
Sketch-based Change Detection: Methods, Evaluation, and
Applications

Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang Yan Chen∗

AT&T Labs–Research; 180 Park Avenue University of California
Florham Park, NJ, USA Berkeley, CA, USA

{bala,sen,yzhang}@research.att.com yanchen@cs.berkeley.edu

ABSTRACT
Traffic anomalies such as failures and attacks are commonplace
in today’s network, and identifying them rapidly and accurately is
critical for large network operators. The detection typically treats
the traffic as a collection of flows that need to be examined for
significant changes in traffic pattern (e.g., volume, number of con-
nections). However, as link speeds and the number of flows in-
crease, keeping per-flow state is either too expensive or too slow.
We propose building compact summaries of the traffic data using
the notion of sketches. We have designed a variant of the sketch
data structure, k-ary sketch, which uses a constant, small amount
of memory, and has constant per-record update and reconstruction
cost. Its linearity property enables us to summarize traffic at various
levels. We then implement a variety of time series forecast models
(ARIMA, Holt-Winters, etc.) on top of such summaries and detect
significant changes by looking for flows with large forecast errors.
We also present heuristics for automatically configuring the model
parameters.

Using a large amount of real Internet traffic data from an op-
erational tier-1 ISP, we demonstrate that our sketch-based change
detection method is highly accurate, and can be implemented at
low computation and memory costs. Our preliminary results are
promising and hint at the possibility of using our method as a build-
ing block for network anomaly detection and traffic measurement.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—network monitoring

General Terms
Measurement, Algorithms

Keywords
Change Detection, Network Anomaly Detection, Data Stream Com-
putation, Sketch, Time Series Analysis, Forecasting

∗Work done while at AT&T Labs–Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

1. INTRODUCTION
Traffic anomalies are an integral part of daily life for today’s

network operators. Some traffic anomalies are expected or unan-
ticipated but tolerable. Others are often indications of performance
bottlenecks due to flash crowds [25], network element failures, or
malicious activities such as denial of service attacks (DoS) [23]
and worms [28]. Suitable motivation exists to process massive data
streams (available from diverse sources) quickly to examine them
for anomalous behavior.

Two basic approaches to network anomaly detection are com-
mon. The first approach is the signature-based approach. It detects
traffic anomalies by looking for patterns that match signatures of
known anomalies. For example, Moore et al. [29] infer DoS activi-
ties based on address uniformity, a property shared by several pop-
ular DoS toolkits. Signature-based methods have been extensively
explored in the literature and many software systems and toolkits
such as Bro [31] and Snort [32] have been developed and are being
used. One limitation of this approach is the requirement that the
anomaly signatures be known in advance; thus it cannot be applied
to identify new anomalies. Also, a malicious attacker can evade
signature-based detection systems by garbling the signatures. One
can see a parallel in the failure of filter-based spam fighting systems
where spammers introduce random hashes in the spam messages.

The second approach is the statistics-based approach, which does
not require prior knowledge about the nature and properties of anoma-
lies and therefore can be effective even for new anomalies or vari-
ants of existing anomalies. A very important component of statistics-
based approach is change detection. It detects traffic anomalies by
deriving a model of normal behavior based on the past traffic his-
tory and looking for significant changes in short-term behavior (on
the order of minutes to hours) that are inconsistent with the model.
Our goal in this work is to come up with an efficient, accurate,
and scalable change detection mechanism for detecting significant
changes in massive data streams with a large number of flows.

1.1 Change detection: existing techniques and
limitations

Change detection has been extensively studied in the context of
time series forecasting and outlier analysis [35, 36, 12, 13]. The
standard techniques include different smoothing techniques (such
as exponential smoothing or sliding window averaging), the Box-
Jenkins ARIMA modeling [6, 7, 2], and finally the more recent
wavelet-based techniques [4, 3].

Prior works have applied these techniques to network fault de-
tection and intrusion detection. Examples in fault detection include
[22, 26, 38]. Feather et al.identify faults based on statistical devi-
ations from normal traffic behavior [18]; a method of identifying
aberrant behavior by applying thresholds in time series models of

network traffic is described in [9]. Methods for intrusion detec-
tion include neural networks [20], Markov models [40], and clus-
tering [34]. Barford et al.recently provide a characterization of dif-
ferent types of anomalies [4] and propose wavelet-based methods
for change detection [3].

Unfortunately, existing change detection techniques can typi-
cally only handle a relatively small number of time series. While
this may suffice for detecting changes in highly aggregated network
traffic data (e.g., SNMP link counts with 5 minute sample interval),
they cannot scale up to the needs at the network infrastructure (e.g.,
ISP) level. At an ISP level, traffic anomalies may be buried in-
side the aggregated traffic, mandating examination of the traffic at
a much lower level of aggregation (e.g., IP address level) in order
to expose them. Given today’s traffic volume and link speeds, the
detection method has to be able to handle potentially several mil-
lions or more of concurrent network time series. Directly applying
existing techniques on a per-flow basis cannot scale up to the needs
of such massive data streams. Recent research efforts have been
directed towards developing scalable heavy-hitter detection tech-
niques for accounting and anomaly detection purposes [17]. Note
that heavy-hitters do not necessarily correspond to flows experienc-
ing significant changes and thus it is not clear how their techniques
can be adapted to support change detection.

1.2 Data stream computation and sketches
In the database research community, however, computation over

massive data streams has been an active research area over the past
several years. The emerging field of data stream computation deals
with various aspects of computation that can be performed in a
space- and time-efficient fashion when each tuple in a data stream
can be touched only once (or a small number of times). A good
survey of the algorithms and applications in data stream compu-
tation can be found in [30]. One particularly powerful technique
is sketch [24, 21, 15], a probabilistic summary technique proposed
for analyzing large streaming datasets. Sketches avoid keeping per-
flow state by dimensionality reduction, using projections along ran-
dom vectors. Sketches have some interesting properties that have
proven very useful in data stream computation: they are space effi-
cient, provide provable probabilistic reconstruction accuracy guar-
antees, and are linear (i.e., sketches can be combined in an arith-
metical sense).

1.3 Our contribution
In this work, we incorporate data stream computation techniques

into change detection. Our solution, labeled sketch-based change
detection, is the first one, to the best of our knowledge, that is ca-
pable of detecting significant changes in massive data streams with
a large number of network time series. With sketch-based change
detection, we first build compact summaries of the traffic data us-
ing sketches. We have designed a variant of the sketch data struc-
ture, k-ary sketch, which uses a constant, small amount of memory,
and has constant per-record update and reconstruction cost. We
then implement a variety of time series forecast models (ARIMA,
Holt-Winters, etc.) on top of such summaries and detect significant
changes by looking for flows with large forecast errors. Being able
to compute significant differences in the list of top flows quickly
can point towards potential anomalies. Depending on the length of
the time period for which we compute forecasts and the duration
of significant changes, we can accurately identify the presence of
an anomaly. Note that an anomaly can be a benign surge in traf-
fic (like a flash crowd) or an attack. We also present heuristics for
configuring the model parameters.

We demonstrate using a large amount of real Internet traffic data

that our sketch-based change detection method is highly accurate
when compared with per-flow analysis, and can be implemented
at low computation and memory costs. Our evaluation shows that
we can reconstruct lists of the top flows in a time period efficiently
and accurately; we are also able to achieve similar forecast errors
when compared with per-flow techniques. While our techniques
have not yet been directly applied to anomaly detection, our pre-
liminary results in change detection are promising and we believe
that our method can serve as a building block for network anomaly
detection.

1.4 Paper outline
The rest of the paper is organized as follows: Section 2 gives an

overview of the framework of our sketch-based change detection,
followed by detailed discussions of different modules in Section 3.
Section 4 describes the experimental setup. Section 5 presents
key portions of the results of our extensive testing of sketch-based
change detection on different large and real datasets. We summa-
rize our ongoing research in Section 6 and conclude the paper in
Section 7.

