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Abstract— We formulate the problem as follows: consider an over-
Overlay network monitoring enables distributed Internet  lay network ofn end hosts; we define a path to be a rout-
applications to detect and recover from path outages and ing path between a pair of end hosts, and a link to be an IP
periods of degraded performance within seconds. For an link between routers. A path is a concatenation of links.

overlay network with n end hosts, existing systems either re- There areO(n2) paths among the end hosts, and we

quire O(n*) measurements, and thus lack scalability, or can wish to select a minimal subset of paths to monitor so that

only estimate the latency but not congestion or failures. Ou  the |oss rates and latencies of all other paths can be in-

earlier extended abstract [1] briefly proposes an algebraic ferred.

approach that selectively_monitorsk linearly independent In this paper, we propose a tomography-based overlay

paths that can fully describe all theO(n?) paths. The loss monitoring systemTOM) in which we selectively mon-

rates and latency of these: paths can be used to estimate jtor a basis sewf £ paths. Any end-to-end path can be

the loss rates and latency of all other paths. Our scheme written as a unique linear combination of paths in the basis

only assumes knowledge of the underlying IP topology, with set. Consequently, by monitoring loss rates for the paths

links dynamically varying between lossy and normal. in the basis set, we infer loss rates for all end-to-end paths
In this paper, we improve, implement and extensively This can also be extended to other additive metrics, such

evaluate such a monitoring system. We further make the as latency. The end-to-end path loss rates can be com-

following contributions: i) scalability analysis indicating puted even when the paths contaimidentifiable linkgor

that for reasonably large n (e.g., 100), the growth ofk is  which loss rates cannot be computed.

bounded asO(nlogn), ii) efficient adaptation algorithms There are many open questions as follows.

for topology changes, such as the addition orremovalofend ¢ How scalable is the system? In other words, how will

hosts and routing changes, iii) measurement load balancing k grow as a function of?

schemes, iv) topology measurement error handling, and v) e |n an overlay network, end hosts frequently join/leave

design and implementation of an adaptive streaming me-  the overlay and routing changes occur from time to
dia system as a representative application. Both simulatio time. How can the system adapt to these efficiently?
and Internet experiments demonstrate we obtain highly ac- ¢ How should the system distribute the measurement
curate path loss rate estimation while adapting to topology load among end hosts to improve scalability?
changes within seconds and handling topology errors. e How can the system maintain accuracy when there are
topology measurement errors?
I. INTRODUCTION e How does TOM perform under various topologies and

The rigidity of the Internet architecture makes it ex- l0ss conditions, and in the real Internet?
tremely difficult to deploy innovative disruptive technelo ®_How can real applications benefit from TOM?
gies in the core. This has led to extensive research intol0 address these issues, in this paper, we make the fol-
overlay and peer-to-peer systems, such as overlay routlfging contributions.
and location, application-level multicast, and peer¢esp © We show that for reasonably large(say 100), k¥ =
file sharing. These systems flexibly choose their commu- O(nlogn) through linear regression tests on various
nication paths and targets, and thus can benefit from esti- Synthetic and real topologies. We also provide some
mation of end-to-end network distancesq, latency and ~ €xplanation based on the Internet topology and the AS
loss rate). hierarchy. _ o

Accurate loss rate monitoring systems can detect path We design incremental algorithms for path addition
outages and periods of degraded performance within sec- and deletion which only cosP(k?) time, instead of
onds. They facilitate management of distributed systems the O(n2k?) time cost to reinitialize the system.
such as virtual private networks (VPM) and content dis» We propose randomized schemes for measurement
tribution networks; and they are useful for building adap- load balancing.
tive overlay applications, like streaming media and multi-e We design effective schemes to handle topology mea-
player gaming. surement errors.

Thus it is desirable to have a scalable overlay loss rate We evaluate TOM through extensive simulations, and
monitoring system which is accurate and incrementally further validate our results through Internet experi-
deployable. However, existing network distance estima- ments.
tion systems are insufficient for this end. These existing We build an adaptive overlay streaming media sys-
systems can be categorizedgaseral metricsystems [2] tem on top of TOM, and achieve skip-free live media
and latency-onlysystems [3], [4], [S], [6]. Systems in  playback when switching to overlay routing to bypass
the former category can measure any metric, but require faulty or slow links. in the face of congestion/failures.
O(n?) measurements whereis the number of end hosts, In both simulations and PlanetLab experiments, we es-
and thus lack scalability. On the other hand, the latentiynate path loss rates with high accuracy uging: log n)
estimation systems are scalable, but cannot provide acoeasurements. For the PlanetLab experiments, the aver-
rate congestion/failure detection (see Sec. Il). age absolute error of loss rate estimation is only 0.0027,



and the average error factor is 1.1, even though about 10%
of the paths have incomplete or nonexistent routing in-
formation. The average setup (monitoring path selection)
time is 0.75 second, and the online update of the loss rates
for all 2550 paths takes only 0.16 second. In addition, we
adapt to topology changes within seconds without sacri-
ficing accuracy. The measurement load balancing reduces
the load variation and the maximum vs. mean load ratio _
significantly, by up to a factor of 7.3. Fig. 1. Architecture of a TOM system.

We additionally show how streaming media systems ) ) ) )
can benefit from TOM. The media application’s totapften inaccurate. And their approach is not applicable
adaptation time is less than three seconds on average. TB{doss rate because it is difficult to estimate link-byklin
includes the time from when the congestion/failure 0doss rates from end-to-end measurement. A similar ap-
curs, to when TOM detects it and sends alternative ovdroach was taken for selecting paths to measure overlay
lay path to the client, till the client sets up overlay condetwork [13]. The minimal set cover selected can only
nection to the server, and concatenates new streams v@itfesboundsfor metrics like latency, and there is no guar-
the old ones in the buffer. Then with our buffering techantee as to how far the bounds are from the real values.
niques which retransmit lost packets during path switch, In contrast to pure overlay inference approach, some re-
we achieve skip-free media playback on the PlanetLab &ent network tomography work [14], [15] try to measure
periments. thelink level (instead of theyath level as in this paper)

The rest of the paper is organized as follows. We surv@grformance based on response packets sent by interior
related work in Sec. II, describe our model and basic statfeuters. Unfortunately, interior routers may be unwilling
algorithms in Sec. Ill, and evaluate scalability in Sec. IM0 respond, or may respond in an insufficiently informa-
We extend the algorithms to adapt to topology changestive manner,e.g, ICMP rate limiting. Thus there is no
Sec. V, and to handle overload and topology measuremé&gguracy guarantee on the loss rate inference.
errors in Sec. VI. The methodology and results of our Furthermore, very few of the existing network tomogra-
simulations are described in Sec. VIII, and those of o@hy work examines topology change, topology measure-
Internet experiments are presented in Sec. IX. Finally, vi@ent errors, or measurement load balancing problems.
conclude in Sec. X.
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[1l. M ODEL AND BASIC ALGORITHMS
[l. RELATED WORK loebraic Model

There are many existing scalable end-to-end Iaten’é\'/ Algebraic Mode ]
estimation schemes, which can be broadly classifiedSuppose there are end hosts that belong to a sin-
into clustering-based [5], [6] and coordinate-based sygle or confederated overlay network(s). They cooperate
tems [3], [4]. Clustering-based systems cluster end ho¥esshare an overlay monitoring service, and are instru-
based on their network proximity or latency similarity unmented by a central authorite.g, an overlay network
der normal conditions, then choose the centroid of eagheration center (ONOC)) to measure the routing topol-
cluster as the monitor. But a monitor and other menogy and path loss rates as neededror simplicity, we
bers of the same cluster often take different routes to nesually assume symmetric routing and undirected links in
mote hosts. So the monitor cannot detect congestion this paper. However, our technigues work without change
its members. Similarly, the coordinates assigned to eafgh asymmetric routing, as evidenced in the PlanetLab ex-
end host in the coordinate-based approaches cannot @ariments. Fig. 1 shows a sample overlay network with
bed any congestion/failure information. four links and four end hosts; six possible paths connect

