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ABSTRACT
The exponential growth of data demands scalable and adaptable
infrastructures for indexing and searching a huge amount of data
sources with high accuracy and efficiency. Existing centralized
search engines are not scalable and suffer from single-point-of-
failures. The recent work on P2P index construction partitions the
document vectors either randomly or statically, making it difficult
to tradeoff between search efficiency and accuracy. In this position
paper, we propose a peer-to-peer (P2P) IR framework (termed as
P2PIR) that leverages a novel two-phase distributed semantic in-
dexing on top of distributed hash tables (DHT). The distributed se-
mantic clustering of P2PIR leads to good semantic locality on index
placement so that the indices of similar documents are placed to-
gether or near to each other. The semantic locality enables smoother
tradeoff between search accuracy and efficiency, as well as incre-
mental adaptation to document and semantics changes. In addition,
P2PIR allows for sophisticated retrieval techniques, e.g., query re-
finement, feedback and personalized search for better usability.

A prototype of P2PIR is currently under development, which can
be applied for general web retrieval and domain-specific applica-
tions such as a distributed electric medical records system.

1. INTRODUCTION
Recent years have seen explosive growth in the volume of infor-

mation [36]. According to a recent study at University of Califor-
nia, Berkeley [29], the worldwide production of original content,
stored digitally using standard compression methods, is at least
1 terabyte/year for books, 2 terabytes/year for newspapers, 1 ter-
abyte/year for periodicals, and 19 terabytes/year for office docu-
ments. The exponential growth of data and information poses many
challenges for information management, with a major challenge
being the development of scalable infrastructures for indexing and
searching a huge amount of data sources with high accuracy and
efficiency.

The current web search engines are quite useful for helping peo-
ple find information from the web. Unfortunately, they are all based
on a centralized architecture, which is inherently unscalable. In-
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deed, all current search engines conceptually treat the whole web
as a giant collection of documents and index them in a centralized
manner. Thus in order to ensure freshness of the index, they all
must periodically crawl the whole web to update the index. Such
an updating would become more and more difficult and resource
consuming as we have more and more information to manage, and
eventually, the current centralized search model would break due
to its unscalability. Another problem with the existing search en-
gines is that they suffer from single-point-of-failure — when some
critical centralized components fail, it would affect the availability
of the whole system significantly, even cause a breakdown.

One way to overcome the deficiencies of the existing search
engine architecture is to distribute search among the nodes in a
network. Peer-to-peer (P2P) information retrieval is a new search
paradigm that aims at exploiting such high-speed networks to per-
form search at every individual node in a network, leading to a
potentially more scalable search infrastructure.

Most of the existing works in P2P information retrieval use term-
index based approaches [27, 43] to support quick query execution,
especially for short queries. However, an inverted-index alone can
only support simple retrieval tasks and would be hard to support so-
phisticated retrieval algorithms which may require efficient access
to all the terms in a document. Further, in a distributed environ-
ment, an inverted-index based approach would replicate document
information in many places. Consequently, the results retrieved ac-
cording to multiple keywords need to be intersected, consuming a
large amount of network bandwidth [27, 43, 40].

In contrast to term indexing, document indexing can support
many complex retrieval tasks because the information about the
whole document is always available together. Recent work on pSearch
leverages the document indexing and the emerging distributed hash
tables (DHT) [37] for information retrieval on a P2P network [44].
But it has three shortcomings: 1) lack of semantic locality which
leads to the degradation of search efficiency and accuracy; 2) un-
scalable index generation; and 3) static index generation which re-
quires complete redo for adding documents with new concepts.

In this position paper, we propose a scalable semantic index-
ing framework for information retrieval (termed as “P2PIR”) that
can be regarded as an extension of pSearch to address its above-
mentioned shortcomings.

The P2PIR framework extends pSearch in the following aspects:

• Semantic locality: A major extension to pSearch made in
P2PIR is to use a novel two-phase distributed semantic in-
dexing method to cluster documents that are similar in se-
mantics into the same group and store them on nearby nodes
on the grid system, which we refer to “semantic locality”.
This is in contrast to pSearch, which partitions document



vectors randomly. As a result, a query can be answered by
searching on a small number of nodes, improving both query
accuracy and efficiency.