2. OVERVIEW

2.1 Data stream model
Over the past several years, various models have been proposed

to describe data streams, including Time Series Model, Cache Reg-
ister Model, and Turnstile Model [30]. We use the the most general
one—the Turnstile Model.

Specifically, let I = α1, α2, · · · , be an input stream that arrives
sequentially, item by item. Each item αi = (ai, ui) consists of

a key ai ∈ [u]
def
= {0, 1, · · · , u − 1}, and a (possibly negative)

update ui ∈
�

. Associated with each key a ∈ [u] is a time varying
signal A[a]. The arrival of each new data item (ai, ui) causes the
underlying signal A[ai] to be updated: A[ai]+ = ui. The goal
of change detection is to identify all those signals with significant
changes in their behavior.

The above model is very general and one can instantiate it in
many ways with specific definitions of the key and updates. In the
context of network anomaly detection, the key can be defined using
one or more fields in packet headers such as source and destination
IP addresses, source and destination port numbers, protocol number
etc. It is also possible to define keys with entities like network
prefixes or AS numbers to achieve higher levels of aggregation.
The update can be the size of a packet, the total bytes or packets in
a flow (when flow-level data is available). To keep the parameter
space within a manageable size, however, we only use destination
IP address and bytes in the experiments discussed in this paper.
Alternative choice of keys and values may affect the running time,
but we expect the accuracy results to be quite similar.

2.2 Sketch-based change detection
In an ideal environment with infinite resources, we can perform

time series forecasting and change detection on a per-flow basis.
Specifically, we break time into discrete intervals I1, I2, · · · . For
each time interval It, and each signal A[a] that appears before or
during interval It, we first compute the observed value—total up-
date to A[a] during interval It: oa(t) = � i∈Aa(t) ui, where the

set of indices Aa(t)
def
= {i | ai = a ∧ (ai, ui) arrives during It}.

We also compute the forecast value fa(t) by applying a forecasting
model to observed values in the past intervals. We then compute the
forecast error ea(t) = oa(t) − fa(t) and raise an alarm whenever
ea(t) is significant according to certain detection criteria.

In the real world, however, per-flow analysis can be prohibitive
because the number of signals present in the input stream can be
very large. For instance, if we use source and destination IPv4
addresses as the key, the key space [u] can be as large as 264 , and
the number of signals can easily reach tens of millions given today’s
traffic volume and link speeds. Hence it can be too slow or too
expensive to perform change detection on a per-flow basis.

Our solution is to create sketches to summarize the input stream
and implement various forecasting models on top of the sketches.
Specifically, our sketch-based change detection consists of the fol-
lowing three basic modules:

1. Sketch module

2. Forecasting module

3. Change detection module

The first module—sketch module—creates a (space- and time-
efficient) sketch to summarize all the observed values oa(t) (to-
tal update to signal A[a]) during each time interval It—the ob-
served sketch So(t). The forecasting module produces a forecast
sketch Sf (t) using some forecasting models based on observed
sketches in the past intervals. It then computes the forecast error
sketch Se(t) as the delta between So(t) and Sf (t), i.e., Se(t) =
So(t) − Sf (t). The linearity of the sketch data structure allows
us to implement various forecasting models and compute the deltas
directly at the sketch level. The change detection module uses the
error sketch Se(t) to determine significant changes. We next de-
scribe these modules in details.

3. DETAILS

3.1 Sketch module
Let (a1, u1), (a2, u2), · · · be an input stream (for example, the

substream of I that is observed during a given time interval). For
each key a ∈ [u], let va = � i∈Aa

ui, where the set of indices

Aa
def
= {i | ai = a}.

For each interval, the second moment (F2) is defined as the sum

of squares of the values associated with all the keys, i.e., F2
def
=

� a v2
a. We refer to the square root of the second moment (

√
F2)

as the L2 norm.
The sketch module uses the sketch data structure to summarize

all the va in each time interval. Sketch is a probabilistic summary
data structure based on random projections (See [30] for a good
overview of sketches and the general field of data stream com-
putation). We have designed a variant of the sketch data struc-
ture, which we call the k-ary sketch. The k-ary sketch is similar
to the count sketch data structure recently proposed by Charikar et
al.[11]. However, the most common operations on k-ary sketch use
simpler operations and are more efficient than the corresponding
operations defined on count sketches [33].

Just like the count sketch, a k-ary sketch S consists of a H × K
table of registers: TS[i][j] (i ∈ [H], j ∈ [K]). Each row TS[i][·]
(i ∈ [H]) is associated with a hash function from [u] to [K]: hi.
We can view the data structure as an array of hash tables. The hash
functions are required to be 4-universal [10, 39] to provide proba-
bilistic guarantees of reconstruction accuracy. We construct them
using the fast tabulation-based method developed in [33]. Differ-
ent hi are constructed using independent seeds, and are therefore
independent.

There are four basic operations defined for k-ary sketches: UP-
DATE to update a sketch, ESTIMATE to reconstruct va for a given

key a, ESTIMATEF2 to estimate the second moment F2, and COM-
BINE to compute the linear combination of multiple sketches. They
are used in various modules of our change detection scheme: UP-
DATE in the sketch module to update the observed sketch So(t);
COMBINE in the forecasting module to implement various fore-
casting models and to compute the forecast sketch Sf (t) and fore-
cast error sketch Se(t); ESTIMATE in the change detection mod-
ule to reconstruct forecast errors from Se(t); and ESTIMATEF2 in
the change detection module to choose the threshold for judging
whether forecast errors are significant.

The formal specification of these operations is as follows.

1. UPDATE(S,a, u): For ∀i ∈ [H], TS [i][hi(a)]+= u.

2. ESTIMATE(S,a): Let sum(S) = � j∈[K] TS[0][j] be the
sum of all values in the sketch, which only needs to be com-
puted once before any ESTIMATE(S,a) is called. Return an
estimate of va

vest
a = mediani∈[H]{vhi

a }

where

vhi
a =

T [i][hi(a)] − sum(S)/K

1 − 1/K

As shown in Appendix A, each vhi
a (i ∈ [H]) is an unbiased

estimator of va with variance inversely proportional to (K −
1). vest

a further improves accuracy by avoiding the extreme
estimates.

3. ESTIMATEF2(S): Return an estimate of the second mo-
ment

F est
2 = mediani∈[H]{F hi

2 }
where

F hi
2 =

K

K − 1

�

j∈[K]

(TS[i][j])2 − 1

K − 1
(sum(S))2

As shown in Appendix B, each F hi
2 forms an unbiased esti-

mator of F2 with variance inversely proportional to (K −1).
F est

2 further improves accuracy by avoiding the extreme es-
timates.

4. COMBINE(c1, S1, · · · , c`, S`): The linearity of the sketch
data structure allows us to linearly combine multiple sketches
S = � `

k=1 ck · Sk by combining every entry in the table:

TS[i][j] =

`�

k=1

ck · TSk
[i][j]

3.2 Forecasting module
The forecasting module uses the observed sketches in the past

intervals So(t
′) (t′ < t) to compute the forecast sketch Sf (t) and

along with it the error between the observed and forecast sketches
as Se(t). In this work, we explore six models commonly used in
univariate time series forecasting and change detection. The first
four models are simple smoothing models; the other two belong to
the family of ARIMA models. All six models can be implemented
on top of sketches by exploiting the linearity property of sketches.

3.2.1 Simple smoothing models
The first four models are simple smoothing models and are pop-

ular due to their simplicity. They are moving average (MA), ex-
ponentially weighted moving average (EWMA), S-shaped moving
average (SMA), and non-seasonal Holt-Winters (NSHW).

Moving Average (MA) This forecasting model assigns equal
weights to all past samples, and has a single integer parameter
W ≥ 1 which specifies the number of past time intervals used
for computing the forecast for time t.

