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Abstract

Global-scale attacks like viruses and worms are increas-
ing in frequency, severity and sophistication, making it
critical to detect outbursts at routers/gateways instead of
end hosts. In this paper we leverage data streaming tech-
niques such as the reversible sketch to obtain HiFIND,
a High-speed Flow-level Intrusion Detection system. In
contrast to existing intrusion detection systems, HiFIND
1) is scalable to flow-level detection on high-speed net-
works; 2) is DoS resilient; 3) can distinguish SYN flood-
ing and various port scans (mostly for worm propagation)
for effective mitigation; 4) enables aggregate detection
over multiple routers/gateways; and 5) separates anoma-
lies to limit false positives in detection. Both theoretical
analysis and evaluation with several router traces show
that HiFIND achieves these properties. To the best of
our knowledge, HiFIND is the first online DoS resilient
flow-level intrusion detection system for high-speed net-
works (approximately 10s of Gigabit/second), even for
the worst case traffic of 40-byte-packet streams with each
packet forming a flow.
Key words: high-speed networking, intrusion detection,
statistical detection, data streaming

1 Introduction

Identifying Traffic anomalies and attacks rapidly and
accurately is critical for operators of large networks. With
the rapid growth of network bandwidth and fast emer-
gence of new attacks/viruses/worms, existing network in-
trusion detection systems (IDS) are insufficient due to
lack of the following features.

First, scalability to high-speed networks. To-
day’s fast propagating viruses/worms (e.g., SQL Slam-
mer worm) can infect most vulnerable machines within
ten minutes [10]. Thus, it is crucial to identify such out-
breaks in their early phases, which is achievable only in
high speed routers. However, existing schemes are not
scalable to the link speeds and number of flows for high-
speed networks.

It is in general difficult for software-based data record-
ing approaches in IDSes to keep up with the link speed
in a high-speed router. Thus, the data recording of high-

speed IDSes has to be hardware implementable, and it is
strongly desirable to achieve the following three capabil-
ities: 1) small memory usage; 2) sparse memory accesses
per packet [3]; and 3) scalability to large key size.

Second, attack resiliency. To bypass an IDS, at-
tackers can execute denial-of-service (DoS) attacks, or
fool the IDS to raise many false positives to conceal the
real attack. Thus, the attack resiliency of an IDS is very
important. However, existing IDSes often keep per-flow
states for detection, which is vulnerable.

Third, attack root cause analysis for mitigation.
Accurate attack mitigation requires IDSes to pinpoint the
attack type and flows. This advocates to detect intrusions
at the flow level instead of the overall traffic. Further-
more, we want to differentiate different types of attacks
to choose different mitigation schemes accordingly.

Fourth, aggregated detection over multiple van-
tage points. Most existing network IDSes assume detec-
tion be on a single router or gateway. However, as multi-
homing, load balancing based routing, and policy routing
become prevalent, even for a connection between a certain
source and destination, the packets may traverse different
paths [2]. Thus, observation from a single vantage point
is often incomplete and affects detection accuracy. Mean-
while, it is very hard to copy all traffic from one router
to other routers/IDSes due to the huge data volume.

Fifth, separating anomalies from intrusions for
false positive reduction. To detect unknown attacks
and polymorphic worms, statistics-based instead of
signature-based intrusion detections have been adopted
widely. However, many network element faults, e.g.,
router misconfigurations and polluted DNS entries, can
lead to traffic anomalies that may be detected as attacks.

To meet the requirements above, we propose a new
paradigm called DoS resilient High-speed Flow-level
INtrusion Detection, HiFIND, leveraging recent work
on data streaming computation and in particular,
sketches [12]. Essentially, we want to detect as many
attacks as possible. As the first step towards this
ambitious goal, we aim to detect various port scans
(which covers most large-scale worm propagation) and
TCP SYN flooding.

While each of these attacks seems relatively easy to
be detected, it is indeed very hard to detect a mixture
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Figure 1. Attaching the HiFIND systems to high-speed
routers. (a) original configuration, (b) distributed con-
figuration for which each port is monitored separately,
(c) aggregate configuration for which a splitter is used
to aggregate the traffic from all the ports.

of attacks online at the flow-level. To the best of our
knowledge, HiFIND is the first DoS resilient high-speed
flow-level IDS for port scans and TCP SYN flooding for
high-speed networks.

