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Abstract—
Overlay network monitoring enables distributed Internet

applications to detect and recover from path outages and
periods of degraded performance within seconds. For an
overlay network with n end hosts, existing systems either re-
quire O(n2) measurements, and thus lack scalability, or can
only estimate the latency but not congestion or failures. Our
earlier extended abstract [1] briefly proposes an algebraic
approach that selectively monitorsk linearly independent
paths that can fully describe all theO(n2) paths. The loss
rates and latency of thesek paths can be used to estimate
the loss rates and latency of all other paths. Our scheme
only assumes knowledge of the underlying IP topology, with
links dynamically varying between lossy and normal.

In this paper, we improve, implement and extensively
evaluate such a monitoring system. We further make the
following contributions: i) scalability analysis indicating
that for reasonably large n (e.g., 100), the growth ofk is
bounded asO(n log n), ii) efficient adaptation algorithms
for topology changes, such as the addition or removal of end
hosts and routing changes, iii) measurement load balancing
schemes, iv) topology measurement error handling, and v)
design and implementation of an adaptive streaming me-
dia system as a representative application. Both simulation
and Internet experiments demonstrate we obtain highly ac-
curate path loss rate estimation while adapting to topology
changes within seconds and handling topology errors.

I. INTRODUCTION

The rigidity of the Internet architecture makes it ex-
tremely difficult to deploy innovative disruptive technolo-
gies in the core. This has led to extensive research into
overlay and peer-to-peer systems, such as overlay routing
and location, application-level multicast, and peer-to-peer
file sharing. These systems flexibly choose their commu-
nication paths and targets, and thus can benefit from esti-
mation of end-to-end network distances (e.g., latency and
loss rate).

Accurate loss rate monitoring systems can detect path
outages and periods of degraded performance within sec-
onds. They facilitate management of distributed systems
such as virtual private networks (VPM) and content dis-
tribution networks; and they are useful for building adap-
tive overlay applications, like streaming media and multi-
player gaming.

Thus it is desirable to have a scalable overlay loss rate
monitoring system which is accurate and incrementally
deployable. However, existing network distance estima-
tion systems are insufficient for this end. These existing
systems can be categorized asgeneral metricsystems [2]
and latency-onlysystems [3], [4], [5], [6]. Systems in
the former category can measure any metric, but require
O(n2) measurements wheren is the number of end hosts,
and thus lack scalability. On the other hand, the latency
estimation systems are scalable, but cannot provide accu-
rate congestion/failure detection (see Sec. II).

We formulate the problem as follows: consider an over-
lay network ofn end hosts; we define a path to be a rout-
ing path between a pair of end hosts, and a link to be an IP
link between routers. A path is a concatenation of links.
There areO(n2) paths among then end hosts, and we
wish to select a minimal subset of paths to monitor so that
the loss rates and latencies of all other paths can be in-
ferred.

In this paper, we propose a tomography-based overlay
monitoring system (TOM) in which we selectively mon-
itor a basis setof k paths. Any end-to-end path can be
written as a unique linear combination of paths in the basis
set. Consequently, by monitoring loss rates for the paths
in the basis set, we infer loss rates for all end-to-end paths.
This can also be extended to other additive metrics, such
as latency. The end-to-end path loss rates can be com-
puted even when the paths containunidentifiable linksfor
which loss rates cannot be computed.

There are many open questions as follows.
• How scalable is the system? In other words, how will

k grow as a function ofn?
• In an overlay network, end hosts frequently join/leave

the overlay and routing changes occur from time to
time. How can the system adapt to these efficiently?

• How should the system distribute the measurement
load among end hosts to improve scalability?

• How can the system maintain accuracy when there are
topology measurement errors?

• How does TOM perform under various topologies and
loss conditions, and in the real Internet?

• How can real applications benefit from TOM?
To address these issues, in this paper, we make the fol-

lowing contributions.
• We show that for reasonably largen (say100), k =

O(n log n) through linear regression tests on various
synthetic and real topologies. We also provide some
explanation based on the Internet topology and the AS
hierarchy.

• We design incremental algorithms for path addition
and deletion which only costO(k2) time, instead of
theO(n2k2) time cost to reinitialize the system.

• We propose randomized schemes for measurement
load balancing.

• We design effective schemes to handle topology mea-
surement errors.

• We evaluate TOM through extensive simulations, and
further validate our results through Internet experi-
ments.

• We build an adaptive overlay streaming media sys-
tem on top of TOM, and achieve skip-free live media
playback when switching to overlay routing to bypass
faulty or slow links. in the face of congestion/failures.

In both simulations and PlanetLab experiments, we es-
timate path loss rates with high accuracy usingO(n log n)
measurements. For the PlanetLab experiments, the aver-
age absolute error of loss rate estimation is only 0.0027,



and the average error factor is 1.1, even though about 10%
of the paths have incomplete or nonexistent routing in-
formation. The average setup (monitoring path selection)
time is 0.75 second, and the online update of the loss rates
for all 2550 paths takes only 0.16 second. In addition, we
adapt to topology changes within seconds without sacri-
ficing accuracy. The measurement load balancing reduces
the load variation and the maximum vs. mean load ratio
significantly, by up to a factor of 7.3.

We additionally show how streaming media systems
can benefit from TOM. The media application’s total
adaptation time is less than three seconds on average. This
includes the time from when the congestion/failure oc-
curs, to when TOM detects it and sends alternative over-
lay path to the client, till the client sets up overlay con-
nection to the server, and concatenates new streams with
the old ones in the buffer. Then with our buffering tech-
niques which retransmit lost packets during path switch,
we achieve skip-free media playback on the PlanetLab ex-
periments.

The rest of the paper is organized as follows. We survey
related work in Sec. II, describe our model and basic static
algorithms in Sec. III, and evaluate scalability in Sec. IV.
We extend the algorithms to adapt to topology changes in
Sec. V, and to handle overload and topology measurement
errors in Sec. VI. The methodology and results of our
simulations are described in Sec. VIII, and those of our
Internet experiments are presented in Sec. IX. Finally, we
conclude in Sec. X.

II. RELATED WORK

There are many existing scalable end-to-end latency
estimation schemes, which can be broadly classified
into clustering-based [5], [6] and coordinate-based sys-
tems [3], [4]. Clustering-based systems cluster end hosts
based on their network proximity or latency similarity un-
der normal conditions, then choose the centroid of each
cluster as the monitor. But a monitor and other mem-
bers of the same cluster often take different routes to re-
mote hosts. So the monitor cannot detect congestion for
its members. Similarly, the coordinates assigned to each
end host in the coordinate-based approaches cannot em-
bed any congestion/failure information.

Network tomography has been well studied ([7] pro-
vides a good survey). Most tomography systems assume
limited measurements are available (often in a multicast
tree-like structure), and try to infer link characteristics [8],
[9] or shared congestion [10] in the middle of the net-
work. However, the problem is under-constrained: there
exist unidentifiable links[8] with properties that cannot
be uniquely determined. In contrast, we are not concerned
about the characteristics ofindividual links, and we do not
restrict the paths we measure.

Shavittet al. also use algebraic tools to compute dis-
tances that are not explicitly measured [11]. Given certain
“Tracer” stations deployed and some direct measurements
among the Tracers, they search for path or path segments
whose loss rates can be inferred from these measurements.
Thus their focus is not on Tracer/path selection.

