Web Logic Vulnherability

By Eric Jizba and Yan Chen

With slides from Fangqgi Sun and Giancarlo Pellegrino

QOutline

Background and Motivation
Related Work

Whitebox approach
O Detecting Logic Vulnerabilities in E-Commerce Applications
Fangqi Sun, Liang Xu, Zhendong Su

Blackbox approach

O Toward Black-box Detection of Logic Flaws in Web
Applications

Giancarlo Pellegrino, Davide Balzarotti

Background and motivation

Logic Flaws

= Also known as design flaws/errors, business/application logic
errors/flaws

= | ack a formal definition

* CWE-ID 840: Business logic errors are “weaknesses [...]
that commonly allow attackers to manipulate the business
logic of an application’

= Mainly caused by insufficient validation of the application
workflow and data flow

= Can exhibit patterns, e.g.

* Improper authentication/authorization

= 3

EURECOM

Logic Vulnerabilities
in E-Commerce Web Applications

Third-party cashiers

Bridge the trustiness gap between customers and merchants

Complicate logic flows during checkout
Logic vulnerabilities in e-commerce web applications Pj:'qr:lim
Abuse application-specific functionality
Allow attackers to purchase products or services
with incorrect or no payment
Have multiple attack vectors ngmem
tatus
. N)
Assumptions of user inputs and user actions should be ¥ -
explicitly checked =

Example

CVE-2009-2039 is reported for Luottokunta (v1.2) but the patched
Luottokunta (v1.3) is still vulnerable

ubuntu®

> RBS WorldPay Authorize.Net

a CyberSource solution

(> oscommerce

Attack on Currency

™

currency = British Pound Sterling (GBP)
GBP £6.25 (equals $10.43)

Consistent status

currency = US Dollar (USD)
$6.25

< RBS WorldPay

Attack on Order ID

7 qQ
Current order (ID 1002)
orderlD = has been paid
1002 o1
Payment tokens for
order ID 1001 can
> be replayed for /,
orderlD = N— future orders
1001 |
=
— Received payment

for order ID 1001 only
Authorize.Net

Attack on Merchant ID

Payee is
merchantlD = chocolateDelight
chocolateDelight
Consistent status
Payee is
merchantiD= attackerAlice
attackerAlice
D

PayPal

Related Work

Problem

Explicit Documentation
Yes No

White-box White-box

Yes

Source code

No

= White-box testing [BalzarottiCCS07, FelmetsgerUSENIX10, ...]
* Source code of WA may not be available — White-box not applicable!

EURECOM

Problem

Explicit Documentation
Yes No

White-box White-box

Yes

Source code

No

= White-box testing [BalzarottiCCS07, FelmetsgerUSENIX10, ...]
* Source code of WA may not be available — White-box not applicable!

= Design verification [LoweCSF97, ArmandoCSFO07, ...]
* Specification of WA may not be available — DV not applicable!

EURECOM

Problem

Explicit Documentation

Yes No
Black-box Black-box
wn
>°j White-box White-box
S
=
o
(<P}
>
5
5 Black-box Black-box
o
Z

= White-box testing [BalzarottiCCS07, FelmetsgerUSENIX10, ...]
* Source code of WA may not be available — White-box not applicable!

= Design verification [LoweCSF97, ArmandoCSFO07, ...]
* Specification of WA may not be available — DV not applicable!

= Black-box testing, e.g., web scanners [DoupéDIMVA10, WangS&P11, WangS&P12]
* Cannot automatically detect logic flaws

> Testing for logic flaws is done manually

EURECOM

Comparing testing methods

Coverage Fair Poor Good
Scalability Fair Good Poor
Efficiency Fair Good Poor
Requires source Yes No No
code

Requires app No No Yes

specification

Design Verification

BrowserlD SSO Anal

Daniel Fett, Ralf Kusters, and Guido Schmitz created
expressive model for web infrastructure

O Manual analysis: more comprehensive and accurate

Discovered logic vulnerability in BrowserlD

O Allows attacker to sign-in to any service that supports

BrowserlD using the email address of any user without know
their credentials

O Proposed fix adopted by Morzilla simply involves verifying the
email address is correct

Blacklbox Approach

InteGuard: Web Service Integration
Securit

Third party APIs are more and more popular
O SSO, Cashier Services, Maps, Search, etc.