Sf (t) =
� W

i=1 Sf (t − i)

W
, W ≥ 1

S-shaped Moving Average (SMA) This is a class of weighted
moving average models that give higher weights to more recent
samples.

Sf (t) =
� W

i=1 wi · Sf (t − i)

� W
i=1 wi

, W ≥ 1

We use a subclass that gives equal weights to the most recent
half of the window, and linearly decayed weights for the earlier
half (see [19] for discussion).

Exponentially Weighted Moving Average (EWMA) With ex-
ponentially weighted moving average, the forecast for time t is the
weighted average of the previous forecast and the newly observed
sample at time t − 1.

Sf (t) = � α · So(t − 1) + (1 − α) · Sf (t − 1), t > 2
So(1), t = 2

The parameter α ∈ [0, 1] is called the smoothing constant. It
indicates how much weight is given to new samples vs. the history.

Non-Seasonal Holt-Winters (NSHW) The Holt-Winters model
[8] is another commonly used smoothing model and it has been
applied in [9] to detect aberrant behavior. In the non-seasonal Holt-
Winters model, there is a separate smoothing component Ss(t) and
a trend component St(t). There are two parameters α ∈ [0, 1] and
β ∈ [0, 1].

Ss(t) = � α · So(t − 1) + (1 − α) · Sf (t − 1), t > 2
So(1), t = 2

St(t) = � β · (Ss(t) − Ss(t − 1)) + (1 − β) · St(t − 1), t > 2
So(2) − So(1), t = 2

The forecast is then Sf (t) = Ss(t) + St(t).

3.2.2 ARIMA models
Box-Jenkins methodology, or AutoRegressive Integrated Mov-

ing Average (ARIMA) modeling technique [6, 7], is a class of lin-
ear time series forecasting techniques that capture the linear de-
pendency of the future values on the past values. They are able to
model a wide spectrum of time series behavior. As a result, they
have been extensively studied and widely used for univariate time
series forecasting and change detection.

An ARIMA model includes three types of parameters: the au-
toregressive parameter (p), the number of differencing passes (d),
and the moving average parameter (q). In the notation introduced
by Box and Jenkins, models are summarized as ARIMA (p, d, q).
A model described as (0, 1, 2) means that it contains p = 0 (zero)
autoregressive parameters and q = 2 moving average parameters
which were computed for the time series after it was differenced
once (d = 1). Note that we use only integral values for p, d, and q.
Although there has been recent work on models with fractional d

(the ARFIMA model) in the context of action-reaction models [27],
we have not yet examined their application in the networking con-
text.

A general ARIMA model of order (p, d, q) can be expressed as:

Zt −
q�

i=1

MAi · Zt−i = C + et −
p�

j=1

ARj · et−i

where Zt is obtained by differencing the original time series d
times, et is the forecast error at time t, MAi (i = 1, ..., q) and
ARj (j = 1, ..., p) are MA and AR coefficients.

In practice, p and q very rarely need to be greater than 2. The
number of differences (d) is typically either 0 or 1. Therefore, when
we extend ARIMA models to the sketch context, we only consider
the following two types of ARIMA models (the names are based
on the number of differences):

• ARIMA0: ARIMA models of order (p ≤ 2, d = 0, q ≤ 2)

• ARIMA1: ARIMA models of order (p ≤ 2, d = 1, q ≤ 2)

In ARIMA models, the choice of MA and AR coefficients MAi

(i = 1, ..., q) and ARj (j = 1, ..., p) must ensure that the resulting
models are invertible and stationary. As a necessary but insufficient
condition, MAi and ARj must belong to the range [−2, 2] when
p, q ≤ 2.

3.3 Change detection module
After constructing the forecast error sketch Se(t), the change

detection module chooses an alarm threshold TA based on the esti-
mated second moment of Se(t): TA

def
= T ·[ESTIMATEF2(Se(t))]

1

2 ,
where T is a parameter to be determined by the application.

Now for any key a, the change detection module can reconstruct
its forecast error in Se(t) using ESTIMATE(Se(t), a) and raise an
alarm whenever the estimated forecast error is above the alarm
threshold TA.

The remaining question is how to obtain the stream of keys for
the change detection module. Sketches only support reconstruction
of the forecast error associated with a given key. It does not contain
information about what keys have appeared in the input stream.

There are several possible solutions to this problem. With the
brute-force solution, one can record all the keys that appeared in
recent intervals (e.g., the same interval t over which Se(t) is de-
fined) and replay them after Se(t) has been constructed. This still
requires maintaining per-flow information. Its scalability is lim-
ited by the maximum number of keys that appear in the window
for key collection. We can avoid keeping per-flow state by using
a two-pass algorithm—construct Se(t) in the first pass and detect
changes on the second pass. Since the input stream itself will pro-
vide the keys, there is no need for keeping per-flow state. This
requires access to the same input stream twice and thus useful only
in the offline context. A third alternative is to use the keys that ap-
pear after Se(t) has been constructed. This works in both online
and offline context. The risk is that we will miss those keys that do
not appear again after they experience significant change. This is
often acceptable for many applications like DoS attack detection,
where the damage can be very limited if a key never appears again.
Note that we do not need to do this for every newly arrived item.
If we can tolerate the risk of missing some very infrequent keys,
we can sample the (future) input streams and only work on a sub-
stream of keys. Another possibility is to incorporate combinatorial
group testing into sketches [14]. This allows one to directly infer
keys from the (modified) sketch data structure without requiring a
separate stream of keys. However, this scheme also increases the

update and estimation costs and additional research is required to
make it more efficient. In this paper, we use the offline two-pass
algorithm in all experiments.

3.4 Parameter configuration
Our change detection framework includes sketch-related param-

eters as well as control parameters for various forecasting models.
Below we provide guidelines and heuristics for properly configur-
ing these parameters—an important step for making our framework
practical.

3.4.1 Sketch parameters: H and K
There are two sketch-related parameters: the number of hash

functions (H), and the size of hash tables (K). Depending on the
choice of H and K, k-ary sketches can provide probabilistic guar-
antees on the estimation accuracy of the forecast errors and their
total energy (see Appendix A and B for details). We can use such
analytical results to determine the choice of H and K that are suf-
ficient to achieve targeted accuracy. As the analytical results apply
in a data-independent way, the resulting H and K may be too con-
servative for the actual dataset. Hence, we use analytical results to
derive data-independent choice of H and K and treat them as upper
bounds. We then use training data to find the best (data-dependent)
H and K values.

3.4.2 Forecasting model parameters

Criteria for good parameters In the context of univariate time
series forecasting, a commonly used simple heuristic for config-
uring model parameters is choosing parameters that minimize the
total residual energy, i.e., the sum of squares (of forecast errors)
over time.

We can extend the above heuristic to the sketch context and look
for parameters that minimize the total energy in the resulting fore-
cast error sketches over time � t F2(Se(t)), where F2(Se(t)) is
the second moment for all the forecast errors summarized by sketch
Se(t).

We will not know the true F2(Se(t)) unless we do per-flow
analysis for each parameter setting, which can be prohibitive. In-
stead we use the estimated second moment F est

2 (Se(t)), as long as
F est

2 (Se(t)) closely approximates F2(Se(t)). In other words, we
try to find parameters that minimize the estimated total energy of
forecast errors � t F est

2 (Se(t)).

Multi-pass grid search For parameters that are continuous, we
use a multi-pass grid search algorithm to find a good choice. Con-
sider for example the EWMA model. The first pass finds a pa-
rameter α ∈ {0.1, 0.2, ..., 1.0} that minimizes the estimated total
energy for the forecast errors. Let a0 be the best α. The second pass
equally subdivides range [a0−0.1, a0+0.1] into N = 10 parts and
repeats the process. We obtain high precision via multiple passes.
For models with integral parameters, such as the moving average
model, we can simply vary the parameter to find the best one. Note
that grid search is only a heuristic. It does not guarantee that we
will find the optimal parameter combination that minimizes the es-
timated total energy for forecast errors. However, we only need to
have good enough parameters such that the resulting model cap-
tures the overall time series behavior. We will show later that grid
search indeed achieves this.