• Flexible tradeoff between search accuracy and efficiency:
The two-phase distributed indexing also enables us to tune
the semantic clusters with various sizes, document density,
and deployment density on the DHT, i.e., a smooth tradeoff
between search accuracy versus search efficiency and system
overhead, which is necessary for managing huge amount of
information.

• Support of sophisticated retrieval methods: Due to the
possibility of local scoring of a working set of documents,
P2PIR allows for sophisticated retrieval techniques, such as
feedback and personalized search, to be computed efficiently,
thus achieves high retrieval accuracy.

• Adaptation to document dynamics: The two-phase index-
ing enables P2PIR to incorporate new documents/concepts
incrementally and efficiently without sacrificing search per-
formance.

In the rest of the paper, we first describe the P2PIR architecture
in Section 2. We then discuss each component of the architecture
in Section 3 to Section 6. We survey the related work in Section 7,
discuss our current status of prototype development in Section 8,
and conclude in Section 9.

2. ARCHITECTURE
Figure 1 illustrates the architecture of P2PIR. P2PIR resides on a

distributed hash table (DHT) based network. Applications such as
medical record federation and document search can be built on top
of it, as illustrated on the left part of the figure. The right part of the
picture shows that P2PIR has two major parts: document indexing
(shown on top) and querying (shown on bottom). (1) The document
indexing part is responsible for converting all the source documents
to some efficient data structures so that a query can be matched with
all the documents quickly. A common practice in information re-
trieval is to extract features (e.g., words) that can represent the con-
tent of a document. P2PIR provides an open architecture, where
different feature extraction algorithms, and similarity comparison
algorithms can be plugged in. No matter what feature algorithm to
use, the extracted features typically form a vector in a high dimen-
sional space. A major challenge in indexing is how to store these
vectors so that later they can be looked up quickly when we exe-
cute a query. (2) The querying part is to match a query against all
the feature vectors of documents and score the documents. Again,
P2PIR provides an open slot for plugging in any query refinement
components that can take advantage of user feedback and improve
retrieval accuracy. We now discuss these two major parts in detail.

Next, we will first introduce DHT, and then sketch the two-stage
document indexing and query processing.

2.1 Distributed Hash Tables (DHT)
The term “DHT” is a catch-all for a set of schemes sharing cer-

tain design goals ( [37, 42, 47, 15], etc.). As the name implies,
a DHT provides a hash table abstraction over multiple distributed
nodes, such as all the distributed nodes that form the P2PIR system.
Each node can store indices (pointing to the documents), and each
index is identified by a unique key, called index locator. The DHT
systems provide two basic interfaces:
Insertion (put): The interface for insertion, put(key,object),
causes the DHT to route the given object to the node with a node
identifier closest to the key.

Retrieval (get): The interface for retrieval, object=get(key),
causes the DHT to obtain the object from the node with a node
identifier closest to the key.

The objects and keys in the P2PIR system are further dis-
cussed in Section 2.2.

DHTs provide strong theoretical bounds on both the number of
hops required to route a key request to the correct destination, and
the number of maintenance messages required to manage the ar-
rival or departure of a node from the network. Such properties
help provide scalability for routing, indexing and location of the
P2PIR system. In addition, DHT provides some very nice proper-
ties for distributed systems, such as fault-tolerance, robustness [37,
42, 47, 15], and DoS attack resilience [8]. By contrast, early work
on P2P routing used “unstructured”, heuristic schemes like those of
Gnutella and KaZaA, which provides no such guarantees: they can
have high routing costs, or even fail to locate a key that is indeed
available somewhere in the network.

In addition to having attractive formal properties, DHTs are be-
coming increasingly practical for serious use. They have received
intense engineering scrutiny recently, with significant effort ex-
pended to make the theoretical designs practical and robust.

2.2 Two-stage Document Indexing
P2PIR indexes documents in the following two steps. In the first

step, the entire document corpus is clustered into clusters with ap-
propriate sizes and density. (This can be accomplished using either
top-down or bottom-up methods.) The clusters can be disjoint or
overlapping. In Section 4.1, we describe how clustering can be ac-
complished in a distributed and incremental fashion using concept
indexing [23]. Each cluster correspond to a concept. There is a
unique concept vector produced for each document.