Network tomography has been well studied ([7] prathe end hosts. The end hosts measure the topology and
vides a good survey). Most tomography systems assuregort to the ONOC, which selects four paths and instru-
limited measurements are available (often in a multicastents two of the end hosts to measure the loss rates of
tree-like structure), and try to infer link characteristi8], those paths. The end hosts periodically report the mea-
[9] or shared congestion [10] in the middle of the nesured loss rates to the ONOC. Then the ONOC infers the
work. However, the problem is under-constrained: thetess rates of every link, and consequently the loss rates of
exist unidentifiable linkg[8] with properties that cannot the other two paths. Applications can query the ONOC
be uniquely determined. In contrast, we are not concerntent the loss rate of any path, or they can set up triggers
about the characteristics widividual links, and we do not to receive alerts when the loss rates of paths of interest
restrict the paths we measure. exceed a certain threshold [16].

Shavittet al. also use algebraic tools to compute dis- We now introduce an algebraic model which applies
tances that are not explicitly measured [11]. Given certaip any network topology. Suppose an overlay network
“Tracer” stations deployed and some direct measuremesfsanss IP links. We represent a path by a column vec-
among the Tracers, they search for path or path segmetiaisy < {0, 1}, where thejth entryv; is one if link j is
whose loss rates can be inferred from these measuremepist of the path, and zero otherwise. Suppose Jinkops
Thus their focus is not on Tracer/path selection. packets with probability;; then the loss ratg of a path

Recently, Ozmutluet al. select a minimal subset ofrepresented by is given]b
paths to cover all links for monitoring, assuming link-by-
link latency is available via end-to-end measurement [12]!As part of the future work, we will investigate techniquesdis-

But the link-by-link latency obtained from traceroute isribute the work of the central authority.



Symbols Meanings =S =2 ——
M fotal number of nodes o o| g e g1 _ B
N number of end hosts oo Hs_ o s = B
n number of end hosts on the overlay| r l - | =0 l
r = 0(n?) number of end-to-end paths
S # of IP links that the overlay spans an | |1
t number of identifiable links = =
G € {0,177 | original path matrix (@) G =b (b) Gzg =0
G € {0, 1}’”3 reduced path matrix Fig. 2. Matrix size representations.
E<s rank of G
li :OSS rate on.tﬂ link . However, in generalG is rank deficient: i.e,, k =
Pi oss rate onth measurement pat rank@G) andk < s. If G is rank deficient, we will be
i log(1 — 1) unable to determine the loss rate of some links from (3).
bi log(1 — pi) These links are also calleshidentifiablein network to-
v vector in{0, 1}® (represents path) mography literature [8].
P loss rate along a path
N(G) null space ofz 110 X,
R(GT) row(path) space off (== range(")) S eTe0t hag row(path) space
TABLE | R T __(measured)
TABLE OF NOTATIONS G :: _ Ei ?erllln':‘gggﬁré) / Xl
X3 bs Xs
s Fig. 3. Sample overlay network.
l-p= H (1=1;)"% (1) Fig. 3 illustrates how rank deficiency can occur. There
j=1 are three end hosts (A, B and C) on the overlay, three links

(1, 2 and 3) and three paths between the end hosts. We
cannot uniquely solve:; and x5 because linkd and 2
always appear together. We know their sum, but not their
difference.

Equation (1) assumes that packet loss is indepen
among links. Caceret al. argue that the diversity of traf
fic and links makes large and long-lasting spatial link Ic
dependence unlikely in a real network such as the In : : :
net [17]. Furthermore, the introduction of Random Ea Witlillg-e iﬁ”ﬁ;‘%g%;hea Sge;fgli%r;tqrgn?sl;owe I|$ﬁgr ngcs{[c)errg,
Detection (RED) [18] policies in routers will help bree ! :

T .
such dependence. In addition to [17], formula (1) has ¢ {®[1 —1 0]" } compriseN'(G), thenull spaceof G.
been proven useful in many other link/path loss inferer NO information about the loss rates for these vectors is

works [9], [8], [19], [13]. Our Internet experiments als diven by (3). Meajpwhile_, there is an orthogorai(path)
show that the link loss dependence has little effect on spaceof G, R(G*), which for this example is a plane

accuracy of (1). all 1 0]T+5[0 0 1]T}. Unlike the null space, the

. . {
We take logarithms on both sides of (1). Then byss rate of any vector on the row space can be uniquely
defining a column vector € R® with elementsz; = determined by (3).

log (1 —1;), and writingv” for the transpose of the col- To separate the identifiable and unidentifiable compo-
umn vectorv, we can rewrite (1) as follows: nents ofz, we decompose into x = z¢ + xxy, Where
s 5 rg € R(GT) is its projection on the row space and
log (1 —p) = Z’Uj log (1 —1;) = Zvjxj =l andzy € N(G) is its projection on the null spaced.,
j=1 j=1 Gxy = 0). The decomposition dfe; x> x3]? for the
(2) sample overlay is shown below.
There arer = O(n?) paths in the overlay network,

and thus there are linear equations of the form (2). (21 + 22) 1 0 b1/2

Putting them together, we form a rectangular magix ro =22 4 g 0] = [bl /2] (4)

{0,1}7<s. Each row ofG represents a path in the net- 2 0 1 ba

work: G;; = 1 when pathi contains linkj, andG;; = 0 1

otherwise. Letp; be the end-to-end loss rate of tita R o Nk ) 5)

path, and leb € R" be a column vector with elements N 2 0

b; = log (1 — p;). Then we write the- equations in form

(2) as Thus the vector can be uniquely identified, and con-
Grx=1» (3) tains all the information we can know from (3) and the

Normally, the number of pathsis much larger than the path measurements. The intuition of our scheme is illus-
number of linkss (see Fig. 2(a)). This suggests that werated throughvirtual linksin [1].
could selects paths to monitor, use those measurementsBecausez lies in the k-dimensional spacél(GT),
to compute the link loss rate variablesand infer the loss only k independent equations of theequations in (3) are
rates of the other paths from (3). needed to uniquely identify,. We measure thegepaths



to computezg. Sinceb = Gz = Gazg + Gxy = Gz, constraintzg = GTy wherey = R~'R~Tb. Once we

we can compute all elements bfrom z, and thus ob- havez, we can computé = Gz, and from there infer

tain the loss rate of all other paths. Next, we present mdite loss rates of the unmeasured paths. The complexity

detailed algorithms. for this step is onlyO(k2). Thus we can update loss rate
estimates online, as verified in Sec. VIII-D and IX-B.