To this end, we leverage and improve sketches to record
flow-level traffic as the basis for statistical intrusion detec-
tion. Firstly proposed in [11, 12], sketches have not been
applied to building IDSes for the following challenges:

• Sketches can only record certain aggregated metrics
for some given keys. Since it is not feasible to try
all possible combinations of the metrics, what
would be the minimal set of metrics for monitoring?

• Existing sketches are all one dimensional. However,
various forms of attacks are often hard to identify
with such single dimensional information.

In this paper, we address these two challenges and
build the HiFIND prototype system to meet the afore-
mentioned five requirements. We make the following con-
tributions:

• We analyze the attributes in TCP/IP headers and
select an optimal small set of metrics for flow-level
sketch-based traffic monitoring and intrusion
detection. Based on that, we build the HiFIND
online high-speed flow-level IDS prototype which is
DoS resilient.

• To analyze the attack root cause for mitigation, we
design efficient two-dimensional (2D) sketches to
distinguish different types of attacks.

• We aggregate the compact sketches from multiple
vantage points (e.g., routers) to detect intrusion in
the face of asymmetric routing and multi-path
routing caused by per-packet load balancing of
routers.

• For false positive reduction, we propose several
heuristics to separate SYN floodings from
network/server congestions and misconfigurations.

As shown in Figure 1, HiFIND detection systems can
be implemented as black boxes attached to high-speed
routers (edge or backbone routers) of ISPs without af-
fecting the normal operation of the routers.

For evaluation, we tested the router traffic traces col-
lected at Northwestern University (NU) and Lawrence
Berkeley National Labs (LBL). We validate the SYN

Approaches Spoofed Non-spoofed HScan VScan
DoS DoS

HiFIND Yes Yes Yes Yes

TRW(AC) No No Yes (Yes)

CPM Yes, but with high FP No No
with port scans

Backscatter Yes No No No

Superspreader No No Yes No

Table 1. Functionality comparison.

flooding and port scans detected, and find the HiFIND
system is highly accurate. The 2D sketches success-
fully separate the SYN flooding from port scans, and
the heuristics effectively reduce false positives of SYN
flooding. Our approach is also very fast in terms of data
recording and detection.

2 Related Work

2.1 Intrution Detection Systems

Some vendors claim to have multi-gigabit statistical
IDSes [1], they usually refer to average traffic conditions
and use packet sampling [4]. Recent work has proposed
detecting large scale attacks, like DoS attacks, port scans,
etc., based on the statistical traffic patterns. They can
roughly be classified into two categories: Detecting based
on the overall traffic [9, 15] and flow level detection [6].

With the first approach, even when we can detect the
attack, we still do not have any flow or port knowledge
for mitigation. Moreover, attacks can be easily buried
in the background network traffic. Thus, such detection
schemes tend to be inaccurate; for example, CPM [15]
will detect port scans as SYN floodings as verified in Sec-
tion 5. For the second approach, such schemes usually
need to maintain a per-flow table (e.g., a per-source-IP
table for TRW [6]) for detection, which is not scalable
and thus provides a vulnerability to DoS attacks with
randomly spoofed IP addresses, especially on high-speed
networks. TRW was recently improved by limiting its
memory consumption with approximate caches (TRW-
AC) [16]. However, spoofed DoS attacks will still cause
collisions in TRW-AC, and leave the real port scans un-
detected1.

The existing schemes can detect specific types of at-
tacks, but will perform poorly when facing a mixture of
attacks as in the real world. People may attempt to com-
bine TRW-AC and CPM to detect both scans and SYN
flooding attacks. However, each of these two approaches
can work properly only when the other one works well.