Recently, Ozmutluet al. select a minimal subset of
paths to cover all links for monitoring, assuming link-by-
link latency is available via end-to-end measurement [12].
But the link-by-link latency obtained from traceroute is
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Fig. 1. Architecture of a TOM system.

often inaccurate. And their approach is not applicable
for loss rate because it is difficult to estimate link-by-link
loss rates from end-to-end measurement. A similar ap-
proach was taken for selecting paths to measure overlay
network [13]. The minimal set cover selected can only
givesboundsfor metrics like latency, and there is no guar-
antee as to how far the bounds are from the real values.

In contrast to pure overlay inference approach, some re-
cent network tomography work [14], [15] try to measure
the link level (instead of thepath level as in this paper)
performance based on response packets sent by interior
routers. Unfortunately, interior routers may be unwilling
to respond, or may respond in an insufficiently informa-
tive manner,e.g., ICMP rate limiting. Thus there is no
accuracy guarantee on the loss rate inference.

Furthermore, very few of the existing network tomogra-
phy work examines topology change, topology measure-
ment errors, or measurement load balancing problems.

III. M ODEL AND BASIC ALGORITHMS

A. Algebraic Model

Suppose there aren end hosts that belong to a sin-
gle or confederated overlay network(s). They cooperate
to share an overlay monitoring service, and are instru-
mented by a central authority (e.g., an overlay network
operation center (ONOC)) to measure the routing topol-
ogy and path loss rates as needed1. For simplicity, we
usually assume symmetric routing and undirected links in
this paper. However, our techniques work without change
for asymmetric routing, as evidenced in the PlanetLab ex-
periments. Fig. 1 shows a sample overlay network with
four links and four end hosts; six possible paths connect
the end hosts. The end hosts measure the topology and
report to the ONOC, which selects four paths and instru-
ments two of the end hosts to measure the loss rates of
those paths. The end hosts periodically report the mea-
sured loss rates to the ONOC. Then the ONOC infers the
loss rates of every link, and consequently the loss rates of
the other two paths. Applications can query the ONOC
for the loss rate of any path, or they can set up triggers
to receive alerts when the loss rates of paths of interest
exceed a certain threshold [16].

We now introduce an algebraic model which applies
to any network topology. Suppose an overlay network
spanss IP links. We represent a path by a column vec-
tor v ∈ {0, 1}s, where thejth entryvj is one if link j is
part of the path, and zero otherwise. Suppose linkj drops
packets with probabilitylj ; then the loss ratep of a path
represented byv is given by

1As part of the future work, we will investigate techniques todis-
tribute the work of the central authority.



Symbols Meanings
M total number of nodes
N number of end hosts
n number of end hosts on the overlay
r = O(n2) number of end-to-end paths
s # of IP links that the overlay spans on
t number of identifiable links
G ∈ {0, 1}r×s original path matrix
Ḡ ∈ {0, 1}k×s reduced path matrix
k ≤ s rank ofG
li loss rate onith link
pi loss rate onith measurement path
xi log(1 − li)
bi log(1 − pi)
v vector in{0, 1}s (represents path)
p loss rate along a path
N (G) null space ofG
R(GT ) row(path) space ofG (== range(GT ))

TABLE I
TABLE OF NOTATIONS

1 − p =

s
∏

j=1

(1 − lj)
vj (1)

Equation (1) assumes that packet loss is independent
among links. Cacereset al. argue that the diversity of traf-
fic and links makes large and long-lasting spatial link loss
dependence unlikely in a real network such as the Inter-
net [17]. Furthermore, the introduction of Random Early
Detection (RED) [18] policies in routers will help break
such dependence. In addition to [17], formula (1) has also
been proven useful in many other link/path loss inference
works [9], [8], [19], [13]. Our Internet experiments also
show that the link loss dependence has little effect on the
accuracy of (1).

We take logarithms on both sides of (1). Then by
defining a column vectorx ∈ R

s with elementsxj =
log (1 − lj), and writingvT for the transpose of the col-
umn vectorv, we can rewrite (1) as follows:

log (1 − p) =
s

∑

j=1

vj log (1 − lj) =
s

∑

j=1

vjxj = vT x

(2)
There arer = O(n2) paths in the overlay network,

and thus there arer linear equations of the form (2).
Putting them together, we form a rectangular matrixG ∈
{0, 1}r×s. Each row ofG represents a path in the net-
work: Gij = 1 when pathi contains linkj, andGij = 0
otherwise. Letpi be the end-to-end loss rate of theith
path, and letb ∈ R

r be a column vector with elements
bi = log (1 − pi). Then we write ther equations in form
(2) as

Gx = b (3)
Normally, the number of pathsr is much larger than the

number of linkss (see Fig. 2(a)). This suggests that we
could selects paths to monitor, use those measurements
to compute the link loss rate variablesx, and infer the loss
rates of the other paths from (3).

…
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s

(a)Gx = b (b) ḠxG = b̄

Fig. 2. Matrix size representations.

However, in general,G is rank deficient: i.e., k =
rank(G) and k < s. If G is rank deficient, we will be
unable to determine the loss rate of some links from (3).
These links are also calledunidentifiablein network to-
mography literature [8].����������=
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Fig. 3. Sample overlay network.

Fig. 3 illustrates how rank deficiency can occur. There
are three end hosts (A, B and C) on the overlay, three links
(1, 2 and 3) and three paths between the end hosts. We
cannot uniquely solvex1 and x2 because links1 and 2
always appear together. We know their sum, but not their
difference.

Fig. 3 illustrates the geometry of the linear system,
with each variablexi as a dimension. The vectors
{α [1 −1 0]T } compriseN (G), the null spaceof G.
No information about the loss rates for these vectors is
given by (3). Meanwhile, there is an orthogonalrow(path)
spaceof G, R(GT ), which for this example is a plane
{α [1 1 0]T +β [0 0 1]T }. Unlike the null space, the
loss rate of any vector on the row space can be uniquely
determined by (3).

To separate the identifiable and unidentifiable compo-
nents ofx, we decomposex into x = xG + xN , where
xG ∈ R(GT ) is its projection on the row space and
andxN ∈ N (G) is its projection on the null space (i.e.,
GxN = 0). The decomposition of[x1 x2 x3]T for the
sample overlay is shown below.

xG =
(x1 + x2)

2

[

1
1
0

]

+ x3

[

0
0
1

]

=

[

b1/2
b1/2
b2

]

(4)

xN =
(x1 − x2)

2

[

1
−1
0

]

(5)

Thus the vectorxG can be uniquely identified, and con-
tains all the information we can know from (3) and the
path measurements. The intuition of our scheme is illus-
trated throughvirtual links in [1].

BecausexG lies in thek-dimensional spaceR(GT ),
only k independent equations of ther equations in (3) are
needed to uniquely identifyxG. We measure thesek paths



to computexG. Sinceb = Gx = GxG + GxN = GxG,
we can compute all elements ofb from xG, and thus ob-
tain the loss rate of all other paths. Next, we present more
detailed algorithms.

B. Basic Static Algorithms
The basic algorithms involve two steps. First, we se-

lect a basis set ofk paths to monitor. Such selection only
needs to be done once at setup. Then, based on continuous
monitoring of the selected paths, we calculate and update
the loss rates of all other paths.

1) Measurement Paths Selection:To selectk linearly
independent paths fromG, we use standard rank-revealing
decomposition techniques [20], and obtain a reduced sys-
tem:

ḠxG = b̄ (6)

where Ḡ ∈ R
k×s and b̄ ∈ R

k consist ofk rows of G
andb, respectively. The equation is illustrated in Fig. 2(b)
(compared withGx = b).