In the second step, all the clusters are mapped on to the same
distributed hash table (DHT) based network, in a way that seman-
tically similar documents are placed close to each other on the net-
work. As discussed before, we will use DHT (put) and (get)
operations for index insertion and retrieval. In the P2PIR system,
the object is the index (location) of each document, and the key
should uniquely identify the document, i.e., ideally the concept vec-
tor of the document. But the dimension of concept vector usually
is much larger than that of the DHT, i.e., we cannot fit a concept
vector into a key of the DHT.

To solve the dimension mismatch problem, instead of randomly
dividing these concepts into chunks (like pSearch [44]), we group
them based on the aforementioned clusters so that related concepts
will have a large probability to fall in the same group. For exam-
ple, the concepts “manufacturer”, “insurance”, “car reviews” may
fall in the same group as “automobile”; but they will fall into dif-
ferent group from that of the “computer network” which may con-
tain concepts such as “security”, “protocol”, and “application”. We
limit the size of each group to be no larger than the size of the DHT
dimensions.

Then we project the concept vector onto the subspace defined
by each concept group. We call the resulting vector index loca-
tors which is used as DHT keys when we assign the concepts of
that group to each dimension of the DHT. Take the index locator of
automobile concept group for example, “automobile” may be as-
signed to dimension one, and “manufacturer” and “insurance” may
be assigned to dimension two and three, respectively. Documents
that are similar in contents are placed close to each other on the
DHT because they have similar index locators.

One document can have multiple index locators because it may
involve multiple groups of concepts, and we will insert an index for
each of these groups. Figure 2 illustrates the basic idea of mapping
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multiple clusters onto the same DHT overlay and document place-
ment based on content similarity. In the figure, document clusters
“animals” and “cars” are mapped onto the same DHT. There are
some concepts overlap in the “Animals” and “cars” clusters, such
as “Jaguar”.

2.3 Querying
When querying, a user can contact any node on the DHT over-

lay. This node is responsible for projecting the query vector onto
the concepts of each cluster, to produce a number of index locators.
Because a query vector typically only involves limited number of
clusters, we can expect to only have a few index locators, and in
many case just one cluster. Each of the (index locator, query vec-
tor) pair is then routed in the DHT (in parallel) using the index lo-
cator as DHT key. Upon reaching the destination, the query vector
and original document vectors are used to perform relevance rank-
ing, and this local retrieval process can expand to neighboring DHT
nodes until enough relevant results have been identified. Figure 3
illustrated the query process.

Note that the projection of the original query vector into index
locators identifies the clusters that potentially have the matching
documents. Then the routing and local search process identify the
matching results of the query in each of the clusters.

For example, in Figure 3, the query terms “Jaguar+speed” are
mapped to two concept groups (animal name, velocity) and (car
name, velocity). Projection onto these concept groups produces
two index locators. This projection phase, in effect, identifies the
two clusters “cars” and “animals” that potentially have matching
documents. The index locators are used for searching inside the
two corresponding document clusters in parallel, respectively.

CAN

Query=Jaguar+speed

(<animal name, velocity>, <Jaguar, speed>)

(<car name, velocity>, <Jaguar, speed>)

Figure 3: Query processing.

In summary, the novel two-step distributed indexing framework
provides P2PIR with the following properties.

1. Index placement with good semantic locality. Such local-
ity can significantly improve the retrieval accuracy and effi-
ciency. For example, it allows us to match two related but
distinct terms.

2. Tunable framework and flexibility The document corpus
can be divided into clusters which different sizes and density.
Furthermore, the space on the DHT to store a cluster can be
shrunk or enlarged depending on the density of the cluster.
These features provide P2PIR a smoothly tradeoff between
the retrieval accuracy and efficiency (including storage over-
head).

3. Incremental adaptation to document/concept dynamics
The two-step procedure also allows us to change the dimen-
sionality of the concept vectors without modifying that of the
index locators. The latter is determined by the DHT, which
tends to be more static. This property is important for effi-
ciently adding and removing documents incrementally.

In the most degenerated case, we can use a one-dimensional
DHT, and map each term (or concept) to a different point on the
DHT, which is exactly how a typical search engine does the inverted
index. Alternatively, we can select similarity-preserving hash func-
tions (SPH), such as space-filling curves [1], the random permuta-
tion function by Broder et al. [2], etc., to eliminate the dependence
the geometry of the underlying logical abstraction of the DHT.