Key Insight: most web APIs require small number of simple
input parameters that are usually set by the user

InfeGuard looks at web traffic between the app and third
part service to analyze invariants (e.g. orderlD, price)

O Does notf require source code
O Mostly automatic

O Cannot handle more complex invariant relations (such as the
relation between signed content and its signature)

Blacklbox Approach

Parameter Pollution Vulnerabilities

Common attack vector used in Logic Vulnerabilities
O E.g. using the same OrderlD for two transactions

Different from workflow attack vector (also used in Logic
Vulnerabillities)

O E.g. bypassing a required page in a payment application

NoTamper detects insufficient server-side validations where
the server fails to replicate validations on the client side

PAPAS uses a blackbox scanning technique for vulnerable
parameters

Whitelbbox Approach

Basic Problem

Key Challenge

Logic vulnerabilities in e-commerce web applications are
application-specific
Thorough code review of all possible logic flows is non-trivial

Various application-specific logic flows, cashier APls and
security checks make automated detection difficult

Key challenge of automated detection

The lack of a general and precise notion
of

Key Insight
A for automated detection

A checkout is secure when it guarantees the
and of critical payment status
(order ID, order total, merchant ID and currency)

P

A
v

Whitelbbox Approach

Main Ideas

Our Approach

A symbolic execution

framework that explores

critical control flows
exhaustively

Tracking taint annotations

across checkout nodes
Payment status
Exposed signed token

Logic flow:
(ny Q) 2 (m, Q)
spec,
n, d, AST,
n, Q IR,
Q
N, Q;

(signed with a cashier-merchant

secret)

Taint Removal Rules

Conditional checks of (in)equality
When an untrusted value is verified against a trusted one

Example of removing taint from order total
Md5(SECRET . $_SESSION[‘order’]2info[‘total’]) == md5(SECRET . $_GET[‘oTotal’])

Writes to merchant databases
When an untrusted value is included in an INSERT /UPDATE query
Merchant employee can easily spot tampered values

Secure communication channels
(merchant-to-cashier cURL requests)

Remove taint from order ID, order total, merchant ID or currency
when such components are present in request parameters

Taint Addition Rule

Add an exposed signed token when used in a conditional
check of a cashier-to-merchant request

Security by obscurity is insufficient

Example
Hidden HTML form element: md5($secret . $orderld . $orderTotal)
$_GET['hash'l] == md5($secret . $_GET['old"] . $_ GET['oTotal'])

This exposed signed token md5($secret . $orderld . $orderTotal)
nullifies checks on order ID and order total

Vulnerability Detection Example

R1. User 2 Merchant(checkoutConfirmation.php)

Symbolic HTML form contains two URLs: cashier URL and return
URL(checkoutProcess.php).

R2. User = Cashier()

Modeling cashier as trusted black box

R3. User > Merchant(checkoutProcess.php), redirection
Representing all possible cashier responses with symbolic inputs

R4. User = Merchant(checkoutSuccess.php), redirection

Analyzing logic states at this destination node (end of checkout) to
detect logic vulnerabilities

Luottokunta (v1.3)

R1. Checkout
Confirmation
(Begin
Checkout)

R2. Cashier
Luottokunta
(Make
Payment)

R3. Checkout
Process

(Confirm
Order)

R4. Checkout
Success
(Thanks for
your order)

R1. Checkout R3. Checkout R4. Checkout

Confirmation Process Success
(Begin (Confirm (Thanks for
orderlD = Checkout) Order) your order)
1002
erelen = R2. Cashier
1001 Luottokunta
= (Make
-__—N Payment)
Should be
SecretMD5
R3 for order ID 1002: http://merchant.com/checkoutProcess.php? For1002

orderID=1001&LKMAC=SecretMD5For1001

Whitebbox Approach

Evaluation and Results

Evaluation

(> oscommerce

Subjects: 22 unique payment modules of
osCommerce

More than 14,000 registered websites, 928 payment
modules, 13 years of history (osCommerce v2.3)

20 out of 46 default modules with distinct CFGs
2 Luottokunta payment modules (v1.2 & v1.3)

Metrics

Effectiveness: Detected 12 logic vulnerabilities (11 new)
with no false positives

Performance

Logic Vulnerability Analysis Results

Payment Module Safe Payment Module

2Checkout X PayPal Pro - Direct Payments (V4
Authorize.net CC AIM v PayPal (Payflow) - Direct Payments v
Authorize.net CC SIM X PayPal (Payflow) - Express Checkout ¢/
ChronoPay X PayPal Standard X
inpay v PayPoint.net SECPay X
;E;Z::rgqrd) X PSiGate X
Luottokunta (v1.2) X RBS WorldPay Hosted X
Luottokunta (v1.3) X Sage Pay Direct (V4
Moneybookers v Sage Pay Form X
NOCHEX X Sage Pay Server (V4
PayPal Express v Sofortiberweisung Direkt v