As shown below, our algorithm is a variant of the QR
decomposition with column pivoting [20, p.223]. It in-
crementally builds a decomposition̄GT = QR, where
Q ∈ R

s×k is a matrix with orthonormal columns and
R ∈ R

k×k is upper triangular.

procedure SelectPath(G)
1 for every row(path)v in G do
2 R̂12 = R−T ḠvT = QT vT

3 R̂22 = ‖v‖2 − ‖R̂12‖
2

4 if R̂22 6= 0 then
5 Selectv as a measurement path

6 UpdateR =

[

R R̂12

0 R̂22

]

andḠ =

[

Ḡ
v

]

end
end

Algorithm 1: Path (row) selection algorithm

In general, theG matrix is very sparse; that is, there are
only a few nonzeros per row. We leverage this property
for speedup. We further use optimized routines from the
LAPACK library [21] to implement Algorithm 1 so that it
inspects several rows at a time. The complexity of Algo-
rithm 1 isO(rk2), and the constant in the bound is mod-
est. The memory cost is roughlyk2/2 single-precision
floating point numbers for storing theR factor. Notice
that the path selection only needs to be executed once for
initial setup.

2) Path Loss Rate Calculations:To compute the path
loss rates, we must find a solution to the underdetermined
linear systemḠxG = b̄. The vector̄b comes from mea-
surements of the paths. Zhanget al. report that path loss
rates remain operationally stable in the time scale of an
hour [22], so these measurements need not be taken si-
multaneously.

Given measured values forb̄, we compute a solutionxG

using the QR decomposition we constructed during mea-
surement path selection [20], [23]. We choose the unique
solutionxG with minimum possible norm by imposing the

constraintxG = ḠT y wherey = R−1R−T b̄. Once we
havexG, we can computeb = GxG, and from there infer
the loss rates of the unmeasured paths. The complexity
for this step is onlyO(k2). Thus we can update loss rate
estimates online, as verified in Sec. VIII-D and IX-B.

IV. SCALABILITY ANALYSIS

An overlay monitoring system is scalable only when
the size of the basis set,k, grows relatively slowly as a
function ofn. Given that the Internet has moderate hier-
archical structure [24], [25], we proved that the number of
end hosts is no less than half of the total number of nodes
in the Internet. Furthermore, we proved that when all the
end hosts are on the overlay network,k = O(n) [1].

But what about if only a small fraction of the end hosts
are on the overlay? BecauseG is anr by s matrix, k is
bounded by the number of linkss. If the Internet topol-
ogy is a strict hierarchy like a tree,s = O(n), thus
k = O(n). But if there is no hierarchy at all (e.g. a
clique), k = O(n2) because all theO(n2) paths are lin-
early independent. Tangmunarunkitet al. found that the
power-law degree Internet topology has moderate hierar-
chy [24]. It is our conjecture thatk = O(n log n).

In this section, we first show through linear regres-
sion on both synthetic and real topologies thatk is indeed
bounded byO(n log n) for reasonably largen (e.g, 100).
Then we explain it based on the power-law degree distri-
bution of the Internet topology and the AS (Autonomous
System) hierarchy.

A. Empirical Bound on Rankk
We experiment with three types of BRITE [26] router-

level topologies - Barabasi-Albert, Waxman and hierar-
chical models - as well as with a real router topology with
284,805 nodes [27]. For hierarchical topologies, BRITE
first generates an autonomous system (AS) level topology
with a Barabasi-Albert model or a Waxman model. Then
for each AS, BRITE generates the router-level topologies
with another Barabasi-Albert model or Waxman model.
So there are four types of possible topologies. We show
one of them as an example because they all have similar
trends (see [16] for complete results).

We randomly select end hosts which have the least de-
gree (i.e., leaf nodes) to form an overlay network. We test
by linear regression ofk on O(n), O(n log n), O(n1.25),
O(n1.5), andO(n1.75). As shown in Fig. 4, results for
each type of topology are averaged over three runs with
different topologies for synthetic ones and with different
random sets of end hosts for the real one. We find that
for Barabasi-Albert, Waxman and real topologies,O(n)
regression has the least residual errors - actuallyk even
grows slower thanO(n). The hierarchical models have
higherk, and most of them haveO(n log n) as the best fit.

Note that all functions seem to intersect aroundn =
800. This is because thatinherently the growth is sub-
quadratic, and roughly linear for the interested range of
problem sizes. Suppose that we have an exactly linear
function x (we use a continuous setting for ease of cal-
culation) and we wish to fit a function of the formc × xa

to this exactly linear functionx over the interval [0,1].
The least squares procedure gives a coefficient of the form
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Fig. 4. Regression ofk in various functions ofn under different router-level topologies.

cls = 2+a
2a+1 . The datax and the functioncls ×xa intersect

at the following point.

xintercept = (
2 + a

2a + 1
)

1

a−1 (7)

Fora between 1.1 and 2.0,xintercept varies between 0.728
and 0.800. That is, the fitted function intersects the data
about 3/4 of the way across the domain for a wide range of
exponents (including the exponents 1.25, 1.5, and 1.75).

Thus conservatively speaking, we havek =
O(n log n).

B. Explanation from Internet Topology
Note that such trend still holds when the end hosts are

sparsely distributed in the Internet,e.g., when each end
host is in a different access network. One extreme case
is the “star” topology - each end host is connected to the
same center router via its own access network. In such a
topology, there are onlyn links. Thusk = O(n). Only
topologies with very dense connectivity, like a full clique,
havek = O(n2). Those topologies have little link sharing
among the end-to-end paths.

The key observation is that whenn is sufficiently large,
such dense connectivity is very unlikely to exist in the In-
ternet because of the power-law degree distribution. Tang-
munarunkitet al. found that link usage, as measured by
the set of node pairs (source-destination pairs) whose traf-
fic traverses the link, also follows a power-law distribu-
tion, i.e., there is a very small number of links that are on

the shortest paths of the majority of node pairs. So there
is significant amount of link sharing among the paths, es-
pecially for backbone links, customer links, and peering
links.

Such link sharing can easily lead to rank deficiency of
the path matrix for overlay networks. As an example,
consider an overlay within a single AS. The AS with the
largest number of links (exclusive of customer and peer-
ing links) in [28] has 5,300 links. Even considering the
coverage factor (55.6% as in Table 2 of [28]), there are at
most 9,600 links. Since there aren(n − 1) paths among
n nodes, link sharing must occur beforen = 100; in fact,
substantial link sharing is likely to occur for even smaller
n.

Now consider an overlay network that spans two ASes
connected byy customer/peering links, withn/2 nodes in
one AS andn/2 nodes in the other. Then2/2 cross-AS
paths can be modelled as linear combination of2y × n +
2y virtual links - bi-directional links from each end host
to its y peering link routers, andy bi-directional peering
links. Thus giveny is normally much less thann and
can be viewed as a constant, onlyO(n) paths need to be
measured for theO(n2) cross-AS paths.

Now consider an overlay on multiple ASes. According
to [29], there are only 20 ASes (tier-1 providers) which
form the dense core of the Internet. These ASes are con-
nected almost as a clique, while the rest of the ASes have
far less dense peering connectivity. So when the size of
an overlay is reasonably big (e.g., n > 100), the num-
ber of customer and peering links that cross-AS paths tra-



verse tends to grow much slower thanO(n2). For exam-
ple, a joining end host may only add one customer link
to the overlay topology, and share the peering links that
have been used by other end hosts. Meanwhile, only a
few nodes are needed in a single AS before link sharing
occurs in paths within an AS.

We believe this heavy sharing accounts for our empiri-
cal observation thatk = O(n) in a real router-level topol-
ogy, andk grows at worst likeO(n log n) in several gen-
erated topologies. Note that the real 284,805-router topol-
ogy represents a fairly complete transit portion of the In-
ternet [27]. In our analysis, we conservatively assume
that there is only one end host connecting to each edge
router to reduce the possible path sharing, but we still find
k = O(n) whenn > 100.