Note that the P2PIR architecture only makes the following two
assumptions about the underlying retrieval models, and can poten-
tially support many different retrieval models. (1) Documents can



be represented as vectors. (2) Euclidean distances are reasonably
accurate in capturing document topic similarity. Both are quite rea-
sonable. Most existing retrieval formulas are based on a vector rep-
resentation of documents. This is not only true for the traditional
vector space model, but also true for probabilistic models where
a document is often represented as a word distribution, which can
also be stored as a weight vector. While many known effective
retrieval formulas are based on non-Euclidean distances, with ap-
propriate weighting and normalization, Euclidean distances can be
reasonably accurate. Since the Euclidean distances are only used to
prune non-promising documents, its accuracy only indirectly affect
the final retrieval results.

Next, we will describe each component of the P2PIR system in
more details.

3. FEATURE EXTRACTION
The feature extraction module is responsible for generating a set

of features and their values from a document. These feature values
form a feature vector that serves as a representation of the document
for the purpose of matching a query with a document. In the sim-
plest case, the features can be just words in the document and fea-
ture values can be the frequency counts of words in the document.
Such a simple representation (often called a “bag-of-word” repre-
sentation) is often the basis of many current retrieval algorithms.
More advanced approaches can enrich word-based representation
by extracting multi-word phrases.

The features extracted normally serve directly as the indexing
units for matching features extracted from a query with those ex-
tracted from documents. Since the number of features (e.g., words)
is usually extremely large, direct indexing of such features makes
it inefficient to match features in a distributed environment. One
important advantage of the proposed P2PIR framework is precisely
to further impose structures on the feature space so that we can
manage the indices in a high dimensional space efficiently with-
out sacrificing much accuracy. Specifically, P2PIR does not im-
pose any constraints on the choice of features and the assignment
of their values. Indeed, it is sufficiently general to support any kind
of feature vector representation of documents, thus can support any
retrieval algorithm as long as the algorithm is based on some kind
of feature vector representation.

For example, it is possible to model an XML document more
accurately by distinguishing features extracted from different parts
and assign weights according to heuristics. The following are some
useful heuristics: (i) In documents such as HTML or XML, terms
that appear in titles and anchors usually carry more weights than
those in other positions. (ii) In HTML documents, anchor texts
usually describe the referred documents instead of the current doc-
ument. (iii) The terms and phrases in section headers are usually
more important than terms and phrases in lower-level headings and
document body. (iv) Terms, phrases, and sentences that appear in
the abstract, introduction, and conclusion, and the beginning/end of
paragraphs usually carry more weights. Those appearing in related
work and background sections of a paper could refer to the back-
ground that may not necessarily be the main focus of the work. (v)
In HTML documents with frames, terms that appear in the different
frames usually carry different weights. All these heuristics can be
easily supported in the proposed P2PIR framework. Since hetero-
geneous documents can often be represented by XML documents,
P2PIR has a great potential to support algorithms that deal with
heterogeneous documents.

Web search algorithms may also exploit hyperlinks between doc-
uments to improve retrieval accuracy. A well-known algorithm is
the PageRank algorithm which is used in the Google search en-

gine [34]. Such algorithms can typically be implemented sepa-
rately from the content-based scoring part, which is the focus of
P2PIR. Thus we can easily add such scoring methods on top of
P2PIR. Although the scalability of such scoring algorithms may it-
self be a very interesting research topic, it is outside the scope of
this paper.

4. DISTRIBUTED SEMANTIC INDEXING
With the feature vector extracted, in this section, we discuss how

to construct concept vectors and index-locators, and how to place
indices on the DHT.

4.1 Concept-vector construction
While indexing documents directly with keywords has been a

standard practice in information retrieval, it clearly has several lim-
its: (1) Words with a similar meaning but different forms (e.g., au-
tomobile and car) will not match each other, which often decreases
the recall. (2) A word with multiple meanings (e.g., jaguar) in the
query may retrieve noisy documents, which decreases the preci-
sion. (3) Indexing with keywords involves an extremely high di-
mensional space, which is not desirable from the perspective of
scaling up retrieval — in terms of both space and time. Thus one
idea in P2PIR is to construct a concept space with a much lower
dimension than the raw vocabulary, and map documents into this
low-dimension space.

Latent Semantic Indexing (LSI) [14] applies singular value de-
composition (SVD) of the whole 〈term document〉 matrix to ex-
tract the main components. Unfortunately, SVD is computation-
ally expensive, and is clearly not scalable given that we have to
work with an extremely large number of documents. Furthermore,
when adding/removing documents, it becomes hard to incremen-
tally update the SVD results. Recent probabilistic approaches im-
prove upon the efficiency of LSI (e.g., [21]), but they are still too
computationally expensive to scale.