Table 1 shows the high-level functionality comparison

1As the authors mentioned in [16], when the connection cache
size of 1 million entries reaches about 20% full, each new scan at-
tempt has a 20% chance of not being recorded because it aliases
with an already-established connection. Actually, during spoofed
DoS attacks, such collisions can become even worse.
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Functions Descriptions k-ary Reversible
sketch sketch

UPDATE(S, y, v) Update the corresponding values of the given key into the sketch in the
√ √

monitoring module

v = ESTIMATE Reconstruct the signal series for statistical detection for a given key in
√ √

(S, y) the anomaly detection module

S = COMBINE Compute the linear combination of multiple sketches S =
Pl

k=1
ck.Sk

√ √

(c1, S1,..., ck, Sk) (ci is coefficient.) to aggregate signals in the anomaly detection module

Y = INFERENCE Return the keys whose values are larger than the threshold in the
√

(S, t) anomaly detection module

Table 2. Function of sketches (S-Sketch, v-Value, y-Key, Y -Set of keys, t-Threshold).

of our approach to the other methods. Backscatter de-
tects the spoofed SYN flooding attacks by testing the uni-
form distribution of destination IPs to which the same
source (potential victim) sends SYN/ACK [9]. We use
this for validating the SYN flooding detected by HiFIND.
Venkataraman et al.propose efficient algorithms to detect
superspreaders, sources that connect to a large number
of distinct destinations [13]. But they may have high
false positives with P2P traffic where a single host may
connect to many peers for download. PCF was recently
proposed for scalable network detection [7]. They do not
differentiate among various attacks.

2.2 Sketches for Network Monitoring

There is a significant amount of prior work on effi-
cient and online heavy hitter detection [3, 17]. However,
these approaches are limited in their applicability to on-
line intrusion detection in that 1) they lack the ability
to differentiate different types of attacks; 2) they can-
not work with Time Series Analysis based detection al-
gorithms; and 3) they cannot be applied to asymmetric
routing environments.

To this end, we designed the original k-ary sketchs [8],
and further enhanced them to be reversible sketches [11,
12], which allow us to have separate stages for update,
combine and inference, so that we can easily solve the
problems mentioned before. In Table 2, we summarize
the functions supported by sketches.

3 Architecture of the HiFIND System

3.1 System Architecture

Figure 2 shows the architecture of the HiFIND sys-
tem. First, we record the network traffic with sketches
in each router. Based on linearity of the sketches, we
summarize the sketches over multiple routers into an ag-
gregate sketch, and apply time series analysis methods
for aggregate sketches to obtain the forecast sketches
for change detection. The forecast time series analysis
method, e.g., EWMA (exponentially weighted moving av-
erage), can help remove noise. By subtracting the forecast
sketch from the current one, we obtain the forecast error
sketches. Intuitively, a large forecast error implies there
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Figure 3. Sample network topology with asymmetric
routing and multi-path routing.

is an anomaly, thus the forecast error is the key met-
ric for detection in our system. Moreover, we aggregate
the 2D sketches in the same way and adopt them to fur-
ther distinguish different types of attacks. We also apply
other false positive reduction techniques as discussed in
Section 3.4. Finally, we use the key characteristics of the
culprit flows revealed by the reversible sketches to miti-
gate the attacks. Note that the streaming data recording
process needs to be done continuously in real-time, while
the detection process can be run in the background ex-
ecuting only once every interval (e.g., every second or
minute) with more memory (DRAM).

To deal with asymmetric routing (in Figure 3), for
most existing IDS systems, all the packet traces or all
connection states have to be transported from one router
to the other. Obviously this is very expensive. Moreover
if the link is congested when an attack happens, trans-
mission of this data can be very slow. Furthermore, some
routers may use per-packet load balancing so that packets
of the same flow may traverse different paths.

In contrast, for HiFIND, we summarize the traffic in-
formation with compact sketches at each edge router, and
deliver them quickly to some central site. Then, with the
linearity of the sketches, we can aggregate them and the
resulting sketch has all the information as if all the traffics
went through the same router.

3.2 The Threat Model

Ultimately, we want to detect as many different types
of attacks as possible. As a first step, we focus on detect-
ing the two most popular intrusions: TCP SYN flooding
(DoS) attack and port scans/worm propagation, which
include horizontal scan (Hscan), vertical scan (Vscan),
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Figure 2. HiFIND System architecture.