V. DYNAMIC ALGORITHMS FOR
TOPOLOGY CHANGES

During normal operation, new links may appear or dis-
appear, routing paths between end hosts may change,
and hosts may enter or exit the overlay network. These
changes may cause rows or columns to be added to or
removed fromG, or entries inG may change. In this sec-
tion, we design efficient algorithms to incrementally adapt
to these changes.

A. Path Additions and Deletions
The basic building blocks for topology updates are path

additions and deletions. We have already handled path
additions in Algorithm 1; adding a pathv during an update
is no different than adding a pathv during the initial scan
of G. In both cases, we decide whether to addv to Ḡ and
updateR.

To delete a path that is not in̄G is trivial; we just re-
move it fromG. But to remove a path from̄G is more
complicated. We need to updateR; this can be done in
O(k2) time by standard algorithms (see e.g. Algorithm
3.4 in [30, p.338]). In general, we may then need to re-
place the deleted path with another measurement path.
Finding a replacement path, or deciding that no such path
is needed, can be done by re-scanning the rows ofG as in
Algorithm 1; however, this would take timeO(rk2).

procedure DeletePath(v, G, Ḡ, R)
1 if deleted pathv is measuredthen
2 j = index ofv in Ḡ
3 y = ḠT R−1R−T ej

4 Removev from G andḠ
5 UpdateR (Algorithm 3.4 in [30, p.338])
6 r = Gy
7 if ∃ i such thatri 6= 0 then
8 Add theith path fromG to Ḡ (Algorithm 1,

steps 2-6)
end

end
9 elseRemovev from G

Algorithm 2: Path deletion algorithm

We now describe Algorithm 2 to delete a pathv more
efficiently. Supposev corresponds to theith row in Ḡ

and thejth row in G, we defineḠ′ ∈ R
(k−1)×s as the

measurement path matrix after deleting theith row, and
G′ ∈ R

(r−1)×s as the path matrix after removing thejth
row. By deletingv from Ḡ, we reduce the dimension of
Ḡ from k to k − 1. Intuitively, our algorithm works in the
following two steps.

1) Find a vectory that only describes the direction re-
moved by deleting theith row of Ḡ.

2) Test if the path space ofG′ is orthogonal to that
direction, i.e., find whether there is any pathp ∈
G′ that has a non-zero component on that direction.
If not, no replacement path is needed. Otherwise,
replacev with any of such pathp, and update the
QR decomposition.

Next, we describe how each step is implemented. To
find y which is in the path space of̄G but not ofḠ′, we
solve the linear system̄Gy = ei, whereei is the vector of
all zeros except for a one in entryi. This system is similar
to the linear system we solved to findxG, and one solution
is y = ḠT R−1R−T ei.

Once we have computedy, we computer = G′y,
whereG′ is the updatedG matrix. Because we chosey
to makeḠ′y = 0, all the elements ofr corresponding
to selected rows are zero. Paths such thatrj 6= 0 are
guaranteed to be independent ofḠ′, since if rowj of G
could be written aswT Ḡ′ for somew, thenrj would be
wT Ḡ′y = 0. If all elements ofr are zero, theny is a null
vector for all ofG′; in this case, the dimensionk′ of the
row space ofG′ is k−1, and we do not need to replace the
deleted measurement path. Otherwise, we can find anyj
such thatrj 6= 0 and add thejth path toḠ′ to replace the
deleted path.

Take the overlay network in Fig. 3 for example, sup-
poseḠ is composed of the pathsAB andBC, i.e., Ḡ =
[

1 1 0
1 1 1

]

. Then we delete pathBC, Ḡ′ = [1 1 0]T

andG′ =

[

1 1 0
0 0 1

]

. Applying Algorithm 2, we have

y = [0 0 1]T andr = [0 1]T . Thus the second path
in G′, AC, should be added tōG′. If we visualize such
path deletion in reference to the geometry of the linear
system, the path space ofG′ remains as a plane in Fig. 3,
but Ḡ′ only has one dimension of the path space left, so
we need to addAC to Ḡ′.

When deleting a path used in̄G, the factorR can be
updated inO(k2) time. To find a replacement row, we
need to compute a sparse matrix-vector product involving
G, which takesO(n2 × (average path length)) operations.
Since most routing paths are short, the dominant cost will
typically be the update ofR. Therefore, the complexity of
Algorithm 2 isO(k2).

B. End Hosts Join/Leave the Overlay
To add an end hosth, we use Algorithm 1 to scan all

the new paths fromh, for a cost ofO(nk2). However,
it is inefficient to delete an end hosth by directly using
Algorithm 2 to delete all affected paths. If Algorithm 2
is used to delete a path that starts/ends ath, often another



path that starts/ends ath is chosen as a replacement – and
soon deleted in turn. To avoid this behavior, we remove
all these paths fromG first, then use the updatedG in
Algorithm 2 to select replacements as needed during the
removal of paths that start/end ath. Each path in̄G can be
removed inO(k2) time; the worst-case total cost of end
host deletion is thenO(nk2).

C. Routing Changes
In the network, routing changes or link failures can af-

fect multiple paths inG. Previous studies have shown that
end-to-end Internet paths generally tend to be stable for
significant lengths of time,e.g., for at least a day [31],
[32]. So we can incrementally measure the topology to
detect changes. Each end host measures the paths to all
other end hosts daily, and for each end host, such measure-
ment load can be evenly distributed throughout the day. In
addition to the periodic route measurement, if any path is
found to have large loss rate changes, we will check its
route instantly.

For each link, we keep a list of the paths that traverse it.
If any path is reported as changed for certain link(s), we
will examine all other paths that go through those link(s)
because it is highly likely that those paths can change their
routes as well. We use Algorithms 1 and 2 to incremen-
tally incorporate each path change.

Unlike O(n2) approaches (e.g., RON), we need some
extra traceroute measurement. However, the key point is
that the end-to-end routing remains much more stable than
its loss rate, thus requires far less frequent measurement.
So the savings on loss rate probing dwarf the traceroute
overhead.

VI. L OAD BALANCING AND TOPOLOGY ERROR
HANDLING

To further improve the scalability and accuracy, we
need to have good load balancing and handle topology
measurement errors, as discussed in this section.

A. Measurement Load Balancing
The current design tends to have a few nodes measure

most of the paths in thēG which will overload these nodes
and their access links, and further affect the measurement
accuracy. To evenly distribute the measurements among
the end hosts, we randomly reorder the paths inG before
scanning them for selection in Algorithm 1. Since each
path has equal probability of being selected for monitor-
ing, the measurement load on each end host is similar.
Note any basis set generated from Algorithm 1 is suffi-
cient to describe all pathsG. Thus the load balancing has
no effect on the loss rate estimation accuracy.

B. Handling Topology Measurement Errors
As our goal is to estimate the end-to-end path loss rate

instead of any interior link loss rate, we can tolerate cer-
tain topology measurement inaccuracies, such as incom-
plete routing information and poor router alias resolution.

For completely untraceable paths, we add a direct link
between the source and the destination. In our system,
these paths will become selected paths for monitoring.

For paths with incomplete routing information, we add
links from where the normal route becomes unavailable
(e.g., self loops or displaying “* * *” in traceroute), to
where the normal route resumes or to the destination if
such anomalies persist until the end. For instance, if the
measured route is (src, ip1, “* * *”, ip2, dest), the path is
composed of three links: (src ip1), (ip1, ip2), and (ip2,
dest). By treating the untraceable path (segment) as a
normal link, the resulting topology is equivalent to the one
with complete routing information for calculating the path
loss rates.