We plan to use more efficient concept indexing approach for con-
structing the concept space [23]. The basic idea is to group docu-
ments into k clusters, and the centroid of each cluster corresponds
to a concept. Then we use the concepts to index the documents
as follows. Given a document d, the similarity between its feature
vector and a concept c (e.g., cosine value between them) defines the
weight of d on concept c. Then the concept vector of d is composed
of its weights on all the concepts.

The flowchart for concept vector construction is shown in Fig-
ure 4. For document clustering, we propose to use a modified
k-means clustering method. The k-means clustering method iter-
atively improves a hypothesized partition of documents, thus can
stop at any time and still generate complete clustering results, which
is a desirable property for clustering a large number of documents.
Moreover, each iteration involves only O(kN) document compar-
isons, where k is the number of clusters and N >> k is the num-
ber of documents, as opposed to O(N2) document comparisons in
a regular agglomerative hierarchical clustering method.

4.2 Index locator construction
Although the dimensionality of concept vectors can be signif-

icantly lower than that of their feature/term vectors, it could still
be much higher than that of the index locators. To reduce the di-
mensionality, we divide a concept vector into multiple chunks, and
each chunk has the size no more than the dimensionality of the un-
derlying DHT. Thus one concept vector becomes multiple index
locators.

If we randomly divide concept vector into index locators, the
related concepts are probably in different chunks. Consequently, a
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document will need more indices, and indices of related documents
tend to be more scattered, causing inefficiency and inaccuracy of
querying.

We propose to cluster the concepts into semantically coherent
groups. Each group consists of concepts that are closely related
(e.g., “computer sciences” and “computer engineering”). Thus each
concept group defines an index locator, and has its size no more
than the dimensionality of the DHT. The grouping can be executed
at the tree root node of the hierarchical clustering for concept vec-
tors. Then the root node disseminates the concepts (represented by
the feature vector of each cluster centroid) and the index-vector-
generation rules (represented by concept clusters) to all other peer
nodes with application-level multicast.

4.3 Optional orthogonalizing phases
Each of the two steps described above can be followed by an

optional concept orthogonalizing phase. This phase can further
reduce the dimensionality of the concept space, and improve the
quality of the index locators.

The basic idea of this optional phase is to find a set of orthogo-
nal axes to be used to project each vector into a lower-dimensional
space. We would like to compute the axes in a distributed fash-
ion within each peer, therefore, we plan to apply the FastMap al-
gorithm [18] for its high efficiency and effectiveness. To find d

mutually-orthogonal axes, where d is the reduced dimensionality,
FastMap iteratively chooses two objects (called “pivot objects”)
to form an axis. For each axis, FastMap projects all objects onto
this axis by computing new their coordinates. Conceptually, it also
computes the remaining distance matrix after the projections. (This
computation is needed only for those objects that are used in the
subsequent steps.) The algorithm iterates d steps to find the axes.

4.4 Index placement on the DHT
To store the document indices in the system, each node computes

the concept vector and the corresponding index locators for each
assigned document. For each index locator of a document Di, if its
norm (i.e., length of the vector) is over certain threshold, we put an
index of Di along with its feature vector on the peer node whose
DHT address vector matches best with the index locator.

Such a scheme is particularly appealing for index locators gen-
erated by the concept-grouping approach for the following two rea-
sons. (1) The number of document pointers is reduced. Since we
group related concepts into the same index locator, each document
will have substantial weights in only a small number of index loca-
tors. And we only need to deploy indices with these index locators.
(2) Semantic locality is achieved. Similar/related documents have
similar index locators, and thus are placed on the same or nearby
DHT nodes.

For instance, a document d on hybrid car has substantial weights
only on two concepts: car/automobile and energy/power. These
two concepts are related and may be grouped into the same index
locator. Then we only need to place one index for d on a DHT node
with address decided by the index locator.

5. QUERY PROCESSING & REFINEMENT

5.1 Query processing and semantic routing
P2PIR can accept keywords or a sample document (in the case

of query-by-example) as a query input. In both cases, we will first
extract features from a keyword query or an example document in
a way similar to how we extract features from the documents in
our collections. We then route the query feature vector to clusters
that most likely contain documents similar to the query and search
within such most promising clusters. We now discuss query routing
and searching within clusters in detail.