Keys SYN flooding Hscan Vscan uniqueness

{SIP,Dport} non-spoofed Yes No 1.5

{DIP,Dport} Yes No No 1

{SIP,DIP} non-spoofed No Yes 1.5

{SIP} non-spoofed Yes Yes 2.5

{DIP} Yes No Yes 2

{Dport} Yes Yes No 2

Table 3. The uniqueness of different types of keys.

and block scan [14]. It is also crucial to distinguish them
because network administrators need to apply different
mitigation schemes for different attacks.

3.3 Sketch-based Detection Algorithm

We denote the key of a sketch as K, the feature value
recorded as V, and the reversible sketch as RS(K,V). We
also denote the number of SYN packets as #SYN, and
the number of SYN/ACK packets as #SYN/ACK.

Here, we only consider the attacks in TCP protocol,
i.e., the TCP SYN flooding attacks and TCP port scans.
Normally, attackers can choose source ports arbitrarily, so
Sport is not a good metric for attack detection. For the
other three fields, we can consider all the possible combi-
nations of them, but the key (SIP, DIP, Dport) can only
help detect non-spoofed SYN flooding, so we do not use it
in the detection process. Table 3 shows the other combi-
nations and their uniqueness. Here, we define the unique-
ness of a key as the capability of differentiating between
different types of attacks. For example, the count of un-
successful connections aggregated by {SIP} can be used
to detect non-spoofed SYN flooding attacks (we count it
as 0.5), horizontal scans and vertical scans, so its value
of uniqueness is 2.5. The best key would ideally corre-
spond to only one type of attack. Normally a key can
be related to several types of attacks, so we need to use
more than one dimension to differentiate these attacks as
shown in Section 4. In this paper, we use the tree com-
binations of two fields as keys for the reversible sketches.
Our detection has the following three steps:

Step 1, we use RS({DIP, Dport}, #SYN-#SYN/ACK)
to detect SYN flooding attacks because it usually tar-
gets a certain service as characterized by the Dport on
a small set of machine(s). The value of #SYN-#SYN/ACK

means that for each incoming SYN packet, we will update
the sketch by incrementing one, while for each outgoing
SYN/ACK packet, the sketch will be updated by decre-
menting one. In fact, similar structures can be applied to
detect any partial completion attacks [7]. The reversible
sketch can further provide the victim IP and port num-
ber for mitigation as in Section 3.2. We denote this set
of DIPs as FLOODING DIP SET .

Step 2, we use RS({SIP, DIP}, #SYN-#SYN/ACK) to
detect any intruder trying to attack a particular IP ad-
dress. The detected attacks can be non-spoofed SYN
flooding attacks or vertical scans. For each {SIP, DIP}
entry, if DIP ∈ FLOODING DIP SET , we put the SIP
into the FLOODING SIP SET for the next step; oth-
erwise the {SIP, DIP} is the attacker’s IP and victim IP
of a vertical scan.

Step 3, we use RS({SIP, Dport}, #SYN-#SYN/ACK)
to detect any source IP which causes a large number
of uncompleted connections to a particular destina-
tion port. For each {SIP, Dport} entry, if SIP ∈
FLOODING SIP SET , it is a non-spoofed SYN
flooding; otherwise, it is a horizontal scan.

Here we apply EWMA algorithm as the forecast mod-
els to do change detection. We denote M0(t) as the cur-
rent #SYN-#SYN/ACK at the time interval t, and Mf (t) as
the forecasted #SYN-#SYN/ACK at the time interval t, we
have

Mf (t) =



αM0(t − 1) + (1 − α)Mf (t − 1) t > 2
M0(1) t = 2

(1)

The difference between the forecasted value and the ac-
tual value, et = M0(t)−Mf (t), is then used for detection.

3.4 Reducing False Positives(FP) for SYN
Flooding Detection

There can be a number of factors other than SYN
flooding that may cause a particular destination IP
and port with a large number of unacknowledged
SYNs. For instance, flash crowds, network/server
congestions/failures, and even polluted or outdated DNS
entries may cause a large number of SYNs without
SYN/ACK at the edge routers. These may cause high
false positives in our detection scheme. For the flash
crowds, it is difficult, if not impossible, to differentiate
it from the SYN flooding attacks without payload
information as discussed in [6]. Thus we aim at reducing
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the false positives caused by the other two behaviors
listed above.