For topologies with router aliases presenting one phys-
ical link as several links, we have little need to resolve
these aliases. At worst, our failure to recognize the links
as the same will result in a few more path measurements
because the rank ofG will be higher. For these links, their
corresponding entries inxG will be assigned similar val-
ues because they are actually a single link. Thus the path
loss rate estimation accuracy is not affected, as verified by
Internet experiments in Sec. IX. In addition, our system is
robust to measurement node failures and node changes by
providing bounds on the estimated loss rates.

VII. SAMPLE APPLICATION: STREAMING MEDIA

In this section, we describe how real applications bene-
fit from real-time path congestion/failure information pro-
vided by TOM. The sample application is streaming me-
dia delivery, which typically requires sustained network
performance in terms of throughput, packet loss, and even
latency for interactive applications. In contrast, the Inter-
net provides unpredictable and time-varying service. Ex-
isting techniques to address the transport requirement mis-
match fall in two categories: source-coding for compres-
sion [33] and error-resilience [34], and end-point adap-
tation, e.g., adjust the quality of the video based on the
network throughput [33]. Both categories treat the under-
lying IP network as a best-effort black box.

Recently, studies have found that overlay routing can
effectively improve the performance (e.g., latency, band-
width, etc.) of IP routing [2], [16]. In this section, we de-
sign, implement and evaluate an adaptive live streaming
media system that leverages TOM for real-time path con-
gestion/failure information, and an overlay network for
adaptive packet relaying and buffering within the delivery
infrastructure. Specifically, streaming clients in our sys-
tem employ overlay routing to bypass faulty or slow links
and re-establish new connection to streaming servers.
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Fig. 5. Event-driven diagram of adaptive overlay media streaming



The system is composed of streaming media clients,
server, and a set of overlay nodes (e.g., content distribu-
tion network). All these nodes are the end hosts moni-
tored by TOM, and controlled by an ONOC as in Fig. 1.
Normally a client connects to a server directly for stream-
ing media content. The client also registers the path and
sets up a trigger for path performance warnings at ONOC.
When the path incurs congestion/failure, ONOC detects
it, then searches for an alternative overlay path to bypass
the faulty link(s), and sends the overlay path to the client
if such path exists. The client tears down the current con-
nection, sets up a new connection via overlay node(s), and
attempts to concatenate the new streams with the old one
for skip-free effect. For live streaming media or when the
server is broadcasting the media to multiple clients, the
reconnected client may lose part of the data. We apply
a simple buffering technique to enable retransmission of
lost packets during path switching (see [16] for details).
The event driven diagram is shown in Figure 5.

We add a buffering layer at the server and an overlay
layer at the client to work with legacy client and server
softwares. The architecture is shown in Figure 6. Our
implementation is built on top of Winamp [35] client and
SHOUTcast [36] media server software. Media transport
for SHOUTcast is carried using TCP. Nevertheless, our
adaptive overlay routing and buffering techniques are ap-
plicable to other transport mechanisms such as RTP/UDP.
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Fig. 6. Architecture of TOM-based adaptive overlay media streaming

B. Evaluation

We deploy our system on the PlanetLab [37] testbed.
We place ONOC at Stanford University, the Winamp
client at U. C. Berkeley and the SHOUTcast server on
49 different locations as used for evaluation of TOM (see
Sec. IX, excluding the Berkeley and Stanford hosts). The
client is an Intel PIII/500MHz Windows XP machine with
256MB RAM on 100Mbps switched Ethernet. All other
hosts are PlanetLab nodes, 1.0GHz-1.8GHz Linux ma-
chines with 512MB-883MB RAM.

Network congestion is introduced by using a
Packeteerr PacketShaper [38]. The normal stream-
ing bitrate is about 300 Kbps, which is less than the
normal available bandwidth between client and server.

During streaming, we use PacketShaper to set the band-
width between the SHOUTcast server and the client as 76
Kbps to emulate the congestion.

For the 51-node overlay network, TOM measures the
selected paths (on average 872 paths, see Sec. IX) every
300 msec by sending out ten UDP packets along each
path, then calculates the end-to-end loss rate using an
exponential-weighted moving average (EWMA) for bet-
ter stability. If the estimated loss rate exceeds a certain
threshold (e.g., 10%), we assume that congestion occurs.

We evaluate two metrics: 1) the adaptation time, de-
fined as the period from when congestion/failure occurs
to when the client gets new streams from the overlay path
and successfully concatenates those with the old in the
buffer, and 2) effectiveness of skip-free live media play-
back.

The adaptation time can be broken down into three parts
as follows. We present the average running time with the
SHOUTcast server on 49 different locations.

1) Congestion detection time, the time from introduc-
ing the bottleneck link via PacketShaper to when
ONOC collects measurements, computes all the
loss rates and detects the congestion, is 1.5 seconds
on average.

2) ONOC searches for an overlay path from the server
to the client that is relayed by a single overlay node,
and has the end-to-end loss rate less than 2% along
with the smallest end-to-end delay. Then it sends
such path to the client. The total time for this step
until the overlay path information is received by the
client, is 0.66 second on average.

3) Client tears down the old connection, sets up a new
connection to the server via overlay node, retrieves
and concatenates the new media data. The average
time for this step is 0.73 second.

The total adaptation time on average is less than three
seconds. More than 95% of the experiments have adap-
tation time within five seconds. Since the maximum
streaming bitrate for DSL/cabel modem is 450 Kbps [39],
a buffer of 300KB suffices for skip-free media playback.

For the second metric, we compare to the streaming me-
dia system without monitoring-based adaptation. When
congestion occurs, its Winamp client gradually runs out
of buffer, and stalls. In contrast, for all experiments, our
client adapts to the congestion transparently, and enjoys
a skip-free continuous playback without quality degrada-
tion.

VIII. EVALUATION

In this section, we present our evaluation metrics, sim-
ulation methodology and simulation results.

A. Metrics
The metrics include path loss rate estimation accuracy,

variation of measurement loads among the end hosts, and
speed of setup, update, and topology change adaptation.

To compare the inferred loss ratêp with real loss rate
p, we analyze both absolute error and error factor. The
absolute error is|p− p̂|. We adopt the error factorFε(p, p̂)
defined in [8] as follows:

Fε(p, p̂) = max

{

p(ε)

p̂(ε)
,
p̂(ε)

p(ε)

}

(8)
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Fig. 7. Cumulative distribution of absolute errors (top) and error factors (bottom) under Gilbert loss model for various topologies.