5.1.1 Query routing
After we obtain a query feature vector, we will follow the fol-

lowing procedure to route the query to the most promising clusters
of documents: (1) Project the query feature vector to the concept
space to obtain (possibly multiple) query index locators via tech-
niques discussed in the previous section. This step mainly involves
computing the distances between the query and each cluster cen-
troid. (3) For each index locator vi of the query, the system routes
the query in the overlay network using vi as the DHT key. Each
destination node answers the query by looking up its local docu-
ments and propagating the query to neighboring nodes. The pro-
jection process is based on the whole query, thus it can correlate
the keywords in the same query to reduce semantic ambiguity.

Compared with pSearch [44], our query processing procedure
provides much better query efficiency and accuracy for the follow-
ing reasons. First, in our system, we partition the concepts (pro-
duced via concept indexing and the optional orthogonalization and
reduction) into groups. Related concepts in a query can be ex-
pected to belong to a single group, thus the query needs only a
single index locator. This can significantly reduce the number of
query messages. Second, we place the indices according to seman-
tic distances between documents. During a query-routing process,
at each hop along the path towards the destination, the documents
which have deployed their indices become more and more seman-
tically relevant to the query. We refer to this property as semantic
routing, which can find areas in the overlay with indices for related
and similar documents quickly. Thus the desired documents can be
efficiently retrieved by simply checking each destination node and
a few of its direct neighbors. Third, with such semantic locality,
query refinement (Section 5.2) may be achieved within a few hops
of each destination node of the query in DHT.

Note that semantic routing requires two conditions: 1) placement
of document indices with good semantic locality, e.g., through group-
ing related concepts, and 2) wildcard search for which any term
in the query vector can be a range or a regular expression. Inter-
estingly, we found that wildcard search can only be achieved effi-
ciently with a hypercube geometry of a DHT (e.g., CAN [37]) with-
out flooding. A hypercube geometry treats all concepts equally,
whereas other structures (e.g., trees) require matching the concepts
in a predetermined order. An important research direction is to
further investigate how to enable wildcard search in other types of
DHT.



In the remaining of the paper, we use CAN as the underlying
DHT for building P2PIR. CAN [37] partitions a d-dimensional Carte-
sian space into zones and assigns each zone to a node. Two nodes
are routing neighbors in the overlay if their zones overlap in all
but one dimension along which they abut each other. An object
key is a point in the Cartesian space and the object is stored at the
node whose zone contains the point. Locating an object is reduced
to routing to the node that hosts the object. Routing translates to
traversing from one zone to another in the Cartesian space.

5.1.2 Searching within clusters
After we route the query vector to the most promising clusters,

we would search within these clusters of documents to generate a
ranked list of documents in the order of relevance to the query topic.
One important advantage of our P2PIR is that we decouple search-
ing within clusters from routing queries to the right clusters, which
has at least two benefits: (1) Computation is highly parallelized
– query routing for one query can be in parallel with searching
within clusters for another query, and searching in different clus-
ters can be performed in parallel in all cases. (2) Retrieval methods
can be different for searching within clusters and routing queries
— since searching within clusters can be done in parallel and we
can control the size of clusters, we can afford using more complex
retrieval methods for searching within clusters, which may directly
affect the retrieval results. Thus in principle, we can support any re-
trieval methods, including link-based scoring methods like PageR-
ank [34]. Since final scoring happens locally, we may also consider
precomputing the link-based scores and partitioning them in a way
similar to how we partition our indices.

5.2 Query refinement
Query refinement is an important technique for improving re-

trieval accuracy. We now discuss how our architecture can naturally
support several query refinement strategies.

One standard technique for query refinement is through feed-
back [41]. In relevance feedback, the user is asked to make judg-
ments on some of the retrieval results, which can then be exploited
to update the query feature vector. This technique has been shown
to be very effective for improving retrieval performance [38]. In-
tuitively, this is easy to understand. Consider a short ambiguous
query such as “jaguar”, which likely returns both documents about
cars and documents about the animal. But if a user can tell us which
documents he/she likes, we would be able extract some terms from
the positive examples that can distinguish positive examples from
negative ones and add them to our query so that our query now is
more tuned to retrieve documents with either the car or the animal.