B. Basic Static Algorithms

The basic algorithms involve two steps. First, we se- IV. SCALABILITY ANALYSIS
lect a basis set df paths to monitor. Such selection only An overlay monitoring system is scalable only when
needs to be done once at setup. Then, based on continubessize of the basis set, grows relatively slowly as a
monitoring of the selected paths, we calculate and upd&tection ofn. Given that the Internet has moderate hier-
the loss rates of all other paths. archical structure [24], [25], we proved that the number of
1) Measurement Paths SelectiorTo selectk linearly end hosts is no less than half of the total number of nodes
independent paths frori, we use standard rank-revealingn the Internet. Furthermore, we proved that when all the
decomposition techniques [20], and obtain a reduced sgsid hosts are on the overlay netwokk= O(n) [1].
tem: B B But what about if only a small fraction of the end hosts
Gxg=b (6) are on the overlay? Becauégis anr by s matrix, & is
_ s - . i bounded by the number of links If the Internet topol-
whereG € R*™* andb € R" consist ofk rows of G oqgy is a strict hierarchy like a trees = O(n), thus

andb, respectively. The equation is illustrated in Fig. 2(b)"= 0 (n). But if there is no hierarchy at alle(g. a
(compared withGz = b). i ' 2 2 i

: : - que), k = O(n*) because all th&(n*) paths are lin-

As shown below, our algorithm is a variant of the QFgarly independent. Tangmunarunkital. found that the

decomposition with column pivoting [20, p.223]. It in- -
. . power-law degree Internet topology has moderate hierar-
crementally builds a decompositic” = QR, where chy [24]. It is our conjecture thdt = O(nlogn).

Q € R*** is a matrix with orthonormal columns and in this section, we first show through linear regres-
R € RF** is upper triangular. sion on both synthetic and real topologies thé indeed
bounded byO(n logn) for reasonably large (e.g 100).

Then we explain it based on the power-law degree distri-
procedure SelectPath(G) bution of the Internet topology and the AS (Autonomous
1 for every row(pgth)u in G do System) hierarchy.
2 ]?12 =R TGV = QTUT
3 Ry = o) = [[Rao? A. Empirical Bound on Rank
4 if Ry #0then We experiment with three types of BRITE [26] router-
5 Select as a measurement path level topologies - Barabasi-Albert, Waxman and hierar-
_|R Rio ~ |G chical models - as well as with a real router topology with
6 UpdateR = {0 ]%22} andG = { ] 284,805 nodes [27]. For hierarchical topologies, BRITE
end first generates an autonomous system (AS) level topology
end with a Barabasi-Albert model or a Waxman model. Then
i i i for each AS, BRITE generates the router-level topologies
Algorithm 1: Path (row) selection algorithm with another Barabasi-Albert model or Waxman model.

So there are four types of possible topologies. We show
In general, the&x matrix is very sparse; that is, there ar@ne of them as an example because they all have similar
only a few nonzeros per row. We leverage this propertyends (see [16] for complete results).
for speedup. We further use optimized routines from the We randomly select end hosts which have the least de-
LAPACK library [21] to implement Algorithm 1 so that it gree (.e., leaf nodes) to form an overlay network. We test
inspects several rows at a time. The complexity of Alggyy linear regression of on O(n), O(nlogn), O(n'%),
rithm 1 isO(rk?), and the constant in the bound is modo (515, and O(n!7). As shown in Fig. 4, results for

est. The memory cost is roughk? /2 single-precision each type of topology are averaged over three runs with
floating point numbers for storing th& factor. Notice different topologies for synthetic ones and with different
that the path selection only needs to be executed oncefaidom sets of end hosts for the real one. We find that
initial setup. for Barabasi-Albert, Waxman and real topologi€¥(n)

2) Path Loss Rate CalculationsTo compute the path regression has the least residual errors - actualgven
loss rates, we must find a solution to the underdetermingtbws slower tharO(n). The hierarchical models have
linear systemGz; = b. The vectorb comes from mea- higherk, and most of them haw@ (n log ) as the best fit.
surements of the paths. Zhaagal. report that path loss  Note that all functions seem to intersect around=
rates remain operationally stable in the time scale of &)0. This is because thahherently the growth is sub-
hour [22], so these measurements need not be takenggiadratic, and roughly linear for the interested range of
multaneously. B problem sizes Suppose that we have an exactly linear

Given measured values forwe compute a solution; function z (we use a continuous setting for ease of cal-
using the QR decomposition we constructed during meeulation) and we wish to fit a function of the forenx z¢
surement path selection [20], [23]. We choose the uniqte this exactly linear function: over the interval [0,1].
solutionz with minimum possible norm by imposing theThe least squares procedure gives a coefficient of the form
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Cls = 2%“1 The datar and the functior;; x 2 intersect the shortest paths of the majority of node pairs. So there

at the following point. is significant amount of link sharing among the paths, es-
pecially for backbone links, customer links, and peering
24+a 1 links.

2a + l)a ' 7 Such link sharing can easily lead to rank deficiency of
the path matrix for overlay networks. As an example,
Fora between 1.1 and 2.@,,,¢¢,.p: Varies between 0.728 consider an overlay within a single AS. The AS with the
and 0.800. That is, the fitted function intersects the ddtagest number of links (exclusive of customer and peer-
about 3/4 of the way across the domain for a wide rangeiafy links) in [28] has 5,300 links. Even considering the
exponents (including the exponents 1.25, 1.5, and 1.75¢overage factor (55.6% as in Table 2 of [28]), there are at

Lintercept = (

Thus conservatively speaking, we have = most 9,600 links. Since there anén — 1) paths among
O(nlogn). n nodes, link sharing must occur befate= 100; in fact,
substantial link sharing is likely to occur for even smaller
B. Explanation from Internet Topology n.

Note that such trend still holds when the end hosts arg\OW consider an overlay network that spans two ASes
sparsely distributed in the Internet,g, when each end connected by customer/peering links, wit /2 nodes in
host is in a different access network. One extreme ca@@e AS and/2 nodes in the other. The®/2 cross-AS
is the “star” topology - each end host is connected to tiR&ths can be modelled as linear combinatioRk n +
same center router via its own access network. In sucRVirtual links - bi-directional links from each end host
topology, there are only, links. Thusk = O(n). Only 10 itsy peering link routers, ang bi-directional peering
topologies with very dense connectivity, like a full cliquelinks. Thus giveny is normally much less than and
havek = O(n?). Those topologies have little link sharingt@n b€ viewed as a 2constant, oNn) paths need to be
among the end-to-end paths. measured for thé)(n ) Cross-AS paths.

The key observation is that whenis sufficiently large,  Now consider an overlay on multiple ASes. According
such dense connectivity is very unlikely to exist in the Irto [29], there are only 20 ASedgi€r-1 providers) which
ternet because of the power-law degree distribution. Tarfgrm the dense core of the Internet. These ASes are con-
munarunkitet al. found that link usage, as measured bgiected almost as a clique, while the rest of the ASes have
the set of node pairs (source-destination pairs) whose trigr less dense peering connectivity. So when the size of
fic traverses the link, also follows a power-law distribuan overlay is reasonably big.g, » > 100), the num-
tion, i.e., there is a very small number of links that are ober of customer and peering links that cross-AS paths tra-



verse tends to grow much slower th@xin?). For exam- and thejth row in G, we defineG’ € R —Dxs as the
ple, a joining end host may only add one customer linkeasurement path matrix after deleting tiie row, and

to the overlay topology, and share the peering links that ¢ R("—1)xs a5 the path matrix after removing thth
have been used by other end hosts. Meanwhile, only g, By deletingv from G, we reduce the dimension of

few nodes are needed in a single AS before link shari " ; .
occurs in paths within an AS. Elllcg\)/vr?n]; E[(\)N/; ;téblsntumvely, our algorithm works in the
0 :