# of # of end hosts # of # of links rank MPR lossy paths (Bernoulli) lossy paths (Gilbert)
nodes total OL(n) paths(r) original AP (k) (k/r) real coverage FP real coverage FP

1000 506 50 1225 1997 443 275 22% 437 99.6% 1.3% 437 100.0% 0.2%
100 4950 791 543 11% 2073 99.0% 2.0% 1688 99.9% 0.2%

5000 2489 100 4950 9997 1615 929 19% 2271 99.1% 2.0% 2277 99.7% 0.1%
300 44850 3797 2541 6% 19952 98.6% 4.1% 20009 99.6% 0.3%

20000 10003 100 4950 39997 2613 1318 27% 2738 98.4% 3.4% 2446 99.5% 0.6%
500 124750 11245 6755 5% 67810 97.8% 5.5% 64733 99.5% 0.4%

# of # of end hosts # of # of links rank MPR lossy paths (Bernoulli) lossy paths (Gilbert)
nodes total OL(n) paths(r) original AP (k) (k/r) real coverage FP real coverage FP

1000 312 50 1225 2017 441 216 18% 1034 98.8% 2.0% 960 99.6% 0.5%
100 4950 796 481 10% 4207 98.4% 1.6% 3979 99.6% 0.3%

5000 1608 100 4950 10047 1300 526 11% 4688 99.1% 0.6% 4633 99.8% 0.2%
300 44850 3076 1787 4% 42331 99.2% 0.8% 42281 99.8% 0.1%

20000 6624 100 4950 40077 2034 613 12% 4847 99.8% 0.2% 4830 100.0% 0.1%
500 124750 7460 3595 3% 122108 99.5% 0.3% 121935 99.9% 0.1%

# of end hosts # of # of links rank MPR lossy paths (Bernoulli) lossy paths (Gilbert)
on overlay (n) paths(r) after pruning (k) (k/r) real coverage FP real coverage FP

50 1225 2098 1017 83% 891 99.7% 0.9% 912 100.0% 0.2%
100 4950 5413 3193 65% 3570 98.7% 1.9% 3651 99.6% 0.3%
200 19900 12218 8306 42% 14152 97.9% 3.1% 14493 99.6% 0.4%

TABLE II
RESULTS FOR TWOBRITE ROUTER TOPOLOGIES: BARABASI-ALBERT (TOP), HIERARCHICAL MODEL (MIDDLE ), AND A REAL ROUTER

TOPOLOGY OF284,805NODES(BOTTOM). OL: THE NUMBER OF END HOSTS ON THE OVERLAY. AP: THE NUMBER OF LINKS AFTER

PRUNING THE NODES AND LINKS THAT ARE NOT ON THE OVERLAY PATHS. MPR: MONITORED PATH RATIO. FP:FALSE POSITIVE RATE.

# of OL Barabasi-Albert model hierarchical model
nodes size CV MMR CV MMR

(n) sender receiver sender receiver sender receiver sender receiver
LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB

1000
50 0.62 1.10 0.56 0.94 2.41 5.91 3.07 4.09 0.52 0.96 0.53 0.87 2.28 4.80 2.51 4.29
100 0.61 1.42 0.64 1.34 3.21 11.33 3.61 10.67 0.51 1.38 0.47 1.39 2.74 10.06 2.32 10.27

5000
100 0.44 0.89 0.47 0.97 2.25 6.11 2.36 6.50 0.49 1.18 0.53 1.39 2.60 9.18 2.97 10.16
300 0.52 1.59 0.51 1.51 2.97 18.70 2.74 17.25 0.47 1.72 0.48 1.76 3.47 23.93 4.13 25.76

20000 100 0.36 0.55 0.40 0.59 1.93 3.20 2.29 3.69 0.48 1.17 0.43 1.09 3.04 8.86 2.56 7.09
500 0.52 1.36 0.53 1.35 2.64 19.21 3.01 16.82 0.46 1.85 0.46 1.89 5.01 25.85 5.56 27.67

TABLE III
MEASUREMENT LOAD DISTRIBUTION. OL IS OVERLAY. “LB” AND “NLB” MEAN WITH AND WITHOUT LOAD BALANCING .



wherep(ε) = max(ε, p) and p̂(ε) = max(ε, p̂). Thus,p
andp̂ are treated as no less thanε, and then the error factor
is the maximum ratio, upwards or downwards, by which
they differ. We use the default valueε = 0.001 as in [8]. If
the estimation is perfect, the error factor is one.

Furthermore, we classify a path to be lossy if its loss
rate exceeds 5%, which is the threshold between “tolera-
ble loss” and “serious loss” as defined in [22]. We report
the true number of lossy paths, the percentage of real lossy
paths identified (coverage) and the false positive rate, all
averaged over five runs of experiment for each configura-
tion.

There are two types of measurement load: 1) sending
probes, and 2) receiving probes and computing loss rates.
The load reflects the CPU and uplink/downlink bandwidth
consumption. For each end hosth, its measurement load
is linearly proportional to, and thus denoted by the num-
ber of monitored paths withh as sender/receiver. Then
we compute its variation across end hosts in terms of the
coefficient of variation(CV) and themaximum vs. mean
ratio (MMR), for sending load and receiving load sepa-
rately. The CV of a distributionx, defined as below, is a
standard metric for measuring inequality ofx, while the
MMR checks if there is any single node whose load is
significantly higher than the average load.

CV (x) =
standard deviation(x)

mean(x)
(9)

The simulations only consider undirected links, so for
each monitored path, we randomly select one end host as
sender and the other as receiver. This is applied to all sim-
ulations with or without load balancing.

B. Simulation Methodology

We consider the following dimensions for simulation.
• Topology type: three types of synthetic topologies

from BRITE (see Sec. VIII-C) and a real router-level
topology from [27]. All the hierarchical models have
similar results, we use Barabasi-Albert at the AS
level and Waxman at the router level as the repre-
sentative.

• Topology size: the number of nodes ranges from
1000 to 200002. Note that the node count includes
both internal nodes (i.e., routers) and end hosts.

• Fraction of end hosts on the overlay network: we de-
fine end hosts to be the nodes with the least degree.
Then we randomly choose from 10% to 50% of end
hosts to be on the overlay network. This gives us
pessimistic results because other distributions of end
hosts will probably have more sharing of the routing
paths among them. We prune the graphs to remove
the nodes and links that are not referenced by any
path on the overlay network.

• Link loss rate distribution: 90% of the links are clas-
sified as “good” and the rest as “bad”. We use two
different models for assigning loss rate to links as
in [9]. In the first model (LLRD1), the loss rate for

220000 is the largest topology we can simulate on a 1.5GHz Pentium
4 machine with 512M memory.

good links is selected uniformly at random in the 0-
1% range and that for bad links is chosen in the 5-
10% range. In the second model (LLRD2), the loss
rate ranges for good and bad links are 0-1% and 1-
100% respectively. Given space limitations, most re-
sults are underLLRD1 except for Sec. VIII-D.

• Loss model: After assigning each link a loss rate,
we use either a Bernoulli or a Gilbert model to sim-
ulate the loss processes at each link. For a Bernoulli
model, each packet traversing a link is dropped at in-
dependently fixed probability as the loss rate of the
link. For a Gilbert model, the link fluctuates between
a good state (no packet dropped) and a bad state (all
packets dropped). According to Paxon’s observed
measurement of Internet [40], the probability of re-
maining in bad state is set to be 35% as in [9]. Thus,
the Gilbert model is more likely to generate bursty
losses than the Bernoulli model. The other state tran-
sition probabilities are selected so that the average
loss rates matches the loss rate assigned to the link.

We repeat our experiments five times for each simula-
tion configuration unless denoted otherwise, where each
repetition has a new topology and new loss rate assign-
ments. The path loss rate is simulated based on the trans-
mission of 10000 packets. Using the loss rates of selected
paths as input, we computexG, then the loss rates of all
other paths.

C. Accurate, Efficient Inference for Various Topologies

For all topologies in Sec. VIII-B, we achieve high loss
rate estimation accuracy. Results for the Bernoulli and the
Gilbert models are similar. Since the Gilbert loss model
is more realistic, we plot the cumulative distribution func-
tions (CDFs) of absolute errors and error factors with the
Gilbert model in Fig. 7. For all the configurations, the ab-
solute errors are less than 0.008 and the error factors are
less than 1.18. Waxman topologies have similar results,
and we omit them in the interest of space.