4. EXPERIMENTAL SETUP
We use large amounts of real Internet traffic data to evaluate and

validate our approach. Below we describe our datasets and the ex-
perimental parameter settings.

4.1 Dataset description
Input data is chosen to be four hours worth of netflow dumps

from ten different routers in the backbone of a tier-1 ISP. Nearly
190 million records are processed with the smallest router having
861K records and the busiest one having over 60 million records in
a contiguous four hour stretch.

4.2 Experimental parameters
In this section we present the various values of parameters that

we used in our experiments and justify their choices. We also
present ways in which these values should be tailored in using our
approach based on the local data available. Note that some of the
parameters would have different values when the sketch technique
is used for different applications.

The cost of estimation and updating is dominated by the num-
ber of hash tables, so we choose small values for H. Meanwhile, H
improves accuracy by making the probability of hitting extreme es-
timates exponentially small (see Theorem 2, 3, and 5 in Appendix),
suggesting again that it is enough to use small H. We vary H to see
the impact on the accuracy of estimation with respect to the cost.
Our choices of H (1, 5, 9, and 25) are driven by the fact that we can
use optimized median networks to find the medians quickly without
making any assumptions on the nature of the input [16, 37]. The
analytic upper bound needed to provide a specific degree of error
threshold by using k-ary sketches is used as the upper reach of K.
We can tighten the lower bound of zero by empirically examining
values between 0 and the upper bound in log(upper-bound) steps.
In our experiments we used an upper bound of 64K and using our
data we quickly zoomed in on a lower bound of K = 1024.

Another important parameter is the interval size: a long inter-
val would result in delays since our scheme reports anomalies at
the end of each interval and we will miss more events that occur
within a single interval. A short interval requires us to update
the sketch-based forecasting data structures more frequently. We
choose 5 minutes as a reasonable tradeoff between the responsive-
ness and the computational overhead. Such an interval is used in
other SNMP based network anomaly detection systems [3]. We
also use 1 minute intervals to examine the impact of shorter inter-
vals.

Each of the six models requires different choices of parameters.
For the moving average models (MA and SMA) we pick a single
time interval to be the minimum window size and 10 (12) to be
the maximum window size for interval size of 5 (1) minutes. The
window size yielding the minimum total energy of forecast errors
across each of the interval values is selected as the parameter. For
the remaining models we apply a 2-pass grid search algorithm to
choose different parameters. For the EWMA and NSHW models,
during each pass we partition the current ranges into 10 equal in-
tervals. For ARIMA models, however, the number of parameters is
much larger and the search space becomes too large if we partition
each parameter range into 10 parts. To limit the search space, we
partition the current search range into 7 parts instead. During grid
search, H is fixed at 1 and K at 8K. As we will see later, with H =
1 and K = 8K, the estimated total energy of forecast errors closely
approximates the true energy obtained using per-flow analysis.

5. EXPERIMENT RESULTS
In this section, we present the results of our evaluation of the

feasibility of using sketches for change detection. The setup for
the various experiments is described in Section 4.2 and we present
results in detail for three models (EWMA and ARIMA with d =
0 and 1) and occasional results for NSHW. We should note that in

most cases the results from the various models are largely similar
and we exclude them in the interest of brevity.

The evaluation is divided into three parts: We first report on
the validity of the parameters generated by our grid search. Next,
we report on evaluation of sketches at the flow-level—focusing on
what sketch reports as (i) the top-N flows with the maximum abso-
lute forecast errors, and (ii) the flows whose absolute forecast error
exceeds a threshold, and comparing the sketch report with what
per-flow scheme reports. We then report on the implementation
complexity and the running time.

5.1 Grid Search
The experiments in this section are concerned with determining

appropriate parameter settings for the forecast models, values for
H and K, and in evaluating the usefulness of grid search.

• We use the estimated total energy (instead of the true total
energy) as the metric for selection of the forecast model pa-
rameter setting(see Section 3.4.2). For this approach to yield
good performance, we need to ensure that the estimated value
closely tracks the true value. This is the focus of the first part
of the study in this section.

• We also explore the space of (H,K) values and various pa-
rameter settings to zoom in on suitable choices of H and K
that result in good performance.

• Note that we use grid search to select the parameter setting
that results in the minimum total energy (see Section 3.4.2).
In this section we evaluate the “goodness” of the parameter
selected by grid search, compared to a random selection of
parameters.

5.1.1 Results

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3 4

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

MA
SMA

EWMA
ARIMA0
ARIMA1

NSHW

Figure 1: CDF for Relative Difference: all models, inter-
val=300, H=1,K=1024

We first perform a set of experiments (called random) over a
collection of 10 router files (consisting of over 189 million flow
records). For each forecast model, we randomly select a number of
points in the model parameter space, and for each chosen point and
(H,K) value combination, run both sketch and per-flow based detec-
tion on each router trace. The goal here is to examine differences
between the different forecast models, and to evaluate parameter
value choices for H and K (the hash table and range sizes). The ex-
periment also allows us to explore how sketches and per-flow com-
pare when the forecast parameters are not selected carefully. The
comparison metric is the Relative Difference, which is defined as:
the difference between the total energy (square root of the sum of

0

0.2

0.4

0.6

0.8

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

H=1, K=1024
H=5, K=1024
H=9, K=1024

H=25, K=1024

(a) Model=EWMA

0

0.2

0.4

0.6

0.8

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
E

m
pi

ric
al

 C
D

F
Relative Difference (%)

H=1, K=8192
H=5, K=8192
H=9, K=8192

H=25, K=8192

(b) Model=ARIMA0

Figure 2: Result of varying H in random

second moments for each time interval) computed from the sketch-
based technique and the total energy obtained using per-flow detec-
tion, expressed as a percentage of the total energy obtained using
per-flow detection. For a particular forecast model and (H,K) com-
bination, for each router file, we obtain multiple Relative Differ-
ence values, one for each selected point in the parameter space for
that model. In Figures 1-3, each curve corresponds to a particular
forecast model and (H,K) combination, and represents the empiri-
cal CDF of the Relative Difference values aggregated from across
all the routers.

Figure 1 shows that even for small H (1) and K (1024), across all
the models, most of the mass is concentrated in the neighborhood
of the 0% point on the x-axis, indicating that even for randomly
chosen model parameters, the total energy from the sketch-based
approach is very close to that for per-flow. Only for the NSHW
model a small percentage of points have sketch values that differ
by more than 1.5% from the corresponding per-flow values. The
worst case difference is 3.5%.

Next, we examine the impact of varying the H parameter. Fig-
ure 2 shows, for the EWMA and ARIMA0 models, that there is no
need to increase H beyond 5 to achieve low relative difference.

The last set of results for the random parameter technique is
shown in Figure 3, and demonstrates that once K = 8192 (8K) the
relative difference becomes insignificant, obviating the need to in-
crease K further.

The grid search technique for identifying parameters uses six
models for both 60s and 300s intervals, a representative sample of
router files (one large, one medium, and one small sized file), and

0

0.2

0.4

0.6

0.8

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

H=5, K=1024
H=5, K=8192

H=5, K=65536

(a) Model=EWMA

0

0.2

0.4

0.6

0.8

1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

H=5, K=1024
H=5, K=8192

H=5, K=65536

(b) Model=ARIMA0

Figure 3: Result of varying K in random

(H=1, K=8192) combination. For each (model,router,H,K) combi-
nation, grid search outputs the parameter value(s) for that model
that minimize the total energy in the resulting forecast errors. Us-
ing this parameter setting output by grid search, we run per-flow
analysis and obtain the corresponding total energy. The per-flow
estimate is then compared against the per-flow estimates of the ran-
dom parameters generated in the previous technique, for the same
router file and model. The goal of this experiment is twofold: first,
we ensure that grid search results are never worse than any of the
per-flow values of the random parameters. Second, we show that
grid search results can be significantly better than the results in the
random case. Our experimental results (no graphs shown) show
that in all cases (all models, three router files, both intervals) grid
search is never worse than the random parameters. Secondly, in at
least 20% of the cases the results with the random parameters are
at least twice (and in many cases much more) as bad as the errors in
the grid search case. This justifies the use of grid search to generate
the parameters for the remainder of the experiments.