We believe this heavy sharing accounts for our empi . . L
cal observation that = O(n) in a real router-level topol- 1) Find a vectoy that only describes the direction re-
ogy, andk grows at worst likeO(n log n) in several gen- moved by deleting théth row of G.
erated topologies. Note that the real 284,805-router topol 2) Test if the path space @' is orthogonal to that
ogy represents a fairly complete transit portion of the In-  direction, i.e., find whether there is any pah €
ternet [27]. In our analysis, we conservatively assume G’ that has a non-zero component on that direction.
that there is only one end host connecting to each edge !f not, no replacement path is needed. Otherwise,
router to reduce the possible path sharing, but we still find ~ eplacev with any of such patlp, and update the

k = O(n) whenn > 100. QR decomp_osition. o
Next, we describe how each step is implemented. To
V. DYNAMIC ALGORITHMS FOR find y which is in the path space @ but not of &, we
TOPOLOGY CHANGES solve the linear systeriy = e;, wheree; is the vector of

During normal operation, new links may appear or digll Zeros except for a one in entfyThis system is similar
appear, routing paths between end hosts may chan§ghe linear system we solved to fimg, and one solution
and hosts may enter or exit the overlay network. The&ey = GT'R™R Te;.
changes may cause rows or columns to be added to oPnce we have computeg, we computer = Gy,
removed fromG, or entries inG may change. In this sec-whereG’ is the updated> matrix. Because we chose
tion, we design efficient algorithms to incrementally adapd makeG’y = 0, all the elements of corresponding

to these changes. to selected rows are zero. Paths such that# 0 are
- _ guaranteed to be independentf, since if row; of G
A. Path Additions and Deletions could be written as” G’ for somew, thenr; would be

The basic building blocks for topology updates are path” 'y = 0. If all elements of- are zero, thery is a null
additions and deletions. We have already handled paictor for all of G/; in this case, the dimensiatl of the
additions in Algorithm 1; adding a pathduring an update row space ot is k — 1, and we do not need to replace the
is no different than adding a pathduring the initial scan deleted measurement path. Otherwise, we can findjany
of G. In both cases, we decide whether to add G and sych thatr; # 0 and add theth path toG’ to replace the
updateR. - deleted path.

To delete a path that is not i@ is trivial; we just re-  Take the overlay network in Fig. 3 for example, sup-
move it fromG. But to remove a path frond is more poseG is composed of the pathéB and BC, i.e, G =
complicated. We need to updaig this can be done in 1 1 _ -
O(k?) time by standard algorithms (see e.g. Algorithril 1 1|- Then we delete patBC, ' = [1 1 0]

3.4 in [30, p.338]). In general, we may then need to re-
place the deleted path with another measurement paiRd ¢/ = 11 0} Applying Algorithm 2, we have

Finding a replacement path, or deciding that no such path 001
is needed, can be done by re-scanning the rowsasin 4 = [0 0 1]7 andr = [0 1]7. Thus the second path
Algorithm 1; however, this would take tim@ (rk?). in G/, AC, should be added t6”. If we visualize such
path deletion in reference to the geometry of the linear
_ system, the path space Gf remains as a plane in Fig. 3,
procedure DeletePath(, G, G, R) but G only has one dimension of the path space left, so
1 if deleted pathy is measuredhen we need to addiC to ¢/
2 J= Ln}je{ ?f”_'Tn G When deleting a path used @, the factorR can be
3 y=G R R7'e¢ updated inO(k?) time. To find a replacement row, we
4 Removev from G andG need to compute a sparse matrix-vector product involving
5 UpdateR (Algorithm 3.4 in [30, p.338]) G, which takesD(n? x (average path lengthpperations.
6 r=Gy Since most routing paths are short, the dominant cost will
7 if Jisuchthat; #0then _ typically be the update k. Therefore, the complexity of
8 Add theith path fromG to G (Algorithm 1, Algorithm 2 isO(k2)
steps 2-6) '
end
. er;deRemovev from G B. End Hosts Join/Leave the Overlay
To add an end host, we use Algorithm 1 to scan all
Algorithm 2: Path deletion algorithm the new paths fronk, for a cost ofO(nk?). However,

) _ it is inefficient to delete an end hoatby directly using
We now describe Algorithm 2 to delete a pattmore  Algorithm 2 to delete all affected paths. If Algorithm 2
efficiently. Supposes corresponds to théth row in G is used to delete a path that starts/ends, aften another



path that starts/ends Atis chosen as a replacement — anBor paths with incomplete routing information, we add
soon deleted in turn. To avoid this behavior, we remoViaks from where the normal route becomes unavailable
all these paths frontz first, then use the update@ in (e.g, self loops or displaying “* * *” in traceroute), to
Algorithm 2 to select replacements as needed during tiwbere the normal route resumes or to the destination if
removal of paths that start/end/atEach path irG can be such anomalies persist until the end. For instance, .if the
removed inO(k?2) time; the worst-case total cost of endneasured route isi(c, ip1, “***", “ipy, dest), the path is

. 2 composed of three links:sfc ip1), (ip1, ip2), and (p2,
host deletion is the®(nk~). dest). By treating the untraceable path (segment) as a

. normal link, the resulting topology is equivalent to the one
C. Routing Changes with complete routing information for calculating the path

In the network, routing changes or link failures can afoss rates. . _ _
fect multiple paths irG. Previous studies have shown that For topologies with router aliases presenting one phys-
end-to-end Internet paths generally tend to be stable fe@! link as several links, we have little need to resolve
significant lengths of timee.g, for at least a day [31], these aliases. At worst, our failure to recognize the links
[32]. So we can incrementally measure the topology & the same will result in a few more path measurements
detect changes. Each end host measures the paths td&gruse the rank 6 will be higher. For these links, their
other end hosts daily, and for each end host, such meas@@responding entries ing will be assigned similar val-
ment load can be evenly distributed throughout the day. Wes because they are actually a single link. Thus the path
addition to the periodic route measurement, if any pathlRss rate estimation accuracy is not affected, as verified by
found to have large loss rate changes, we will check ifdternet experiments in Sec. IX. In addition, our system is
route instantly. robust to measurement node failures and node changes by
For each link, we keep a list of the paths that traverse Rroviding bounds on the estimated loss rates.
If any path is reported as changed for certain link(s), we
will examine all other paths that go through those link(s)
because it is highly likely that those paths can change theiV!l- SAMPLE APPLICATION: STREAMING MEDIA

routes as well. We use Algorithms 1 and 2 to incremen- | this section, we describe how real applications bene-
tally incorporate each path change. fit from real-time path congestion/failure information pro
Unlike O(n?) approachese(g, RON), we need some vided by TOM. The sample application is streaming me-
extra traceroute measurement. However, the key pointdia delivery, which typically requires sustained network
that the end-to-end routing remains much more stable theérformance in terms of throughput, packet loss, and even
its loss rate, thus requires far less frequent measuremeatency for interactive applications. In contrast, thestat
So the savings on loss rate probing dwarf the tracerouiet provides unpredictable and time-varying service. Ex-
overhead. isting techniques to address the transport requirement mis
match fall in two categories: source-coding for compres-
VI. LOAD BALANCING AND TOPOLOGY ERROR sion [33] and error-resilience [34], and end-point adap-
HANDLING tation, e.g, adjust the quality of the video based on the
network throughput [33]. Both categories treat the under-
ing IP network as a best-effort black box.
YRecently, studies have found that overlay routing can
effectively improve the performance.g, latency, band-
width, etc.) of IP routing [2], [16]. In this section, we de-
A. Measurement Load Balancing sign, implement and evaluate an adaptive live streaming
The current design tends to have a few nodes measIRCi2 SR T80 BRiERes | PR 1T SEEATE RO O
most of the paths in th& which will overload these nOdeS(%Eptive packet relaying and buffering within the delivery

To further improve the scalability and accuracy, w
need to have good load balancing and handle topolo
measurement errors, as discussed in this section.

and their access links, and further affect the measurem astructure. Specifically, streaming clients in our-sys

accuracy. To evenly distribute the measurements am . .
the end%osts, we rgndomly reorder the path&inefore employ overlay routing to bypass faulty or slow links

scanning them for selection in Algorithm 1. Since eac‘?1nd re-establish new connection to streaming servers.
path has equal probability of being selected for monitor-
ing, the measurement load on each end host is similar.
Note any basis set generated from Algorithm 1 is suffi-’
cient to describe all pathS. Thus the load balancing has
no effect on the loss rate estimation accuracy.