The lossy path inference results are shown in Table II.
Notice thatk is much smaller than the number of IP links
that the overlay network spans, which means that there
are many IP links whose loss rates are unidentifiable. In
Fig. 7, we notice that for the same network topology, the
smaller an overlay network is, the more accurate overall
inference it provides. This is because that for a smaller
overlay network, the measurement path ratio (MPR) (i.e.,
the percentage of paths we monitor out of all possible
paths) is larger because the path sharing in the overlay
is less. The MPR values are listed in the “MPR” columns
in Table II. For those monitored paths, there is no estima-
tion errors and thus a smaller overlay network has larger
overall accuracy (for all the paths on the overlay).

Although different topologies have similar asymptotic
regression trend fork asO(n log n), they have different
constants. For an overlay network with given number
of end hosts, the more IP links it spans on, the biggerk
is. We found that Waxman topologies have the largestk
among all synthetic topologies. For all configurations, the
lossy path coverage is more than 96% and the false posi-
tive ratio is less than 8%. Many of the false positives and
false negatives are caused by small estimation errors for
paths with loss rates near the 5% threshold.



We also test our algorithms in the 284,805-node real
router-level topology from [27]. There are 65,801 end
host routers and 860,683 links. We get the same trend of
results as illustrated in Fig. 7 and Table II. The CDFs in-
clude all the path estimates, including the monitored paths
for which we know the real loss rates. Given the same
number of end hosts, the ranks in the real topology are
higher than those of the synthetic ones. But as we find in
Sec. IV, the growth ofk is still bounded byO(n).

D. Similar Results for Different Link Loss Rate
Distribution

We have also run all the simulations above with model
LLRD2. The loss rate estimation is a bit less accurate
than it is underLLRD1, but we still find over 95% of the
lossy paths with a false positive rate under 10%. Given
space limitations, we only show the lossy path inference
with the Barabasi-Albert topology model and the Gilbert
loss model in Table IV.

E. Fast Setup and Inference
The running time forLLRD1 andLLRD2 are similar,

as in Table IV. All speed results in this paper are based on
a 1.5 GHz Pentium 4 machine with 512M memory. Note
that it takes about 20 minutes to setup (select the mea-
surement paths) for an overlay of 500 end hosts, but only
several seconds for an overlay of size 100. The update
(loss rate calculation) time is small for all cases, only 4.3
seconds for 124,750 paths. Thus it is feasible to update
online.

F. Effective Measurement Load Balancing
We examine the measurement load distribution for both

synthetic and real topologies, and the results are shown in
Table VIII. Given the space constraints, we only show the
results for Barabasi-Albert and hierarchical model. Our
load balancing scheme reduces CV and MMR substan-
tially for all cases, and especially for MMR. For instance,
a 500-node overlay on a 20000-node network of Barabasi-
Albert model has its MMR reduced by 7.3 times.

# of end hosts lossy paths (Gilbert) speed (second)
nodes total OL real coverage FP setup update

1000 506
50 495 99.8% 1.1% 0.13 0.08
100 1989 99.8% 3.0% 0.91 0.17

5000 2489
100 2367 99.6% 3.5% 1.98 0.22
300 21696 99.2% 1.4% 79.0 1.89

20000 10003
100 2686 98.8% 1.1% 3.00 0.25
500 67817 99.0% 4.6% 1250 4.33

TABLE IV
SIMULATION RESULTS WITH MODEL LLRD2 . USE THE SAME

BARABASI-ALBERT TOPOLOGIES AS INTABLE II. REFER TO

TABLE II FOR STATISTICS LIKE RANK. FP IS THE FALSE POSITIVE

RATE. OL MEANS OVERLAY NETWORK.

We further plot the histogram of measurement load dis-
tribution by putting the load values of each node into 10
equally spaced bins, and counting the number of nodes
in each bin asy-axis. Thex-axis denotes the center of
each bin, as illustrated in Fig. 8. With load balancing, the
histogram roughly follow the normal distribution. In con-
trast, the histogram without load balancing is close to an

exponential distribution. Note that the y-axis in this plot
is logarithmic: an empty bar means that the bin contains
one member, and 0.1 means the bin is empty.
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Fig. 8. Histogram of the measurement load distribution (as sender) for
an overlay of 300 end hosts on a 5000-node Barabasi-Albert topology.

G. Efficient Incremental Update for Topology Changes
We study two common scenarios in P2P and overlay

networks: end hosts joining and leaving as well as rout-
ing changes. Again, the Bernoulli and the Gilbert mod-
els have similar results, thus we only show those of the
Gilbert model.

# of end # of rank lossy paths
hosts paths real coverage FP
40 780 616 470 99.9% 0.2%
+5 +210 +221 +153 100.0% 0.1%

(45) (990) (837) (623)
+5 +235 +160 +172 99.8% 0.2%

(50) (1225) (997) (795)
TABLE V

SIMULATION RESULTS FOR ADDING END HOSTS ON A REAL

ROUTER TOPOLOGY. FP IS THE FALSE POSITIVE RATE. DENOTED

AS “+ ADDED VALUE (TOTAL VALUE )”.

# of end # of rank lossy paths
hosts paths real coverage FP
60 1770 1397.0 1180.3 99.9% 0.2%
-5 -285 -245.3 -210.0 99.8% 0.2%

(55) (1485) (1151.7) (970.3)
-10 -260 -156.7 -150.6 99.9% 0.1%
(50) (1225) (995.0) (819.7)

TABLE VI
SIMULATION RESULTS FOR DELETING END HOSTS ON A REAL

ROUTER TOPOLOGY. FP IS THE FALSE POSITIVE RATE. DENOTED

AS “- REDUCED VALUE (TOTAL VALUE )”.

1) End hosts join/leave:For the real router topology,
we start with an overlay network of 40 random end hosts.
Then we randomly add an end host to join the overlay, and
repeat the process until the size of the overlay reaches 45
and 50. Averaged over three runs, the results in Table V
show that there is no obvious accuracy degradation caused
by accumulated numerical errors. The average running
time for adding a path is 125 msec, and for adding a node,
1.18 second. Notice that we add a block of paths together
to speedup adding node (Sec. III-B).

Similarly, for removing end hosts, we start with an
overlay network of 60 random end hosts, then randomly
select an end host to delete from the overlay, and repeat
the process until the size of the overlay is reduced to 55



and 50. Again, the accumulated numerical error is negli-
gible as shown in Table VI. As shown in Sec. V, deleting
a path inḠ is much more complicated than adding a path.
With the same machine, the average time for deleting a
path is 445 msec, and for deleting a node, 16.9 seconds.
We note that the current implementation is not optimized:
we can speed up node deletion by processing several paths
simultaneously, and we can speed up path addition and
deletion with iterative methods such as CGNE or GM-
RES [41]. Since the time to add/delete a path isO(k2),
and to add/delete a node isO(nk2), we expect our up-
dating scheme to be substantially faster than theO(n2k2)
cost of re-initialization for largern.

# of paths affected 40.7
# of monitored paths affected 36.3

# of unique nodes affected 41.7
# of real lossy paths (before/after) 761.0/784.0

coverage (before/after) 99.8%/99.8%
false positive rate (before/after) 0.2%/0.1%

average running time 17.3 seconds
TABLE VII

SIMULATION RESULTS FOR REMOVING A LINK FROM A REAL

ROUTER TOPOLOGY.

2) Routing changes:We form an overlay network with
50 random end hosts on the real router topology. Then we
simulate topology changes by randomly choosing a link
that is on some path of the overlay and removing of such
a link will not cause disconnection for any pair of over-
lay end hosts. Then we assume that the link is broken,
and re-route the affected path(s). Algorithms in Sec. V in-
crementally incorporate each path change. Averaged over
three runs, results in Table VII show that we adapt quickly,
and still have accurate path loss rate estimation.