5.2 Accuracy
After validating the set of parameters from the grid search scheme,

we need to demonstrate that the sketch scheme’s results are accu-
rate as compared to per-flow estimates. We estimate accuracy in
our experiments via two techniques: (i) Top-N, and (ii) Threshold-
ing.

The values of H and K are key to the accuracy of our forecasts as
well as efficient operation. Care must be taken to choose the proper
range of values on a per-application basis. Our experimental results

based on large and diverse data sets show that the values we have
chosen (H = 1..25), (K = 1K .. 64K) are indeed the right ones for
the change detection class of applications.

5.2.1 Top-N sketch vs. per-flow evaluation
Here we are interested in exploring, for a given N, how many of

the top-N flows (ranked in order of decreasing magnitude of fore-
casting errors) detected by the per-flow scheme are also detected as
top-ranking by our sketch-based scheme.

We choose three values of H (5, 9, 25) and K (8K, 32K, 64K),
two values of intervals (60s and 300s), and selected three router
data files representing high volume (over 60 Million), medium (12.7
Million), and low (5.3 Million) records, to carry out sketch accu-
racy evaluation across all models. For the model parameters, we
use the parameter values selected by the grid search process. For
each time interval, we generate the top-N flows with the maximum
absolute forecast errors (recall that a higher absolute forecast er-
ror indicates that a flow’s volume has a higher deviation from that
predicted by the underlying model) for both sketches and per-flow
techniques. For four values of N (50, 100, 500, 1000), we see how
many of the top-N flows are in common between the two resulting
sets and compute a similarity metric NAB/N , where NAB is the
number of common elements in the two sets.

While some of the top-N ranked elements from the per-flow tech-
nique may not belong to exactly the top-N elements output by the
sketch technique, the hope is that these elements will still be high
in the sketch-based ranking. Thus, it is possible to increase the
accuracy by comparing the top-N per-flow list with additional ele-
ments in the sketch-based ranked list. To evaluate this possibility, a
second set of comparisons involves comparing the top-N per-flow
results against the top-X*N (X = 1, 1.2, 1.5, 2) results from the
sketch-based approach.

5.2.1.1 Results.

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

S
im

ila
rit

y

Time(unit = 5 min.)

TopN=50
TopN=100
TopN=500

TopN=1000

(a) Interval=300

0.5

0.6

0.7

0.8

0.9

1

0 30 60 90 120 150 180

S
im

ila
rit

y

Time(unit = 1 min.)

TopN=50
TopN=100
TopN=500

TopN=1000

(b) Interval=60

Figure 4: Overall similarity of sketch and per-flow for large
router file, H=5, K=32K

Results in this section show how well sketches perform when
compared with per-flow by comparing their top-N (N=50, 100, 500,
1000) flows. The metric is essentially a similarity one: the number
of common elements in the two sets normalized by N. We start by
showing how this metric is remarkably consistent across the time
intervals, for moderate H and K. We set aside the first hour of the
four hour data sets for model warmup purposes leaving 180 and 37
intervals respectively in the 60s and 300s time interval cases. Fig-
ures 4 (a) and (b) show that even for large N (1000), the similarity
is around 0.95 for both the 60s and 300s intervals, for H=5 and
K=32K. In the rest of the figures in this section, we show the mean
similarity value across the 180 and 37 intervals.

0

0.2

0.4

0.6

0.8

1

8192 32768 65536

A
ve

ra
ge

 S
im

ila
rit

y

K

TopN=50, H=5
TopN=100, H=5
TopN=500, H=5

TopN=1000, H=5

(a) Interval=300

0

0.2

0.4

0.6

0.8

1

8192 32768 65536

A
ve

ra
ge

 S
im

ila
rit

y
K

TopN=50, H=5
TopN=100, H=5
TopN=500, H=5

TopN=1000, H=5

(b) Interval=60

Figure 5: Similarity using EWMA model for large router file
(topN sketch vs. topN per-flow)

0

0.2

0.4

0.6

0.8

1

1 1.25 1.5 1.75 2

A
ve

ra
ge

 S
im

ila
rit

y

X

TopN=50,H=5,K=8192
TopN=100,H=5,K=8192
TopN=500,H=5,K=8192

(a) Interval=300

0

0.2

0.4

0.6

0.8

1

1 1.25 1.5 1.75 2

A
ve

ra
ge

 S
im

ila
rit

y

X

TopN=50,H=5,K=8192
TopN=100,H=5,K=8192
TopN=500,H=5,K=8192

(b) Interval=60

Figure 6: topN vs. top-X*N for EWMA model for large router
file

Figures 5 (a) and (b) use the EWMA model to show average
similarity (across the time intervals), where H is fixed at 5 and K
varies between 8K and 64K, for both 300s and 60s time intervals.
As can be seen, for K=32K, the similarity is over 0.95 even for large
N. For a smaller N (say 50 or 100), the overlap is nearly 100%.
Larger values of K are of limited additional benefit. We note that
similarity improves (for large N) with the smaller interval size of
60. This increased accuracy can be attributed to the fact that for
a smaller interval, there are potentially fewer flows that have to be
summarized in each interval.

We next explore the potential of improving the accuracy by per-
forming the top-N vs. top-X*N (X = 1, 1.2, 1.5, 2) comparison.
As can be seen in Figures 6 (a) and (b), the similarity increases for
K=8K, even for large N. With X=1.5, the similarity has risen sig-
nificantly even for large N. For the settings we examined, we get
very high accuracy with X ≤ 1.5, and higher values of X result
in marginal additional accuracy gains. This is desirable, because a
larger X while increasing accuracy, also results in more false posi-
tives.

We next consider the effect of varying H on the accuracy. Fig-
ure 7 (a) shows that with a small K=8K, H needs to be at least 9
to get high similarity values, especially for large N. A large H is
undesirable as an increase in H directly corresponds to increased
computation overhead (the number of update operations per key is
proportional to the value of H) and memory (for sketches) over-
head. But, as Figure 7 (b) shows, even for very large N, increasing
K to 32K instantly increases similarity to nearly 1, for a small H=5.
A larger K (for sketches) implies a large space overhead. This sug-

0

0.2

0.4

0.6

0.8

1

1 5 9 25

A
ve

ra
ge

 S
im

ila
rit

y

H

TopN=50, K=8192
TopN=100, K=8192
TopN=500, K=8192

TopN=1000, K=8192

(a) Interval=300

0

0.2

0.4

0.6

0.8

1

1 5 9 25

A
ve

ra
ge

 S
im

ila
rit

y

H

TopN=50, K=32768
TopN=100, K=32768
TopN=500, K=32768

TopN=1000, K=32768

(b) Interval=60

Figure 7: Effect of varying H and K for EWMA model for large
router file (topN sketch vs. topN per-flow)

0

0.2

0.4

0.6

0.8

1

8192 32768 65536

A
ve

ra
ge

 S
im

ila
rit

y

K

TopN=50, H=5
TopN=100, H=5
TopN=500, H=5

TopN=1000, H=5

(a) Interval=300

0

0.2

0.4

0.6

0.8

1

1 1.25 1.5 1.75 2

A
ve

ra
ge

 S
im

ila
rit

y

X

TopN=50,H=5,K=8192
TopN=100,H=5,K=8192
TopN=500,H=5,K=8192

(b) Interval=60

Figure 8: Similarity metric for EWMA model for medium sized
router file.(a) top-N vs. topN (b)top-N vs. top-X*N

0

0.2

0.4

0.6

0.8

1

8192 32768 65536

A
ve

ra
ge

 S
im

ila
rit

y

K

TopN=50, H=5
TopN=100, H=5
TopN=500, H=5

TopN=1000, H=5

(a) Router=large

0

0.2

0.4

0.6

0.8

1

8192 32768 65536

A
ve

ra
ge

 S
im

ila
rit

y

K

TopN=50, H=5
TopN=100, H=5
TopN=500, H=5

TopN=1000, H=5

(b) Router=Medium

Figure 9: Similarity metric for model ARIMA 0 for large and
medium sized router files (top-N vs. topN)

gests a space-computation overhead tradeoff. In many applications
where the computation overhead is more critical, with K = 32K or
more, we can get good accuracy results with small H.