Architecture and Implementation

5. Alert + OVERLAY NETWORK
OPERATION CENTER
B. Handling Topology Measurement Errors

2. Register trigger | %

As our goal is to estimate the end-to-end path loss rate SERVER

instead of any interior link loss rate, we can tolerate cer- @ :

tain topology measurement inaccuracies, such as incom-

plete routing information and poor router alias resolution _ .
For completely untraceable paths, we add a direct link OVERLAY RELAY

between the source and the destination. In our system, NODE

these paths will become selected paths for monitoring. 8- Setup flew Palh
Fig. 5. Event-driven diagram of adaptive overlay mediaastrag




The system is composed of streaming media clienf3uring streaming, we use PacketShaper to set the band-
server, and a set of overlay nodesg, content distribu- width between the SHOUTcast server and the client as 76
tion network). All these nodes are the end hosts moribps to emulate the congestion.
tored by TOM, and controlled by an ONOC as in Fig. 1. For the 51-node overlay network, TOM measures the
Normally a client connects to a server directly for streanselected paths (on average 872 paths, see Sec. IX) every
ing media content. The client also registers the path aB80 msec by sending out ten UDP packets along each
sets up atrigger for path performance warnings at ONOgath, then calculates the end-to-end loss rate using an
When the path incurs congestion/failure, ONOC deteatzponential-weighted moving average (EWMA) for bet-
it, then searches for an alternative overlay path to bypdss stability. If the estimated loss rate exceeds a certain
the faulty link(s), and sends the overlay path to the clietitreshold €.g, 10%), we assume that congestion occurs.
if such path exists. The client tears down the current con-We evaluate two metrics: 1) the adaptation time, de-
nection, sets up a new connection via overlay node(s), dited as the period from when congestion/failure occurs
attempts to concatenate the new streams with the old daavhen the client gets new streams from the overlay path
for skip-free effect. For live streaming media or when thend successfully concatenates those with the old in the
server is broadcasting the media to multiple clients, thwiffer, and 2) effectiveness of skip-free live media play-
reconnected client may lose part of the data. We apghack. o _

a simple buffering technique to enable retransmission of The adaptation time can be broken down into three parts
lost packets during path switching (see [16] for detailsgs follows. We present the average running time with the
The event driven diagram is shown in Figure 5. HOUTcast server on 49 different locations.

We add a buffering layer at the server and an overlay 1) Congestion detection time, the time from introduc-
layer at the client to work with legacy client and server ing the bottleneck link via PacketShaper to when
softwares. The architecture is shown in Figure 6. Our  ONOC collects measurements, computes all the
implementation is built on top of Winamp [35] client and loss rates and detects the congestion, is 1.5 seconds
SHOUTcast [36] media server software. Media transport  On average.
for SHOUTcast is carried using TCP. Nevertheless, our2) ONOC searches for an overlay path from the server
adaptive overlay routing and buffering techniques are ap-  to the client that is relayed by a single overlay node,
plicable to other transport mechanisms such as RTP/UDP. and has the end-to-end loss rate less than 2% along

with the smallest end-to-end delay. Then it sends
Jeon ovEruaY oK such path to the client. The total time for this step

CLIENT

B ey clent until the overlay path information is received by the
l SERVER E— — client, is 0.66 second on average.
_sHoUTeas alert + new path Winamp Video/Audio Fiter | Layer 3) Client tears down the old connection, sets up a new
i RELAY] | ‘Eﬁj;@je) connection to the server via overlay node, retrieves
. vy Layer and concatenates the new media data. The average
R E— Overay L and concatenates the edia data. Th
! el IS time for this step is 0.73 second.
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Fig. 6. Architecture of TOM-based adaptive overlay mediaahing

B. Evaluation

chines with 512MB-883MB RAM.
Network congestion is
Packeteegr) PacketShaper [38].

INTERNET

o7 Client1 |,/

Client 2

Client 3

Client 4

The total adaptation time on average is less than three
seconds. More than 95% of the experiments have adap-

tation time within five seconds.

Since the maximum

streaming bitrate for DSL/cabel modem is 450 Kbps [39],
a buffer of 300KB suffices for skip-free media playback.
For the second metric, we compare to the streaming me-
dia system without monitoring-based adaptation. When
congestion occurs, its Winamp client gradually runs out
of buffer, and stalls. In contrast, for all experiments, our
client adapts to the congestion transparently, and enjoys
a skip-free continuous playback without quality degrada-

tion.

VIIl. EVALUATION

In this section, we present our evaluation metrics, sim-

We deploy our system on the PlanetLab [37] testbedlation methodology and simulation results.
We place ONOC at Stanford University, the Winamp .
client at U. C. Berkeley and the SHOUTcast server o Metrics
49 different locations as used for evaluation of TOM (see The metrics include path loss rate estimation accuracy,
Sec. IX, excluding the Berkeley and Stanford hosts). Theriation of measurement loads among the end hosts, and
client is an Intel P111/500MHz Windows XP machine withspeed of setup, update, and topology change adaptation.
256MB RAM on 100Mbps switched Ethernet. All other To compare the inferred loss rafewith real loss rate
hosts are PlanetLab nodes, 1.0GHz-1.8GHz Linux mg-we analyze both absolute error and error factor. The
absolute error i§p — p|. We adopt the error factdr. (p, p)

The normal stream-
ing bitrate is about 300 Kbps, which is less than the
normal available bandwidth between client and server.

introduced by using aefined in [8] as follows:

F(p,§) = max {?(E) @} ®)

p(e) ple)
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Fig. 7. Cumulative distribution of absolute errors (top@laror factors (bottom) under Gilbert loss model for vasaapologies.

#of | #ofendhosts| # of # of links rank | MPR lossy paths (Bernoulli) lossy paths (Gilbert)
nodes| total | OL(n) | paths¢) | original| AP (k) | (k/r) | real | coverage] FP real | coverage] FP
1000! 506 50 1225 1997 443 | 275 | 22% | 437 99.6% | 1.3% | 437 | 100.0% | 0.2%
100 4950 791 | 543 | 11% | 2073 | 99.0% | 2.0% | 1688 | 99.9% | 0.2%
5000| 2489 100 4950 9997 1615 | 929 | 19% | 2271 | 99.1% | 2.0% | 2277 | 99.7% | 0.1%
300 44850 3797 | 2541 6% | 19952| 98.6% | 4.1% | 20009| 99.6% | 0.3%
20000 10003 100 4950 39997 2613 | 1318 27% | 2738 | 98.4% | 3.4% | 2446 | 99.5% | 0.6%
T 500 | 124750 11245] 6755| 5% | 67810 97.8% | 5.5% | 64733 99.5% | 0.4%
#of | #ofendhosts| # of # of links rank | MPR lossy paths (Bernoulli) lossy paths (G|Ibert)
nodes| total | OL(n) | paths¢) | original | AP (k) | (k/r) real coverage] FP real coverage
1000| 312 50 1225 2017 441 | 216 | 18% | 1034 98.8% | 2.0% | 960 99.6% 0.5%
100 4950 796 | 481 | 10% | 4207 98.4% | 1.6% | 3979 99.6% | 0.3%
100 4950 1300 | 526 | 11% | 4688 99.1% | 0.6% | 4633 99.8% | 0.2%
5000| 1608 —355—1—72850 | 1994730761 1787 4% | 42331 99.2% | 0.8% | 42281 | 99.8% | 0.1%
20000 6624 100 4950 40077 2034 | 613 | 12% | 4847 99.8% | 0.2% | 4830 | 100.0% | 0.1%
500 | 124750 7460 | 3595| 3% | 122108| 99.5% | 0.3% | 121935 99.9% | 0.1%
# of end hosts| # of # of links rank | MPR lossy paths (Bernoulli) lossy paths (Gilbert)
onoverlay ¢) | paths¢) | after pruning| (k) | (k/r) | real | coverage] FP real | coverage] FP
50 1225 2098 1017| 83% | 891 99.7% | 0.9% | 912 | 100.0% | 0.2%
100 4950 5413 3193| 65% | 3570 | 98.7% | 1.9% | 3651 | 99.6% | 0.3%
200 19900 12218 8306 | 42% | 14152 97.9% | 3.1% | 14493| 99.6% | 0.4%
TABLE Il