Since not all users are willing to judge documents, we may also
simply assume the few top-ranked documents in our initial retrieval
results to be relevant, and assume a random sample of documents
from the whole collection to be non-relevant. This is called blind
(pseudo) feedback, and has also been shown to be effective in im-
proving retrieval accuracy in general [17, 3, 45, 46].

Regardless which form of the feedback, the system would uti-
lize the feedback information to modify the query vector and issue
a refined query. This process involves frequent access to docu-
ment vectors and relatively sophisticated computation. One reason
why such feedback techniques have not been supported in existing
retrieval systems is because such computation cannot be done ef-
ficiently. P2PIR can support such index access and computation
much more efficiently as the document index is stored by semantic
locality and feedback documents are often semantically related.

To further improve retrieval accuracy, we may also refine a query
using any search context or additional user information. One major

limitation of the existing search engines is that the retrieval decision
is generally based solely on the query and document collection; in-
formation about the actual user and the search context is largely
ignored. As a result, although different users may use exactly the
same query (e.g., “java”) to search for different information (e.g.,
for the programming language or for coffee), an existing IR sys-
tem would return the same results for these different users. It is
thus highly desirable for a retrieval system to incorporate both user
information and search context into the retrieval decision process.

For instance, though a text query is typically short, it is rarely
the case that a user would find all the needed information with just
one query; it is often necessary to formulate the query in order ob-
tain better retrieval results. In general, we may have a sequence of
previous queries available to us, which we can exploit. Also, when
a user receives retrieval results, a user may view some documents
but not some others, which can also provide extra information about
what the user likes. Both the previous queries and the documents
viewed and not viewed can be treated as the search context of the
current query, and such search context can be exploited to improve
the retrieval performance of the current query.

Exploiting search context and user information requires a great
deal of computation. With the P2PIR framework, such computation
can be performed on different machines in parallel, especially if
we put more computations on a user’s machine. For example, we
can develop a sophisticated user-agent that keeps track of a user’s
search history and perform query refinement through these agents.
The same agent can also re-rank or re-organize the search results to
better satisfy a user’s information need.

6. ADAPTATION TO DYNAMICS
All the entities in P2PIR can change continuously, including doc-

uments (their semantics), nodes, and networks. We focus on tech-
niques to handle document dynamics. Our goal is to make the sys-
tem self-organizing and evolving, and require little human inter-
vention for dynamic document insertions, deletions, and updates.

As the documents keep changing, more concepts become avail-
able, and existing concepts disappear. Thus the dimensionality of
the concept vectors can change. As this happens, an important goal
is to keep the existing index locator as intact as possible.

The basic idea is to introduce new concept groups when neces-
sary, and periodically overhaul the system to rebuild index locators.

Specifically, when a set of new documents emerge, we check
(1) whether they contain new frequently-used terms or new heavy-
weight terms; and (2) whether their concept vectors belong to any
existing cluster in the existing semantic space. If they have no new
important terms and belong to some existing clusters, we just index
them using existing concept dimensions. Otherwise, we will gen-
erate one or more new concepts for the documents, and expand the
concept semantic space.

To add and index a new concept c, if c belongs to an existing
concept cluster whose size is less than that of the underlying DHT,
we can add c to that cluster by using the next available entry of
the index locator. Otherwise, we generate a new concept group and
a new set of index locators to represent c, and wait for infrequent
redo to consolidate the two groups. Note that for both cases, we
do not need to change the indices or the index locations of existing
documents because existing documents have value zero on this new
concept dimension by default. Then we generate the index locators
for the new documents, and deploy their indices on DHT. Finally,
we multicast the addition of the new concept c, and the addition
of new concept group (i.e., the new set of index locators) when
applicable, to all P2P nodes, so that they can route queries about



c. To avoid collisions from multiple P2PIR nodes, we have a small
number of nodes to control new concept generation.

For instance, when new documents on “Bin Larden” appear, we
detect it as a new concept relating to the concept group “terrorism”.
If the dimensionality of DHT is 20, and the size of “terrorism” con-
cept group is 17, we can just add “Bin Larden” to that group as di-
mension 18 of the index locator. The corresponding index locators
of existing documents have weight zero as default on dimension 18,
and thus remain the same. If the terrorism concept group is already
full, we generate a new concept group for “Bin Larden”(i.e., a new
set of index locators).