We next show the results for a different router file (all files have
similar output). Figure 8 (a) and (b) show the similarity metric for
EWMA model for the medium sized router file.

Likewise, we show the effect of another model (all models had
similar results)—this time we use ARIMA0, i.e., ARIMA with d =
0. Figure 9 (a) and (b) show similarity for large and medium sized
router files respectively for an interval of 300s.

10

100

1000

10000

0.01 0.02 0.05 0.07 0.1

A

la
rm

s
(m

ea
n)

Threshold

sk(K=8192,H=1)
sk(K=8192,H=5)

sk(K=32768,H=5)
sk(K=65536,H=5)

pf

(a) Interval=60s, Use of thresholds

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 N

eg
at

iv
e

(m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(b) Interval=60s, False negatives

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 P

os
iti

ve
 (

m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(c) Interval=60s, False positives

Figure 10: Thresholding: large router, 60s interval, non-seasonal Holt-Winters model

1

10

100

1000

10000

100000

0.01 0.02 0.05 0.07 0.1

A

la
rm

s
(m

ea
n)

Threshold

sk(K=8192,H=1)
sk(K=8192,H=5)

sk(K=32768,H=5)
sk(K=65536,H=5)

pf

(a) Interval=300s, Use of thresholds

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 N

eg
at

iv
e

(m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(b) Interval=300s, False negatives

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536
F

al
se

 P
os

iti
ve

 (
m

ea
n)
K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(c) Interval=300s, False positives

Figure 11: Thresholding: large router, 300s interval,non-seasonal Holt-Winters model

5.2.2 Topthresh sketch vs. per-flow evaluation
Instead of comparing just the top-N values, as in the previous

accuracy tests, we now limit the flows to ones whose absolute fore-
cast error is greater than or equal to a certain fraction of the L2
norm (square root of the sum of squares of the forecast errors of
all flows in a time interval). We vary this threshold level across
0.01, 0.02, 0.05, 0.07, and 0.1. We show results for each of the
two time intervals (60s, 300s) for three models (EWMA, NSHW,
and ARIMA with d = 0). For each of sketch and per-flow based
change detection, we rank the flows in decreasing order of absolute
value of forecast error.

The metrics of interest here are the false negative ratio, false pos-
itive ratio, and the number of alarms. For a given value of threshold
τ , let Npf (τ) and Nsk(τ) refer to the number of flows that meet
the threshold in per-flow and sketch based detection, respectively.
The number of alarms for per-flow and sketches are then Npf (τ)
and Nsk(τ) respectively. Let NAB(τ) be the count of flows that
are common to both the sketch and per-flow lists. The false nega-

tive ratio is computed as
Npf (τ)−NAB(τ)

Npf (τ)
. The false positive ratio

is: Nsk(τ)−NAB(τ)
Nsk(τ)

. At this point, for each metric we have a time
series, with one value per time interval. In our study below, we
consider the mean value over the entire time series.

5.2.2.1 Results.
In this part of the results, we demonstrate the similarity of sketch

and per-flow results when flows are selected by thresholding. The
overall summary here is that with K set to be at least 32K, we can
provide excellent guarantees for low false negatives and false posi-
tives. We show two sets of figures.

The first set is for the large sized router data file and uses the non-
seasonal Holt-Winters model for the 60s (Figure 10) and 300s (Fig-
ure 11) time intervals. Figure 10(a) shows that for a very low value
of H (=1), the number of alarms are very high. Simply increasing H
to 5 suffices to dramatically reduce the number of alarms. The fig-
ure also demonstrates the significant reduction in number of alarms
that can be realized by increasing the threshold value. Finally, it
shows that there is virtually no difference between the per-flow re-
sults and the sketch results when H ≥ 5 and K ≥ 8K.

Figure 10(b) shows that for K=32K and beyond, the false nega-
tive ratio drops rapidly to be less than 2% even for very low thresh-
old values and is below 1% for threshold of 0.05. The false positive
ratio, as Figure 10(c) shows, for K=32K and even a low threshold
of 0.02, is quite low (below 1%). The overall results are similar for
the 300s interval.

The second set of figures uses the medium sized router data
file, for a single interval size (300s) and varies across four mod-

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 N

eg
at

iv
e

(m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(a) Model=EWMA

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 N

eg
at

iv
e

(m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(b) Model=NSHW

Figure 12: Thresholding false negatives: medium router, 300s interval, EWMA, NSHW models

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 N

eg
at

iv
e

(m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(a) Model=ARIMA0

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 N

eg
at

iv
e

(m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(b) Model=ARIMA1

Figure 13: Thresholding false negatives: medium router, 300s interval, ARIMA models

els: EWMA, non-seasonal Holt-Winters model, ARIMA with d =
0 and 1. We show only the false negative and false positive ratios.

Figure 12 (a) shows the false negative ratio for the EWMA model
to be well below 1% for thresholds larger than 0.01. Likewise,
Figure 12 (b) shows the false negative ratio for the non-seasonal
Holt-Winters model to be slightly better than the EWMA model.

Figure 13 (a) and (b) show for the two different ARIMA models
(d = 0 and 1, respectively), that false negatives are low but differ a
bit as compared to EWMA and NSHW models for a low threshold
of 0.01.

Figure 14 (a) and (b) show the false positive ratios for the EWMA
and NSHW models respectively, to be well below 1% for thresholds
larger than 0.01 for K=32K or higher. Likewise, Figure 15 (a) and
(b) show low false positive ratios for both ARIMA models.

5.3 Implementation complexity and performance
There are three key components in our sketch-based change de-

tection implementation: 4-universal hash functions, sketches, and
forecasting. The implementation of 4-universal hash functions is
about 200 lines, sketches around 250 lines, while forecasting code
varies with the forecasting models and all of the models together
are less than 800 lines (all in C).

Hash computation and sketch UPDATE need to be done on ev-
ery item in the input stream. Sketch ESTIMATE, by default, also

needs to be done on a per-item basis. However, if we are will-
ing to miss some keys that appear too infrequently (which arguably
can only cause limited damage) we can sample the stream of in-
coming keys and only do ESTIMATE on the substream. Operations
like ESTIMATEF2 only need to be done infrequently—once every
interval—and their amortized costs are insignificant.

running time (sec)
operations computer A computer B

compute 8 16-bit hash values 0.34 0.89
UPDATE (H = 5, K = 216) 0.81 0.45
ESTIMATE (H = 5, K = 216) 2.69 1.46

Table 1: Running time for performing 10 million hash com-
putations and sketch operations on computer A (400 MHz
SGI R12k processor running IRIX64 6.5) and B (900 MHz
Ultrasparc-III processor running Solaris 5.8).