First, we add filters to reduce false positives caused by
bursty network/server congestions/failures based on the
ratio of #SYN comparing with #SYN/ACK and the fact
that attacks may last some time. Second, we add filters
to reduce the false positives caused by misconfigurations
or related problems based on the fact that DoS attacks
attack some active IP addresses and services.

3.5 DoS Resilience Analysis

As we mentioned before the TRW is vulnerable to
spoofed IP attack. The attacker can send a lot of SYN
packets with spoofed source IP address and random des-
tination IP address (within the edge network). This will
cause the TRW to use too much memory and possibly
crash, since the TRW needs to keep states for each source
IP address. The TRW-AC uses an AC table with fixed
memory to improve the scalability of the TRW, so the
attack cannot crash the TRW-AC. However, as men-
tion in the TRW-AC paper [16] itself, the more source
spoofed packets, the more collision happen in the AC ta-
ble. Hence, this makes the TRW-AC suffer high false
negatives. For example, in their paper, they use the con-
nection cache size of 1 million entries, and the Dconn = 10
minutes2. If the attacker periodically sends 1 million
IP spoofed packets in 10 minutes (1667 packets/second,
533Kb/s for 40 bytes SYN packets), he can fully pollute
the connection cache with half-open connections.

The HiFIND system is resilient to such attacks. If an
attacker sends the source spoofed SYN packets to a fixed
destination, our system will treat this as a SYN Flood-
ing attack to the particular IP address. If the attacker
sends the source spoofed packets to random destinations
within the edge network, the SYN count will be evenly
distributed in the buckets of each of the hash tables in
sketches. Even if there is a real attack, the SYN count
for that attack is still significant to be detected.

One possible attack is to introduce false positives or
false negatives by creating collisions in the hash tables
of sketches. To create collisions, the attacker needs to
reverse engineer all the hash functions of sketches and
search exhaustively offline. Since the interval parame-
ters of hash functions used by sketches are independent
from the functionality sketches archived, it is very diffi-
cult to infer the parameters solely from input and output
of sketches. Therefore, such reverse engineering is impos-
sible unless they can compromise the HiFIND system and
obtain the intermediate execution results. Finally, even
if the attacker can somehow create collisions for sketches,
when we monitor both ingress and egress traffic for detec-
tion, they can at most create some false positives, but not
false negatives. Overall, it is extremely difficult to attack
the HiFIND system. For the detailed analysis please refer
to our technical report [5].

2The TRW-AC uses a background process to remove any con-
nection idle for more than Dconn minutes

4 Intrusion Classification with Two Di-
mensional Sketch

It is crucial to distinguish different types of attack to
take the most effective mitigation scheme. However, one
major challenge for intrusion detection is that the traf-
fic anomalies are often multidimensional i.e., they can
only be identified when we examine traffic with specific
combinations of IP addresses, port numbers, and proto-
cols. For example, if the port distribution of a partic-
ular attack is unknown, it becomes very hard to distin-
guish non-IP-Spoofing SYN flooding attacks from verti-
cal scans because both of them will exhibit a single (or
a small number) of source IPs sending a large number
of un-responded SYN packets to the destination IP. The
key difference lies in whether the attacker sends to a small
number, e.g., one or two, of the ports (SYN flooding) or
many different ports (vertical scan) on the destination.
In other words, there is a bi-modal distribution for the
number of unique ports visited when there are a large
number of un-responded SYN packets from one source
to one destination. One mode corresponds to the SYN
flooding, and the other, vertical scans. This bi-modal
assumption is verified with real network traffic shown in
figure 4. We tested the bi-modal assumption with one-
month edge router traffic from Northwestern University
(NU) and Fermi Lab. Thus, it is essential to know the
port distribution, given a specific source IP and desti-
nation IP pair {SIP,DIP}, to distinguish between these
two attacks. However, existing sketches are all of single
dimension. To address this challenge, we design a novel
two-dimensional (2D) k-ary sketch and apply it for intru-
sion classification.
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Figure 4. The distribution of the number of attacks with
respect to the number of unique ports visited when there
are more than 50 un-responded SYNs in 1-minute interval
between one {SIP,DIP} pair.