RESULTS FOR TWOBRITE ROUTER TOPOLOGIES BARABASI-ALBERT (TOP), HIERARCHICAL MODEL (MIDDLE), AND A REAL ROUTER
TOPOLOGY OF284,805NODES(BOTTOM). OL: THE NUMBER OF END HOSTS ON THE OVERLAYAP: THE NUMBER OF LINKS AFTER
PRUNING THE NODES AND LINKS THAT ARE NOT ON THE OVERLAY PATHSMPR:MONITORED PATH RATIO. FP:FALSE POSITIVE RATE

#of | OL Barabasi-Albert model hierarchical model
nodes| size CV MMR CV MMR
(n) sender receiver sender receiver sender receiver sender receiver
LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB
1000 50 [ 0.62| 1.10 | 056 | 094 | 241| 591 | 3.07| 4.09 | 0.52| 096 | 0.53| 0.87 | 2.28 | 4.80 | 251 | 4.29
100 [ 061 ] 142 | 064] 1.34 | 3.21| 11.33| 3.61 | 10.67| 051 1.38 | 0.47| 1.39 | 2.74| 10.06 | 2.32 | 10.27
5000 100 | 044] 0.89 | 047 | 097 | 225| 6.11 | 236 | 6.50 | 049 | 1.18 | 0.53| 1.39 | 2.60| 9.18 | 2.97 | 10.16
300 052 159 051| 151 ] 297 1870 274 17.25| 047 | 1.72 | 048 1.76 | 3.47 | 23.93| 4.13 | 25.76
2000 100 | 0.36| 0.55| 0.40| 059 | 1.93| 3.20 | 229 | 3.69 | 048 | 1.17 | 0.43| 1.09 | 3.04| 8.86 | 256 | 7.09
500 052 1.36 | 053 1.35 | 264 | 1921 | 3.01 | 16.82| 046 | 185 | 046 | 1.89 | 5.01 | 25.85| 5.56 | 27.67
TABLE Il

MEASUREMENT LOAD DISTRIBUTION OL IS OVERLAY. “LB” AND “NLB” MEAN WITH AND WITHOUT LOAD BALANCING .



wherep(e) = max(e,p) andp(e) = max(e, p). Thus,p good links is selected uniformly at random in the O-
andp are treated as no less tharand then the error factor 1% range and that for bad links is chosen in the 5-
is the maximum ratio, upwards or downwards, by which  10% range. In the second modéll{R D), the loss
they differ. We use the default valge= 0.001 as in [8]. If rate ranges for good and bad links are 0-1% and 1-
the estimation is perfect, the error factor is one. 100% respectively. Given space limitations, most re-
Furthermore, we classify a path to be lossy if its loss  sults are undef. LRD; except for Sec. VIII-D.
rate exceeds 5%, which is the threshold between “tolera- Loss model: After assigning each link a loss rate,
ble loss” and “serious loss” as defined in [22]. We report  we use either a Bernoulli or a Gilbert model to sim-
the true number of lossy paths, the percentage of real lossy ulate the loss processes at each link. For a Bernoulli
paths identified (coverage) and the false positive rate, all model, each packet traversing a link is dropped at in-
averaged over five runs of experiment for each configura- dependently fixed probability as the loss rate of the
tion. link. For a Gilbert model, the link fluctuates between
There are two types of measurement load: 1) sending a good state (no packet dropped) and a bad state (all
probes, and 2) receiving probes and computing loss rates. packets dropped). According to Paxon’s observed
The load reflects the CPU and uplink/downlink bandwidth ~ measurement of Internet [40], the probability of re-
consumption. For each end hdstits measurement load maining in bad state is set to be 35% as in [9]. Thus,
is linearly proportional to, and thus denoted by the num- the Gilbert model is more likely to generate bursty
ber of monitored paths witth as sender/receiver. Then losses than the Bernoulli model. The other state tran-
we compute its variation across end hosts in terms of the sition probabilities are selected so that the average
coefficient of variation(CV) and themaximum vs. mean loss rates matches the loss rate assigned to the link.
ratio (MMR), for sending load and receiving load sepa- We repeat our experiments five times for each simula-
rately. The CV of a distributiorr, defined as below, is ation configuration unless denoted otherwise, where each
standard metric for measuring inequality :.of while the repetition has a new topology and new loss rate assign-
MMR checks if there is any single node whose load isents. The path loss rate is simulated based on the trans-

significantly higher than the average load. mission of 10000 packets. Using the loss rates of selected
paths as input, we computg;, then the loss rates of all
t iati other paths.
OV () = standard deviation(x) 9 Y
mean(z)

: . . . . C. Accurate, Efficient Infe [ [
The simulations only consider undirected links, so for rence for Various Topologies

each monitored path, we randomly select one end host a§or all topologies in Sec. VIII-B, we achieve high loss

sender and the other as receiver. This is applied to all sif@te estimation accuracy. Results for the Bernoulli and the
ulations with or without load balancing. Gilbert models are similar. Since the Gilbert loss model

is more realistic, we plot the cumulative distribution func
tions (CDFs) of absolute errors and error factors with the
B. Simulation Methodology Gilbert model in Fig. 7. For all the configurations, the ab-
_ _ _ _ _ _solute errors are less than 0.008 and the error factors are

We consider the following dimensions for simulation. jess than 1.18. Waxman topologies have similar results,

» Topology type: three types of synthetic topologieand we omit them in the interest of space.
from BRITE (see Sec. VIII-C) and areal router-level The lossy path inference results are shown in Table II.
topology from [27]. All the hierarchical models haveNotice thatk is much smaller than the number of IP links
similar results, we use Barabasi-Albert at the Afhat the overlay network spans, which means that there
level and Waxman at the router level as the reprare many IP links whose loss rates are unidentifiable. In
sentative. Fig. 7, we notice that for the same network topology, the

» Topology size: the number of nodes ranges froemaller an overlay network is, the more accurate overall
1000 to 2000¢. Note that the node count includesnference it provides. This is because that for a smaller
both internal nodes (i.e., routers) and end hosts. overlay network, the measurement path ratio (MAR), (

« Fraction of end hosts on the overlay network: we déhe percentage of paths we monitor out of all possible
fine end hosts to be the nodes with the least degrg@aths) is larger because the path sharing in the overlay
Then we randomly choose from 10% to 50% of eni$ less. The MPR values are listed in the “MPR” columns
hosts to be on the overlay network. This gives u8 Table Il. For those monitored paths, there is no estima-
pessimistic results because other distributions of etidn errors and thus a smaller overlay network has larger
hosts will probably have more sharing of the routingverall accuracy (for all the paths on the overlay).
paths among them. We prune the graphs to removeAlthough different topologies have similar asymptotic
the nodes and links that are not referenced by amggression trend fok asO(nlogn), they have different
path on the overlay network. constants. For an overlay network with given number

« Link loss rate distribution: 90% of the links are clasef end hosts, the more IP links it spans on, the bigger
sified as “good” and the rest as “bad”. We use twis. We found that Waxman topologies have the largest
different models for assigning loss rate to links ag8mong all synthetic topologies. For all configurations, the
in [9]. In the first model LLRD;), the loss rate for lossy path coverage is more than 96% and the false posi-

tive ratio is less than 8%. Many of the false positives and
220000 is the largest topology we can simulate on a 1.5GHzuent false negatives are caused by small estimation errors for
4 machine with 512M memory. paths with loss rates near the 5% threshold.