Table 1 summarizes the running time for performing 10 million
hash computations, sketch UPDATE, and sketch ESTIMATE opera-
tions. Each hash computation produces 8 independent 16-bit hash
values and therefore suffices for k-ary sketches with H ≤ 8 and
K ≤ 216. Both UPDATE and ESTIMATE assume the hash values

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 P

os
iti

ve
 (

m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(a) Model=EWMA

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 P

os
iti

ve
 (

m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(b) Model=NSHW

Figure 14: False positives: medium router, 300s interval, EWMA, NSHW models

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 P

os
iti

ve
 (

m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(a) Model=ARIMA0

0

0.02

0.04

0.06

0.08

0.1

8192 32768 65536

F
al

se
 P

os
iti

ve
 (

m
ea

n)

K

Thresh=0.01, H=5
Thresh=0.02, H=5
Thresh=0.05, H=5
Thresh=0.07, H=5

(b) Model=ARIMA1

Figure 15: False positives: medium router, 300s interval, ARIMA models

have already been computed (which needs to done only once per
item). The sketch parameters we use are H = 5 and K = 216. As
we can see, the overhead of these operations are not very high. We
note that the current implementation has not been fully optimized
allowing room for further speedup.

6. ONGOING WORK
Our preliminary exploration indicates that our sketch-based change

detection method is highly accurate when compared with per-flow
time series analysis. It offers promise to be a building block for
network anomaly detection and traffic measurement. We outline
some avenues that we are exploring

• Online change detection: We have currently evaluated our
methods in an offline setting. These evaluations suggest that
the technique may be capable of near real-time change de-
tection. One change required is modifying our technique to
obtain the forecast model parameters online. One possible
way is periodically recomputing the forecast model param-
eters using history data to keep up with changes in overall
traffic behavior.

• Avoiding boundary effects due to fixed interval sizes. Possi-
ble solutions include (i) simultaneously run multiple models
using different interval sizes, and different starting points,

(ii) randomize the interval size (e.g., using exponentially dis-
tributed interval size) and detect changes of total values nor-
malized by interval size. The linearity of sketches makes this
possible.

• Reducing false positives: We have focused on accurate detec-
tion of significant deviation from normal behavior. However,
some anomalies are benign. The problem of reducing false
alarms is a major challenge for all change-detection based
network anomaly detection systems. Our change detection
framework has tunable parameters which can be adjusted to
limit the false positives. For instance, the technique can be
asked to only report the top N major changes, or the changes
that are above a threshold. The particular application needs
will guide the actual setting of these tunable parameters.

• Combining with sampling: Given the massive volumes of
data generated in large networks, sampling is increasingly
being used in ISP network measurement infrastructures for
reducing the volume of data that has to be collected. Our
current approach combines time series analysis with sketches
for scalable change detection in massive data sets. We plan
to explore combining sampling techniques with our approach
for increased scalability.

• Better guidelines for choosing parameters: Given the wide
range of parameters we have, it would be useful to have rea-
sonable guidance for selecting proper and justifiable values
for them. The full factorial method [5] in the statistical ex-
perimental design domain can help in narrowing the number
of levels (or ”versions”) for the various variables. We are
exploring such techniques to see which parameters are inde-
pendent of each other and move towards identifying reason-
able values overall based on the similarity. For example, H
has overall impact independent of other parameters. The te-
dium related to having multiple runs can also be reduced for
example by using Yates algorithm [5].

7. SUMMARY
In this paper, we presented a sketch-based change detection tech-

nique. Our work is motivated by anomaly detection and other ap-
plications that can benefit from having a quick and efficient change
detection mechanism. The scheme is capable of detecting signifi-
cant changes in massive data streams with a large number of net-
work time series. As part of the technique, we designed a variant
of the sketch data structure, called k-ary sketch, which uses a con-
stant, small amount of memory, and has constant per-record up-
date and reconstruction cost. We implemented a variety of time
series forecast models (ARIMA, Holt-Winters, etc.) on top of such
summaries and detect significant changes by looking for flows with
large forecast errors. We also presented heuristics for automatically
configuring the forecast model parameters.

We demonstrate using a large amount of real Internet traffic data
that our sketch-based change detection method is highly accurate
when compared with per-flow analysis, and can be implemented at
low computation and memory costs. Our preliminary results are
promising and point to the potential of using our technique as a
building block for network anomaly detection and traffic measure-
ment in large networks.

8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency moments. Journal of
Computer and System Sciences, 58(1):137–147, 1999.

[2] H. Arsham. Time series analysis and forecasting techniques.
http://obelia.jde.aca.mmu.ac.uk/resdesgn/arsham/
opre330Forecast.htm.

[3] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis
of network traffic anomalies. In Proceedings of the ACM
SIGCOMM Internet Measurement Workshop, Marseille,
France, November 2002.

[4] P. Barford and D. Plonka. Characteristics of network traffic
flow anomalies. In Proceedings of the ACM SIGCOMM
Internet Measurement Workshop, San Francisco, CA,
November 2001.

[5] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for
Experimenters. John Wiley, 1978.

[6] G. E. P. Box and G. M. Jenkins. Time Series Analysis,
Forecasting and Control. Holden-Day, 1976.

[7] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series
Analysis, Forecasting and Control. Prentice-Hall, Englewood
Cliffs, 1994.

[8] P. Brockwell and R. Davis. Introduction to Time Series and
Forecasting. Springer, 1996.

[9] J. Brutlag. Aberrant behavior detection in time series for
network monitoring. In Proc. USENIX LISA XIV, New
Orleans, LA, December 2000.
http://www.usenix.org/events/lisa2000/full papers/brutlag/
brutlag html/index.html.

[10] J. Carter and M. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences,
18:143–154, 1979.

[11] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. of ICALP 2002,
pages 693–703, 2002.
http://www.cs.princeton.edu/˜moses/papers/frequent.ps.

[12] C. Chen and L.-M. Liu. Forecasting time series with outliers.
Journal of Forecasting, 12:13–35, 1993.

[13] C. Chen and L.-M. Liu. Joint estimation of model parameters
and outlier effects in time series. Journal of the American
Statistical Association, 88:284–297, 1993.

[14] G. Cormode and S. Muthukrishnan. What’s hot and what’s
not: Tracking most frequent items dynamically. In Proc.
ACM PODC ’2003, July 2003.

[15] M. Datar and S. Muthukrishnan. Estimating rarity and
similarity over data stream windows. Technical Report
2001-21, DIMACS Technical Report, November 2001.

[16] N. Devillard. Fast median search: an ansi c implementation,
July 1998. http://ndevilla.free.fr/median/median.pdf.

[17] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In Proc. ACM
SIGCOMM ’2002, Pittsburgh, PA, August 2002.

[18] F. Feather, D. Siewiorek, and R. Maxion. Fault detection in
an ethernet network using anomaly signature matching. In
Proc. ACM SIGCOMM ’93, 1993.

[19] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast applications.
In Proc. ACM SIGCOMM ’00, August 2000.

[20] K. Fox, R. Henning, J. Reed, and R. Simonian. A neural
network approach towards intrusion detection. Technical
report, Technical Report, Harris Corporation, July 1990.

[21] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and
M. J. Strauss. Quicksand: Quick summary and analysis of
network data. Technical Report 2001-43, DIMACS
Technical Report, November 2001.

[22] C. Hood and C. Ji. Proactive network fault detection. In
Proc. IEEE INFOCOM ’97, Kobe, Japan, April 1997.

[23] K. J. Houle, G. M. Weaver, N. Long, and R. Thomas. Trends
in Denial of Service Attack Technology.
http://www.cert.org/archive/pdf/DoS trends.pdf.

[24] P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. In Proc. of the
41st Symposium on Foundations of Computer Science, 2000.

[25] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
Crowds and Denial of Service Attacks: Characterization and
Implications for CDNs and Web Sites. In Proceedings of the
World Wide Web Conference, Honolulu, Hawaii, May 2002.
http://www.research.att.com/˜bala/papers/www02-fc.html.