Note that the quality of the index locators could gradually lose
the semantic locality. Since the number of new concepts generated
within a short period of time could be much smaller than that of ex-
isting concepts, the locality degradation is slow. Thus we envision
another relatively infrequent process that will redo the indexing to
improve the overall quality of the indexing, which could be trig-
gered by detecting the distortions.

7. RELATED WORK
The related work is too numerous to enumerate, and we only list

those that are most related to our work.
Feature Extraction: Feature extraction has been studied inten-

sively in information retrieval, e.g., [25, 31]. Our proposal is flex-
ible to work with most existing feature extraction methods which
represent a document as a weight vector. These also include di-
mensionality reduction methods such as LSI [14] and structure syn-
opses [30], and XML document indexing methods, e.g., [28, 11].

Distributed Semantic Indexing: There has been a huge body
of work on building indexing structures to conduct similarly search
in a high-dimensional space [26, 22, 19, 39]. Our work differs
from these work in that documents and their index pointers are dis-
tributed, and the search process is conducted in different peers, and
ideas from existing work can be leveraged to design an efficient
distributed search strategy; indeed some of our ideas are related to
MDS [24], Karhunen-Loeve (“K-L”) transform [16], Local Dimen-
sionality Reduction [5], and FastMap [18]. Work on distributed
information retrieval (e.g., [20, 4]) is also related, but a centralized
retrieval interface is assumed, which is less robust and less efficient
than the proposed P2PIR architecture.

The proposed dynamic adaptation of an index has not been stud-
ied in the previous work.

Query Processing and Refinement: P2P Query processing has
been extensively studied [13, 12, 9, 7, 10, 27]. A main deficiency
of existing work is that most systems use simple keyword match-
ing, and cannot support the advanced relevance ranking algorithms.
Refinement and feedback of query have been active research in in-
formation retrieval [41]) and have received much attention in the
database community (e.g., [33, 6]). P2PIR distributes document in-
dices to different nodes according to their semantic locality, and it
can effectively distribute the extensive computation that are associ-
ated with these query refinement and feedback tasks.

8. STATUS
We are currently developing a prototype of the P2PIR system

and and evaluating it with the Text Retrieval Conference (TREC-7
and TREC-8) corpus, a large test set widely used in IR research.
It includes 528,543 documents from news, magazines, etc., with a
total size of about 2GB. Furthermore, we plan to deploy the P2PIR
system on the PlanetLab testbed [35], and evaluating with the fol-
lowing two specific application domains.

Web retrieval: We are using variable-size subsets of Web data to
quantitatively evaluate the scalability, search efficiency, search ac-
curacy, and usability of P2PIR. We will further demonstrate how
we can make smooth tradeoff between search accuracy and over-
head in P2PIR, and how to adapt to document/concept dynamics.
The effectiveness of P2PIR in handling semi-structured and struc-
tured documents will be evaluated in the medical record application
below.
Distributed Electronic Medical Record Systems: Collaborating
with the Radiology Department at Northwestern University, we are
applying P2PIR for creating, indexing and searching of distributed
electronic medical records. One major problem that exists by virtue
of the complexity of the health-care environment is that there is no
single information system that can or will ever meet all of the needs
of all of the participants in the many health-care processes. P2PIR
not only facilitates the storage of the pointers in the distributed grid
of registry nodes, but would also facilitates retrieval of all the object
pointers of heterogenous document formats (e.g., DICOM [32]).

9. SUMMARY
In this position paper, we extend a state-of-the art P2P indexing

method (i.e., pSearch) and propose P2PIR, a distributed tuneable
IR systems that leverages the emerging DHT technologies. A main
idea of extension is to use a novel two-phase indexing method, in
which semantic clustering is used to achieve good semantic local-
ity, search efficiency, search accuracy, tunability and agility to doc-
ument/concept dynamics. The P2PIR can potentially support query
refinement, feedback and personalized search, which can all help to
improve the usability. We have sketched the basic ideas of P2PIR;
many research questions on how to implement these ideas remain
open for further study. We are now in the process of developing a
prototype P2P retrieval system based on the proposed architecture.

As more and more information becomes available online, scal-
ability becomes critical. P2PIR can be applied to manage a huge
amount of information with flexible tradeoff between search ac-
curacy and efficiency. Naturally, as a general retrieval architecture,
P2PIR has many different applications, such as bioinformatics, web
search, and other information and data management problems.
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