We also test our algorithms in the 284,805-node reekponential distribution. Note that the y-axis in this plot
router-level topology from [27]. There are 65,801 en@ logarithmic: an empty bar means that the bin contains
host routers and 860,683 links. We get the same trendasfe member, and 0.1 means the bin is empty.
results as illustrated in Fig. 7 and Table Il. The CDFs in-
clude all the path estimates, including the monitored patz =
for which we know the real loss rates. Given the sam? 7]
number of end hosts, the ranks in the real topology az =
higher than those of the synthetic ones. But as we findfz ]
Sec. IV, the growth of: is still bounded byO(n).
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We have also run all the simulations above with modely g’ Histogram of the measurement load distribution éasler) for
LLRD5. The loss rate estimation is a bit less accuratg overlay of 300 end hosts on a 5000-node Barabasi-Albgotdgy.
than it is under. L R D¢, but we still find over 95% of the
lossy paths with a false positive rate under 10%. Given
space limitations, we only show the lossy path infereneg. Efficient Incremental Update for Topology Changes
with the Barabasi-Albert topology model and the Gilbert We study two common scenarios in P2P and overlay

loss model in Table IV. networks: end hosts joining and leaving as well as rout-

ing changes. Again, the Bernoulli and the Gilbert mod-

E. Fast Setup and Inference els have similar results, thus we only show those of the
The running time fol. LRD;, and LLRD, are similar, Gilbert model.

as in Table IV. All speed results in this paper are based on

o
s

a 1.5 GHz Pentium 4 machine with 512M memory. Note | #ofend| #of | rank lossy paths
that it takes about 20 minutes to setup (select the mea-|_Nosts | paths real coverage| TH
surement paths) for an overlay of 500 end hosts, but only |49 780 | 616 | 470 | 99.9% | 0.2%
several seconds for an overlay of size 100. The update | 2 | *200 | *22L ] + 153 | 100.0% 1 0.1%
(loss rate calculation) time is small for all cases, only 4.3 (+5) &235) (+16(3 (+172) 998% 1 02%
gﬁﬁggds for 124,750 paths. Thus it is feasible to update 50) | (1225) | (997) | (795)
' TABLE V
. . SIMULATION RESULTS FOR ADDING END HOSTS ON A REAL
F. Effective Measurement Load Balancing ROUTER TOPOLOGY FPIS THE FALSE POSITIVE RATE DENOTED
We examine the measurement load distribution for both AS “+ ADDED_VALUE (TOTAL_VALUE)".

synthetic and real topologies, and the results are shown in
Table VIII. Given the space constraints, we only show the
results for Barabasi-Albert and hierarchical model. Our

load balancing scheme reduces CV and MMR substar-#0fénd | #of 1 rank lossy paths
. . . hosts paths real coverage
tially for all cases, and especially for MMR. For instance, . 5
[ 60 1770 | 1397.0 | 1180.3| 99.9% | 0.2%
a 500-node overlay on a 20000-node network of Barabas - ~ ~ ~ 5 3
. g 5 285 2453 | -210.0 | 99.8% | 0.2%
Albert model has its MMR reduced by 7.3 times. (55) | (1485) | (1151.7)| (970.3)
-10 -260 | -156.7 | -150.6 | 99.9% | 0.1%
# of end hosts lossy paths (Gilbert) speed (second (50) (1225) | (995.0) | (819.7)
nodes | total | OL real | coverage] FP | setup]| update TABLE VI
1000 | 506 o0 495 99.8% 11% | 0.13 0.08 SIMULATION RESULTS FOR DELETING END HOSTS ON A REAL

100 | 1989 99.8% | 3.0% | 0.91 0.17 |
100 | 2367 99.6% 35% | 1.9 027 | OUTER TOPOLOGY FPIS THE FALSE POSITIVE RATE DENOTED

5000 | 2489 300 T 21696 1 99206 | 1.4% 790 189 AS “-REDUCED.VALUE (TOTAL_VALUE)".

[ 100 | 2686 | 98.8% | 1.1% | 3.00 | 0.25
[500 [ 67817] 99.0% [ 4.6% [ 1250 [ 4.33 | 1) End hosts join/leave:For the real router topology,
TABLE IV we start with an overlay network of 40 random end hosts.
SIMULATION RESULTS WITH MODEL LLRD;. Use THE same | henwe randomly add an end host to join the overlay, and
BARABASI-ALBERT TOPOLOGIES AS INTABLE II. REFER TO repeat the process until the size of the overlay reaches 45
TABLE |l FOR STATISTICS LIKE RANK FPIs THE FaLse posiTive  @nd 50. Averaged over three runs, the results in Table V
RATE. OL MEANS OVERLAY NETWORK. show that there is no obvious accuracy degradation caused
by accumulated numerical errors. The average running
We further plot the histogram of measurement load diime for adding a path is 125 msec, and for adding a node,
tribution by putting the load values of each node into 10.18 second. Notice that we add a block of paths together
equally spaced bins, and counting the humber of nodmsspeedup adding node (Sec. IlI-B).
in each bin agj-axis. Thez-axis denotes the center of Similarly, for removing end hosts, we start with an
each bin, as illustrated in Fig. 8. With load balancing, theverlay network of 60 random end hosts, then randomly
histogram roughly follow the normal distribution. In con-select an end host to delete from the overlay, and repeat
trast, the histogram without load balancing is close to d@he process until the size of the overlay is reduced to 55

2000 1000




and 50. Again, the accumulated numerical error is neghelieve that such granularity can filter some highly tran-
gible as shown in Table VI. As shown in Sec. V, deletingient congestions, and still be able to capture the relgtive

a path inG is much more complicated than adding a patistable congesti_ons so that we can select some alternative
With the same machine, the average time for deletingpath to bypass it. o

path is 445 msec, and for deleting a node, 16.9 secondsTo prevent any host from receiving too many packets
We note that the current implementation is not optimize@imultaneously, each host sends packets to other hosts in
we can speed up node deletion by processing several p&t@fferent random order. Furthermore, any single host
simultaneously, and we can speed up path addition a#ges a different permutation in each trial so that each des-
deletion with iterative methods such as CGNE or GMination has equal opportunity to be sent later in each trial
RES [41]. Since the time to add/delete a patl®ig?), This is because when sending packets in a batch, the pack-
and to add/delete a node @(nk?), we expect our up- &t sent later are more likely to be dropped. Such ran-

: - 2.2y dom permutations are pre-generated by each host. To en-
gggpgfsrg]i?\mglitzoa?igns?grslt:ggly faster than(e~s") sure that all hosts in the network take measurements at the

same time, we set up sender and receiver daemons, then
use a well-connected server to broadcast a “START” com-

# of paths affected 40.7 mand.
# of monitored paths affected 36.3 Will the probing traffic itself cause losses? We
# of unique nodes affected 4l.7 performed sensitivity analysis on sending frequency as
# of real Tossy paths (before/aftef) 761.07784.0 shown in Fig. 9. All experiments were executed be-
coverage (before/after) 99.8%/99.8%|  tween lam-3am PDT June 24, 2003, when most net-
false positive rate (before/after) 0.2%/0.1% works are free. The traffic rate from or to each host is
average running time 17.3seconds (51 — 1) x sending_freq x 40 bytes/sec. The number of
TABLE VII lossy paths does not change much when the sending rate
SIMULATION RESULTS FOR REMOVING A LINK FROM A REAL varies, except when the sending rate is over 12.8Mbps,
ROUTER TOPOLOGY since many servers can not sustain that sending rate. We

choose a 300 msec sending interval to balance quick loss
2) Routing changesWe form an overlay network with rate statistics collection with moderate bandwidth usage.