For the 2D k-ary sketch, instead of using H indepen-
dent one-dimensional hash tables, we use H independent
2D hash tables (matrices), as shown in Figure 5. Let Kx

and Ky denote the number of buckets for each dimen-
sion respectively. For each 2D hash matrix, we hash two
groups of fields into it. Consider the previous example of
separating SYN flooding attacks from vertical scans. The
x dimension represents the {SIP,DIP}, and the y dimen-
sion corresponds to Dport. For each packet, we locate
its corresponding entry in the matrix by two indepen-
dent hash mappings as shown in Figure 6, and update
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Figure 5. Diagram of the two-dimensional k-ary
sketch
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Figure 6. An example of UPDATE operation for
two-dimensional sketch

the bucket in the same manner as for reversible sketches
in Section 3.3. Similarly, we can update all H matrices
for data stream recording.

In the detection stage, after finding an attack by using
reversible sketch or any other method (i.e., the {SIP,DIP}
is known), we can use the column of buckets in the hash
matrix selected by the {SIP,DIP} to infer the distribution
of Dport and pinpoint the type of attack, e.g., a SYN
flooding or a vertical scan. The algorithm is as follows.
For each 2D hash matrix, the {SIP,DIP} pair selects a
column of buckets. We define B to be the total sum of all
buckets in the column. We then obtain the sum Sp of the
top p buckets with the largest values (e.g., 5 out of 64). If
Sp > φ×B for some φ < 1, e.g., 0.8., then we regard it as
a SYN flooding. If the majority of the H hash matrices
of the 2D sketch imply it is a SYN flooding, we conclude
it is a SYN flooding attack; otherwise we conclude it is
a vertical scan. Similarly, we can differentiate horizontal
scans from the SYN flooding attacks.

In our technical report [5], we analytically proved that
the 2D sketches are highly accurate.

5 Evaluation

5.1 Evaluation Methodology

In this section, we evaluate HiFIND with two dataset.
One is the router traffic traces collected at the Lawrence
Berkeley National Laboratory (LBL) which consists of
about 900M netflow records. The other is the traffic
traces of Northwestern University (NU, which has sev-
eral Class B networks) edge routers. The router exports
netflow data continuously which is recorded with sketches
of HiFIND on the fly. The one day experiment in May
2005 consists of 239M netflow records, which comes 1.8T
total traffic.

Unless denoted otherwise, the default time interval for
constructing the time series is one minute. The data
recording part of the HiFIND system consists of 1) three
reversible sketches (RS), one for {SIP,Dport}, one for
{DIP,Dport}, and the other for {SIP,DIP}, 2) one origi-
nal sketch (OS) for {DIP,Dport}, and 3) two 2D sketches
for {SIP,Dport} × {DIP} and {SIP,DIP} × {Dport}. For
all the RS and 2D sketches we update #SYN - #SYN/ACK
as the value, and only for the OS, we use #SYN as the
value.

The following parameters are chosen based on system-
atic study as in [8, 12]. We adopt 6 stages for each RS
and OS, and 5 stages for each 2D sketch in our system.
We use 212 buckets for each stage in 48-bit RS, 216 buck-

Traces Attack
type

Phase1:
Raw
results

FP reduction

Phase2: Phase3:
Port scan Flooding

NU
SYN flooding 157 157 32

Hscan 988 936 936

Vscan 73 19 19

LBL
SYN flooding 35 35 0

Hscan 736 699 699

Vscan 40 1 1

Table 4. Detection results under three phases.

ets for each stage in the 64-bit RS, and 214 buckets for
all their verification sketches. 214 buckets are applied for
each stage in OS. We also use 212 × 64 buckets for each
stage of the 2D sketches. Therefore, the total memory is
13.2MB.

Both NU and LBL have a large amount of traffic, so we
set the detection threshold to be one un-responded SYN
packet per second.