We also simulate the topology changes by adding a ran-
dom link on some path(s) of the overlay. The results are
similar as above, so we omit them here for brevity.

IX. I NTERNET EXPERIMENTS

A. Methodology

We implemented our system on the PlanetLab [37]
testbed, and deployed it on 51 PlanetLab hosts from four
continents, each from a different organization. There are
11 International hosts (all are universities) and altogether
18 non-edu hosts.

First, we measure the topology among these sites by si-
multaneously running “traceroute” to find the paths from
each host to all others. Each host saves its destination
IP addresses for sending measurement packets later. Then
we measure the loss rates between every pair of hosts. Our
measurement consists of 300 trials, each of which lasts
300 msec. During a trial, each host sends a 40-byte UDP
packet3 to every other host. Usually the hosts will fin-
ish sending before the 300 msec trial is finished. For each
path, the receiver counts the number of packets received
out of 300 to calculate the loss rate. Thus the loss rate is
measured over an interval of0.3× 300 = 90 seconds. We

320-byte IP header + 8-byte UDP header + 12-byte data on sequence
number and sending time.

believe that such granularity can filter some highly tran-
sient congestions, and still be able to capture the relatively
stable congestions so that we can select some alternative
path to bypass it.

To prevent any host from receiving too many packets
simultaneously, each host sends packets to other hosts in
a different random order. Furthermore, any single host
uses a different permutation in each trial so that each des-
tination has equal opportunity to be sent later in each trial.
This is because when sending packets in a batch, the pack-
ets sent later are more likely to be dropped. Such ran-
dom permutations are pre-generated by each host. To en-
sure that all hosts in the network take measurements at the
same time, we set up sender and receiver daemons, then
use a well-connected server to broadcast a “START” com-
mand.

Will the probing traffic itself cause losses? We
performed sensitivity analysis on sending frequency as
shown in Fig. 9. All experiments were executed be-
tween 1am-3am PDT June 24, 2003, when most net-
works are free. The traffic rate from or to each host is
(51 − 1) × sending freq × 40 bytes/sec. The number of
lossy paths does not change much when the sending rate
varies, except when the sending rate is over 12.8Mbps,
since many servers can not sustain that sending rate. We
choose a 300 msec sending interval to balance quick loss
rate statistics collection with moderate bandwidth usage.
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Fig. 9. Sensitivity test of sending frequency

Note that the experiments above useO(n2) measure-
ments so that we can compare the real loss rates with our
inferred loss rates. In fact, our technique only requires
O(n log n) measurements. Thus, given good load balanc-
ing, each host only needs to send toO(log n) hosts. In
fact, we achieve similar CV and MMR for measurement
load distribution as in the simulation. Even for an overlay
network of 400 end hosts on the 284K-node real topology
used before,k = 18668. If we reduce the measurement
frequency to one trial per second, the traffic consumption
for each host is18668/400× 40 bytes/sec = 14.9Kbps,
which is typically less than 5% of the bandwidth of to-
day’s “broadband” Internet links. We can use adaptive
measurement techniques in [2] to further reduce the over-
heads.

[0,
0.05)

lossy path [0.05, 1.0] (4.1%)
[0.05, 0.1) [0.1, 0.3) [0.3, 0.5) [0.5, 1.0) 1.0

95.9% 15.2% 31.0% 23.9% 4.3% 25.6%
TABLE VIII

LOSS RATE DISTRIBUTION: LOSSY VS. NON-LOSSY AND THE

SUB-PERCENTAGE OF LOSSY PATHS.
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inference in the 100 experiments.
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B. Results

From June 24 to June 27, 2003, we ran the experiments
100 times, mostly during peak hours 9am - 6pm PDT.
Each experiment generates51 × 50× 300 = 765K UDP
packets, totaling 76.5M packets for all experiments. We
run the loss rate measurements three to four times every
hour, and run the pair-wise traceroute every two hours.
Across the 100 runs, the average number of selected mon-
itoring paths (̄G) is 871.9, about one third of total number
of end-to-end paths, 2550. Table VIII shows the loss rate
distribution on all the paths of the 100 runs. About 96%
of the paths are non-lossy. Among the lossy paths, most
of the loss rates are less than 0.5. Though we try to choose
stable nodes for experiments, about 25% of the lossy paths
have 100% losses and are likely caused by node failures or
other reachability problems as discussed in Sec. IX-B.2.

1) Accuracy and speed:When identifying the lossy
paths (loss rates> 0.05), the average coverage is 95.6%
and the average false positive rate is 2.75%. Fig. IX-A
shows the CDFs for the coverage and the false positive
rate. Notice that 40 runs have 100% coverage and 90 runs
have coverage over 85%. 58 runs have no false positives
and 90 runs have false positive rates less than 10%.

As in the simulations, many of the false positives and
false negatives are caused by the 5% threshold boundary
effect. The average absolute error across the 100 runs is
only 0.0027 for all paths, and 0.0058 for lossy paths. We
pick the run with the worst accuracy in coverage (69.2%),
and plot the CDFs of absolute errors and error factors in
Fig. IX-A. Since we only use 300 packets to measure the
loss rate, the loss rate precision granularity is 0.0033, so
we useε = 0.005 for error factor calculation. The average
error factor is only 1.1 for all paths.

Even for the worst case, 95% of absolute errors in loss
rate estimation are less than 0.014, and 95% of error fac-
tors are less than 2.1. To further view the overall statistics,
we pick 95 percentile of absolute errors and error factors
in each run, and plot the CDFs on those metrics. The re-
sults are shown in Fig. 12. Notice that 90 runs have the 95
percentile of absolute errors less than 0.0133, and 90 runs
have the 95 percentile of error factors less than 2.0.

The average running time for selecting monitoring
paths based on topology measurement is 0.75 second, and
for loss rate calculation of all 2550 paths is 0.16 second.

2) Topology error handling: The limitation of tracer-
oute, which we use to measure the topology among the
end hosts, led to many topology measurement inaccura-
cies. As found in [42], many of the routers on the paths

among PlanetLab nodes have aliases. We did not use so-
phisticated techniques to resolve these aliases. Thus, the
topology we have is far from accurate. Furthermore, in the
PlanetLab experiments, some nodes were down, or were
unreachable from certain nodes. Meanwhile, some routers
are hidden and we only get partial routing paths. Averag-
ing over 14 sets of traceroutes, 245 out of51× 50 = 2550
paths have no or incomplete routing information. The ac-
curate loss rate estimation results show that our topology
error handling is successful.

X. CONCLUSIONS ANDFUTURE WORK

In this paper, we design, implement and evaluate an
algebraic approach for adaptive scalable overlay network
monitoring. For an overlay ofn end hosts, we selectively
monitor a basis set ofO(n log n) paths which can fully de-
scribe all theO(n2) paths. Then the measurements of the
basis set are used to infer the loss rates of all other paths.
Our approach works in real time, offers fast adaptation to
topology changes, distributes balanced load to end hosts,
and handles topology measurement errors. Both simula-
tion and Internet implementation yield promising results.

The algebraic framework can inspire many future work.
For instance, although we experimentally find that the
rank of path matrix grows very slow asO(n log n) or even
sub-linearly for most topologies, it remains unknown how
to model it stringently. How is such model related to
the general Internet topology? In addition, Chuaet al.
have developed follow-up work to further select a smaller
set of paths fromḠ for monitoring with small sacrifice
for the accuracy [43]. More recently, we investigated the
link-level property inference problem under the algebraic
framework [44].
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