50 random end hosts on the real router topology. Then we Bandwidth consumption (Kbps)
simulate topology changes by randomly choosing a link 160018 160 1600 16000
that is on some path of the overlay and removing of such 1400 |

a link will not cause disconnection for any pair of over-
lay end hosts. Then we assume that the link is broken,
and re-route the affected path(s). Algorithms in Sec. V in-
crementally incorporate each path change. Averaged over
three runs, results in Table VII show that we adapt quickly,
and still have accurate path loss rate estimation.

1200

1000 -

800 -

600 -

Number of lossy paths

400 -

We also simulate the topology changes by adding a ran- 200 1
dom link on some path(s) of the overlay. The results are ot " - i
similar as above, so we omit them here for brevity. Sending frequency (number of trals per second)
Fig. 9. Sensitivity test of sending frequency
IX. INTERNET EXPERIMENTS Note that the experiments above u3¢n?) measure-
ments so that we can compare the real loss rates with our
A. Methodology inferred loss rates. In fact, our technique only requires

We implemented our system on the PlanetLab [37](nlogn) measurements. Thus, given good load balanc-
testbed, and deployed it on 51 PlanetLab hosts from fang, each host only needs to send@log n) hosts. In
continents, each from a different organization. There af&ct, we achieve similar CV and MMR for measurement
11 International hosts (all are universities) and altogethload distribution as in the simulation. Even for an overlay
18 non-edu hosts. network of 400 end hosts on the 284K-node real topology

First, we measure the topology among these sites bygsed beforek = 18668. If we reduce the measurement
multaneously running “traceroute” to find the paths frorfrequency to one trial per second, the traffic consumption
each host to all others. Each host saves its destination each host isl8668/400x 40 bytes/sec = 14.9Kbps,
IP addresses for sending measurement packets later. Twéich is typically less than 5% of the bandwidth of to-
we measure the loss rates between every pair of hosts. Qay’s “broadband” Internet links. We can use adaptive
measurement consists of 300 trials, each of which lagteasurement techniques in [2] to further reduce the over-
300 msec. During a trial, each host sends a 40-byte UbPads.
packet® to every other host. Usually the hosts will fin- 10 1655y &t [0.05 T0] @.1%)
ish sending before the 300 msec trial is finished. For each.” 2 o
path, the receiver counts the number of packets recei\terQ'gf/) [0'1%5’23'1) [%i'o%)g) [02'2’9%/5) [0;1553/'0) 2;'20/
out of 300 to calculate the loss rate. Thus the loss rate-ie>2% il = =2 27 270

measured over an interval 63 x 300 = 90 seconds. We TABLE VIl
LOSS RATE DISTRIBUTION LOSSY VS. NON-LOSSY AND THE
320-byte IP header + 8-byte UDP header + 12-byte data on sequen SUB-PERCENTAGE OF LOSSY PATHS

number and sending time.
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Fig. 10. Cumulative percentage of the coverFig. 11. Cumulative percentage of the abFig. 12. Cumulative percentage of the 95 per-
age and the false positive rates for lossy patbolute errors and error factors for the experieentile of absolute errors and error factors for
inference in the 100 experiments. ment with the worst accuracy in coverage. the 100 experiments.

B. Results among PlanetLab nodes have aliases. We did not use so-

; isticated techniques to resolve these aliases. Thus, the
10?%?%;: nfn%it};) ‘éﬂ:ﬁ]é 756228 %Ovdssr%r;m e_ egg;”?g%%ology we have is far from accurate. Furthermore, in the

; _ lanetLab experiments, some nodes were down, or were
E:gge?sxpt%rtlgnliﬁgt 7g§ gﬂaggikztgoféri\?loe;(p?r%egtgp reachable from certain nodes. Meanwhile, some routers

; hidden and we only get partial routing paths. Averag-
run the loss rate measurements three to four times ev =
hour, and run the pair-wise traceroute every two hou over 14 sets of traceroutes, 245 oubdfx 50 = 2550

ths have no or incomplete routing information. The ac-
Across the 100 runs, the average number of selected m rate loss rate estimation results show that our topology

itoring paths (&) is 871.9, about one third of total number o
of end-to-end paths, 2550. Table VIII shows the loss ra e of handling is successful.
distribution on all the paths of the 100 runs. About 96%
of the paths are non-lossy. Among the lossy paths, most  X. CoNncCLUSIONS ANDFUTURE WORK
of the loss rates are less than 0.5. Though we try to choose . . .
stable nodes for experiments, about 25% of the lossy paglén this paper, we design, implement and evaluate an
have 100% losses and are likely caused by node failureségebraic approach for adaptive scalable overlay network
other reachability problems as discussed in Sec. [X-B.2monitoring. For an overlay of end hosts, we selectively
1) Accuracy and speed:When identifying the lossy mo_nltoraba3|s set @ (n log n) paths which can fully de-
paths (loss rates 0.05), the average coverage is 95.696cribe all theO(n?) paths. Then the measurements of the
and the average false positive rate is 2.75%. Fig. IX-pasis set are used to infer the loss rates of all other paths.
shows the CDFs for the coverage and the false posititIr approach works in real time, offers fast adaptation to
rate. Notice that 40 runs have 100% coverage and 90 rdagology changes, distributes balanced load to end hosts,
have coverage over 85%. 58 runs have no false positiad handles topology measurement errors. Both simula-
and 90 runs have false positive rates less than 10%. tion and Internet implementation yield promising results.
As in the simulations, many of the false positives and The algebraic framework can inspire many future work.
false negatives are caused by the 5% threshold boundBgf instance, although we experimentally find that the
effect. The average absolute error across the 100 rungdBk of path matrix grows very slow @(n log n) or even
only 0.0027 for all paths, and 0.0058 for lossy paths. Walb-linearly for most topologies, it remains unknown how
pick the run with the worst accuracy in coverage (69.294p model it stringently. How is such model related to
and plot the CDFs of absolute errors and error factors ie general Internet topology? In addition, Chetaal.
Fig. IX-A. Since we only use 300 packets to measure tieve developed follow-up work to further select a smaller
loss rate, the loss rate precision granularity is 0.0033, set of paths from for monitoring with small sacrifice
we uses = 0.005 for error factor calculation. The averagéor the accuracy [43]. More recently, we investigated the
error factor is only 1.1 for all paths. link-level property inference problem under the algebraic
Even for the worst case, 95% of absolute errors in lof@mework [44].
rate estimation are less than 0.014, and 95% of error fac-
tors are less than 2.1. To further view the overall stastic
we pick 95 percentile of absolute errors and error factors REFERENCES
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