5.2 Sketches Highly Accurate in Recording
Traffic for Detection

Table 4 shows the three phases of our detection results.
We first detect attacks using reversible sketches with al-
gorithms described in Section 3.3. The results are shown
as “Raw results”(“Phase 1”) in Table 4. 2D sketches re-
duce the false positives for port scans introduced by SYN
flooding attacks (“Phase 2”) of Table 4. The heuristics
in Section 3.4 reduce false positives of SYN flooding at-
tacks(“Phase 3”).

To evaluate the errors introduced by sketches, we com-
pare the results obtained from the same detection algo-
rithm but with two different types of traffic recording:
1) sketches; 2) accurate flow table to hold per-flow in-
formation (we call it non-sketch method). We find that
we detect exactly the same attacks for the two configura-
tions with very different amounts of memory (see memory
consumption discussion in Section 5.5). There is no false
positive in our results. This shows sketches are highly
accurate in recording the traffic for detection.

5.3 HiFIND Outperforms Other Existing
Network IDSes

5.3.1 Detection Over a Single Router

We compare the HiFIND with other state-of-the-art work
as introduced in Section 2: the TRW [6] for port scan
detection and the CPM [15] for SYN flooding detection.
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Data TRW HiFIND Overlap number

NU 497 512 488

LBL 695 699 692

Table 5. Horizontal scans detection comparison of
HiFIND and TRW aggregated by source IP.

Data CPM HiFIND Overlap number

NU 1422 1427 1422

LBL 1426 0 0

Table 6. TCP SYN flooding detection comparison
of HiFIND and CPM.

Anonymized SIP Dport #DIP Cause

204.10.110.38 1433 56275 SQLSnake scan

109.132.101.199 22 45014 Scan SSH

95.30.62.202 3306 25964 MySQL Bot scans

162.39.147.51 6101 24741 Unknown scan

15.192.50.153 4899 23687 Rahack worm

Table 7. Five major senarios of the top 10 Hscans
in NU experiment.

Anonymized SIP Dport #DIP Cause

98.198.251.168 135 64 Nachi or MSBlast worm

3.66.52.227 445 64 Sasser and Korgo worm

2.0.28.90 139 64 NetBIOS scan

98.198.0.101 135 64 Nachi or MSBlast worm

165.5.42.10 5554 62 Sasser worm

Table 8. 5 major scenarios of the bottom 10 Hscans in NU
experiment.

For TRW experiments, we choose similar parameters
as those in their paper. We apply the TRW on both
datasets with the same threshold. Repeated alerts are re-
moved from the results of both methods. Table 5 shows
the comparison results of our methods with TRW for
Hscan detection. We observe that the scans detected
by these two methods have very good overlap, except
for a few special cases. There are a small number of
Hscans detected by HiFIND but not TRW, because some
attacks have both successful and unsuccessful connection
attempts, but TRW cannot detect those suspicious ones
in this category. There are also a very small number of
Hscans detected by TRW but not HiFIND, because they
are the combination of multiple small scans, which are
too stealthy to be captured by our threshold. It is our
future work to further investigate it.

Next, we compare our method with CPM for SYN
flooding attack detection. The results are shown in Ta-
ble 6. In the LBL traces, there is no SYN flooding, but
a very large number of scans. CPM cannot differentiate
them. On the other hand, CPM and HiFIND have very
similar results for the NU data because most time inter-
vals contain SYN flooding. Meanwhile, there is a small
number of intervals in which SYN flooding is buried in the
rest of the normal traffic, so CPM cannot detect them.

5.3.2 Aggregated Detection over Multiple
Routers

In this section, we consider the network topology of Fig-
ure 3 discussed in Section 3 and evaluate the performance
of HiFIND and TRW under such scenarios. To simu-
late asymmetric routing and multi-path routing caused by
per-packet load balancing on routers, we split the packet
level trace from a Northwestern University edge router
into three routers randomly, for both inbound and out-
bound packets. For each packet, we randomly select an
edge router to deliver, i.e., for any single connection, the
incoming SYN packet and the outgoing SYN/ACK packet
have 2/3 probability to go through different routers.