[26] I. Katzela and M. Schwartz. Schemes for fault identification
in communication networks. IEEE/ACM Transactions on
Networking, 3(6):753–764, December 1995.

[27] M. J. Lebo and W. H. Moore. Foreign policy behavior and
fractional integration. Journal of Conflict Resolution,
1(47):13–32, February 2003. http://garnet.acns.fsu.edu/
˜whmoore/research/Lebo&Moore2003.pdf.

[28] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. The Spread of the Sapphire/Slammer Worm.
Technical report, Technical Report, February 2003.
http://www.cs.berkeley.edu/˜nweaver/sapphire/.

[29] D. Moore, G. Voelker, and S. Savage. Inferring Internet
Denial of Service Activity. In Proc. of the USENIX Security
Symposium, Washington D.C., August 2001.
http://www.cs.ucsd.edu/˜savage/papers/UsenixSec01.pdf.

[30] S. Muthukrishnan. Data streams: Algorithms and
applications, 2003. Manuscript based on invited talk from
14th SODA. Available from
http://www.cs.rutgers.edu/˜muthu/stream-1-1.ps.

[31] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-Time. Computer Networks, 31(23–24):2435–2463,
December 1999. ftp://ftp.ee.lbl.gov/papers/bro-CN99.ps.gz.

[32] M. Roesch. Snort – Lightweight Intrusion Detection for
Networks. In Proc. USENIX Lisa ’99, Seattle, WA,
November 1999.

[33] M. Thorup and Y. Zhang. Tabulation based 4-universal
hashing with applications to second moment estimation,
2003. Under submission. Available from
http://www.research.att.com/˜yzhang/papers/hash-tm03.ps.

[34] J. Toelle and O. Niggemann. Supporting intrusion detection
by graph clustering and graph drawing. In Proc. RAID ’2000,
Toulouse, France, October 2000.

[35] R. S. Tsay. Time series model specification in the presence of
outliers. Journal of the American Statistical Association,
81:132–141, 1986.

[36] R. S. Tsay. Outliers, level shifts, and variance changes in
time series. Journal of Forecasting, 7:1–20, 1988.

[37] T.S.Huang, G. J. Yang, and G. Y. Tang. A fast
two-dimensional median filtering algorithm. IEEE
transactions on acoustics, speech and signal processing,
27(1), February 1979.

[38] A. Ward, P. Glynn, and K. Richardson. Internet service
performance failure detection. Performance Evaluation
Review, August 1998.

[39] M. Wegman and J. Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and
System Sciences, 22:265–279, 1981.

[40] N. Ye. A markov chain model of temporal behavior for
anomaly detection. In Workshop on Information Assurance
and Security, West Point, NY, June 2000.

APPENDIX

Notation For any a, b ∈ [u], let a ∼ b denote h(a) = h(b), a 6∼ b
denote h(a) 6= h(b).

A. ANALYSIS FOR VA ESTIMATION
Accuracy of vhi

a The following theorem states that each vhi
a

(i ∈ [H]) is an unbiased estimator of va with variance inversely
proportional to (K − 1).

THEOREM 1.

E � vhi
a � = va (1)

Var � vhi
a � ≤ F2

K − 1
(2)

PROOF. For any h ∈ {h0, ..., hH−1}, we have

vh
a =

� b∼a vb − (1/K) · � b vb

1 − 1/K

=
�

b∼a

vb −
1

K − 1

�

b6∼a

vb

= va +
�

b∼a∧b6=a

vb −
1

K − 1

�

b6∼a

vb (3)

Define

Xa,b = � 1 if b ∼ a
− 1

K−1
otherwise

(3) becomes

vh
a = va +

�

b6=a

vb Xa,b (4)

Since h is 4-universal, for any distinct a, b ∈ [u], we have

E [Xa,b] = 0 (5)

E � X2
a,b � =

1

K − 1
(6)

In addition, for any distinct a, b, c ∈ [u], we have

E [Xa,b Xa,c] = 0 (7)

Now we are ready to prove the theorem.

E � vh
a � =(4) va +

�

b6=a

vbE [Xa,b] =(5) va

Var � vh
a � = E ��� vh

a − E � vh
a ��� 2 	

=(4) (1) E
��� �

b6=a

vb Xa,b �� 2 ��
=

�

b6=a

v2
b E � X2

a,b � +
�

a,b,c distinct

vbvc E [Xa,bXa,c]

=(6) (7)
1

K − 1

�

b6=a

v2
b ≤ F2

K − 1

Accuracy of vest
a vest

a further improves accuracy by avoiding the
extreme estimates. Theorem 2 and 3 summarize the accuracy guar-
antee of vest

a .

THEOREM 2. For any a ∈ [u], T ∈ (0, 1), and α ∈ [1,∞), if
|va| ≥ α T

√
F2, then

Pr � |vest
a | ≤ T

√
F2 � ≤ � 4

(K − 1)(α − 1)2 T 2

	 H/2

(8)

PROOF. For any h ∈ {h0, ..., hH−1}, by the Chebyshev in-
equality, we have

Pr � |vh
a | ≤ T

√
F2 � ≤ Pr � |vh

a − va| ≥ |va| − T
√

F2 �
≤ Pr � |vh

a − va| ≥ (α − 1) T
√

F2 �
= Pr � |vh

a − E � vh
a � | ≥ (α − 1) T

√
F2 �

≤ Var � vh
a �� (α − 1) T
√

F2 � 2 (Chebyshev Inequality)

≤ F2/(K − 1)

[(α − 1) T]2 F2

=
1

(K − 1)(α − 1)2 T 2

Since vest
a is obtained by taking the median of H copies of vh

a , by
the Chernoff inequality, we immediately have (8). Both Chebyshev
and Chernoff inequalities can be found in [1].

THEOREM 3. For any a ∈ [u], T ∈ (0, 1), and β ∈ [0, 1], if
|va| ≤ β T

√
F2, then

Pr � |vest
a | ≥ T

√
F2 � ≤ � 4

(K − 1)(1 − β)2 T 2

	 H/2

(9)

PROOF. The proof is almost identical and is omitted here in the
interest of brevity.

As an example, let K = 216, α = 2, β = 0.5, T = 1/32, and
H = 20. If we raise an alarm whenever vest

a ≥
√

F2/32, then
according to Theorem 2, the probability that we will miss a va >√

F2/16 is less than 9.0 × 10−13; according to Theorem 3, the
probability that we will falsely raise an alarm for a va <

√
F2/64

is less than 9.5 × 10−7.

B. ANALYSIS FOR F2 ESTIMATION
Accuracy of F hi

2 The following theorem is proved in [33], which
shows that each F hi

2 forms an unbiased estimator of F2 with vari-
ance inversely proportional to (K − 1). [33] also shows that in
order to achieve the same variance using count sketch, one has to
either live with lower speed or double the memory requirement.

THEOREM 4.

E � F hi
2 � = F2 (10)

Var � F hi
2 � ≤ 2

K − 1
F 2

2 (11)

Accuracy of F est
2 F est

2 further improves accuracy by avoiding the
extreme estimates. Theorem 5 provides the accuracy guarantee of
F est

2 .

THEOREM 5. For any λ > 0, we have

Pr � |F est
2 − F2| > λF2 � ≤ � 8

(K − 1)λ2

	 H/2

(12)

PROOF. By Theorem 4 and the Chebyshev inequality,

Pr � |F hi
2 − F2| > λF2 � ≤

Var � F hi
2 �

(λF2)2

≤ 2 F 2
2 /(K − 1)

(λ F2)2
=

2

(K − 1)λ2

Since F est
2 is the median of H copies of F hi

2 , by the Chernoff
inequality, we immediately obtain (12).

As an example, let K = 216, λ = 0.05, and H = 20, Theorem 5
states that the probability that our estimate F est

2 is 5% off its real
value F2 is below 7.7 × 10−14 .

