Networks, pages pS37-562, 2004.

[24] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New streaming algorithms for superspreader
detection. In the Annual Network and Distributed System Security Symposium (NDSS), 2005.

[25] Vinod et al. Internet intrusions: Global characteristics and prevalence. In Proc. of ACM SIGMET-
RICS, 2003.

[26] H. Wang, D. Zhang, and K. G. Shin. Detecting SYN flooding attacks. In Proc. of IEEE INFOCOM,
2002.

[27] N. Weaver et al. Very fast containment of scanning worms. In USENIX Security Symposium, 2004.

[28] G.Y,Z.Li, and Y. Chen. A dos resilient flow-level intrusion detection approach for high-speed net-
works. In Proc. of the IEEE International Conference on Distributed Computing Systems (ICDCS),
2006.

[29] Q. G. Zhao, A. Kumar, and J. J. Xu. Joint data streaming and sampling techniques for detection of

super sources and destinations. In Proc. of ACM/USENIX Internet Measurement Conference, 2005.

32

Algorithm 1 Hypothesis Updating Algorithm HU(h, Sk, F'p)

Input: hypothesis h, observed but uncovered symptom set Sk, fault candidate set F'ip

Output: fault hypothesis set ®

I: Cmax = 0

2: forall f; € Fp do

3 if C(fi) > ¢mas then
4 Cmaz — C(fi)

5 Fs—0

6: Fs — FsU{f:}

7 else

8 if C(fi) = ¢max then
9 Fs — FsU{fi}
10: end if

11: endif

12: end for

13: for all f; € Fs do
14: h; — hU{f:}
15: Sk, — Sk — So,
16: Fp, — Fp —{f:}
17: end for

18: for all Sk, = () do
19: if Sk, = 0 then

20: D — dU{h;}
21: endif
22: end for

23: if ® # () then

24: return< ® >

25: else

26: /* No h; can explain all Sp*/
27: forall h; do

28: HU(h;, Sk,, Fp,)

29: end for

30: end if

33

Algorithm 2 Active Integrated Fault Reasoning Sp

Input: Sp
Output: fault hypothesis A

1. Sy < So

2: while Sy # () do

3: ®=FR(So)

4: < h,Sy >=FE(D)

5: if Sy = 0 then

6: return < h >

7: else

8: if IPP experied then

9: /*used to schedule active fault localization periodically*/
10: < Sy, Sy >= AS(Sn)
11: end if
12: endif

13: So «— SoUSy

14: < h,Sy >=FE({h})
15: if Sy =0 | Sy = 0 then
16: return < h >

17: endif

18: end while

34