For HiFIND , we obtain the same results as those when
the traffic goes through the same router, i.e., the results
in Section 5.3.1. In comparison, we apply TRW to the
data on each router for detection and then sum the result
up. We found their approach had high false positives or
negatives in this case.

5.4 Detected Intrusions Successfully Vali-
dated

In this section we manually examine a certain number
of attacks for validation.

SYN Flooding We validate our SYN flooding detec-
tion results with backscatter [9]. Among the 32 SYN
floodings detected, there are 21 matched with backscat-
ter results. For the other 11 attacks, three are due to
threshold boundary effect.

5.4.1 Horizontal Scans

We manually validate horizontal scans, in particular, the
top 5 and bottom 5 attacks in terms of their change dif-
ference. Due to limited space, Table 7 shows the top 5
Hscans, and Table 8 shows the bottom 5 Hscans from the
NU experiment. Detailed evaluation can be found in our
technical report [5].

5.4.2 Vertical Scans

We also manually validate vertical scans. In the LBL
trace, we found one vertical scan. It scanned some
well-known service ports, such as HTTPS(81), HTTP-
Proxy(8000,8001,8081). In the NU experiment, we found
in total 19 vertical scans. We manually checked all of
them and found the vertical scans are mostly interested in
the well known service ports and Trojan/Backdoor ports.
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Methods
2.5Gbps 10Gbps

1min 5min 1min 5min

HiFIND w/ sketch 13.2M 13.2M

HiFIND w/ complete info 10.3G 51.6G 41.25G 206G

TRW 5.63G 28G 22.5G 112.5G

Table 9. Memory comparison(bytes).

5.5 Evaluation Results for Online Perfor-
mance Constraints

5.5.1 Small Memory Consumption

In our experiments, we only use a total memory of
13.2MB for traffic recording. Note that such settings work
well for a large range of link speeds.

On the other hand, if hash tables are used to record
every flow, much larger memory is required as shown in
Table 9. We consider the worst-case traffic of all-40-byte
packet streams with 100% utilization of the link capacity.
There is a spoofed SYN flooding attack with a different
source IP for each packet. For the method without sketch,
it needs at least three hash tables corresponding to the
three reversible sketches in our detection methods.

5.5.2 Small Memory Access per Packet

There are 15 memory accesses per packet for 48 bit re-
versible sketches and 16 per packet for 64-bit reversible
sketches (see [12] for details). For each two-dimensional
sketch, we only need 5 memory accesses per packet, one
for each 2D hash matrix. Thus, when recording these
sketches in parallel or in pipeline, the HiFIND system
has a very small number of memory accesses per packet
and is capable of online monitoring.

5.5.3 High Speed Traffic Monitoring

In HiFIND system, the speed of 2D sketches is much
faster than that of the reversible sketches. Thus, the
speed is dominated by the latter. With our prototype sin-
gle FPGA board implementation, we are able to sustain
16.2 Gbps throughput for recording all-40-byte packet
streams (the worst case) with a reversible sketch.

We can also use multi-processors to record multiple
sketches simultaneously in software. We record 239M
items with one reversible sketch in 20.6 seconds, i.e., 11M
insertions/sec. For the worst case scenario with all 40-
byte packets, this translates to around 3.7 Gbps. These
results are obtained from code that is not fully optimized
and from a machine that is not dedicated to this process.

For the on-site NU experiments, the HiFIND system
used 0.34 seconds on average to perform detection for each
one-minute interval, and the standard deviation is 0.64
seconds. The maximum detection time (for which the
interval contains the largest number of attacks) is 12.91
seconds, which is still far less than one minute. In order to
show the scalability of HiFIND, we further do some stress
experiments. We compress the NU data by the factor of
60, and detect the top 100 anomalies in each interval.

The HiFIND system used 35.61 seconds on average in
detection for each interval. The maximum detection time
is 46.90 seconds.

6 Conclusion

In this paper, we propose, implement and evaluate a
DoS resilient High-speed Flow-level Intrusion Detection
system, HiFIND, leveraging recent data streaming tech-
niques such as reversible sketches. Experiments with sev-
eral router traces show that HiFIND is highly accurate,
efficient, uses very small memory, and can effectively de-
tect multiple types of attacks simultaneously.
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