Taint Annotations of 12 Vulnerable Payment Modules

Payment Module C.:;:I:Ir Merlc dhani Currency :3(2?:
2Checkout X X X X
Authorize.net SIM X X
ChronoPay X X X X X
iPayment (Credit card) X
Luottokunta (v1.2) X X X
Luottokunta (v1.3) X
NOCHEX X X X
PayPal Standard X
PayPoint.net SECPay X X X
PSiGate X X X
RBS WorldPay Hosted X X
Sage Pay Form X X

Total 9 7 6 10 2

Performance Results of 12 Vulnerable Payment Modules

2Checkout 105 5,194 6,176 8,385 40 4 16.04
Authorize.net SIM 105 5,221 6,221 8,435 46 4 16.89
ChronoPay 99 5,013 5,969 8,084 69 3) 31.51
iPayment (Credit card) 99 4,999 5932 7,918 38 3) 21.86
Luottokunta (v1.2) 105 5,158 6,127 8,291 34 4 15.33
Luottokunta (v1.3) 105 5,164 6,135 8,308 35 4 15.33
NOCHEX 105 5,145 6,111 8,237 33 4 15.03
PayPal Standard 99 5,040 6,006 8,170 68 6 33.01
PayPoint.net SECPay 105 5,174 6,152 8,332 40 4 15.80
PSiGate 106 5,231 6,228 8,436 44 4 16.82
RBS WorldPay Hosted 99 5,019 5,977 8,121 79 3) 36.12
Sage Pay Form 106 5,315 6,329 8,762 55 4 19.96

Average of 22 102.73 5,173 6,162 8,376 67.27 5.05 31.43

Conclusion

First static detection of logic vulnerabilities in e-
commerce applications
Based on an application-independent invariant

A scalable symbolic execution framework for PHP
applications, incorporating taint tracking of payment status

Three responsible proof-of-concept experiments on live
websites

Evaluated our tool on 22 unique payment modules and
detected 12 logic vulnerabilities (11 are new)

Open Issues

Cannot identify all logic vulnerabilities
Does not support JavaScript analysis

Limited analysis of dynamic language features

Questions?e

Blacklbox Approach

Basic Problem

Blacklbox Approach

Main Ideas

Overview

1) Model Inference

74.125.230.240 > 192.168.1.89
192.168.1.89 > 74.125.230.240
74.125.230.240 > 192.168.1.89

2) Behavioral Patterns

DL O DD
QQOQ

00:‘0

3) Test Cases Generation

Resource
Abstraction

Data flow

Patterns

Test Cases :}

Q ° ° Resource

~-"

Clustering /

Workflow
Patterns /

4) Test Cases Execution

\ 74.125.230.240 > 192.168.1.89

/ 74.125.230.2-

Execution) 192.168.1.89; ,\ \

) X

5.230.240
..168.1.89

gracle

&

P

oV
>

Verdict:
Flaw found
in test
1and 2

EURECOM

Model Inference

g =S - - - - - - - - S E S S - S S S S S S S S S S S S S S S S .y

o o E——,

1) Model Inference \
74.125.230.240 > 192.168.1.89 ‘ G ° 0 Resource) I
192.168.1.89 > 74.125.230.240 RESEUES) Clustering () O
74.125.230.240 > 192.168.1.89 Abstraction 9 I I

_______—_—_—_—_—_—_—_—_—_—_—_—_-

= 10

EURECOM

Behavioral Patterns Extraction

2) Behavioral Patterns

(
|
|
|
|

Q Q ° Data flow - --c--- Workflow
) Patterns | Patterns /
@ 1
02,0 ‘*0 NN ARy
\ () PChain 2. __.-
am Eam S S S S O S O B S B B D B B B B B B B B B D I B S S e e . ..
==, 11

EURECOM

Workflow Patterns

Traces: Model:
w1 = {a,b,a,c,d, e, f,e) a
(a,c,d,e, fe) LY
Tr — a? C? ?e? ?e
2 vkb
C
\/
d
Y/*
e\ f
_/

EURECOM

12

Workflow Patterns

Traces:
1 = {(a,b,a,c,d, e, f,e)

™2 = <&,C,Ei,€,f,€>

- : Trace Waypoints
[Rp | : Repeatable Operations

EURECOM

13

Data flow Patterns

Trace 1:

http://store.com/index.php

| tok=8aFFRO |

.k\\\‘-

http://store.com/view. php6t0k=8AFFBO >

v
e
o
e
o
o
.
o
o
R

| tok=8aFFBO|

—

http://store.com/add.phpl tok=8AFFB0
v

Trace 2:

N

http://store.com/index.php

| tok=pDA124'|

\)
http://store.com/add.phf?tok=DDA124)

EURECOM

14

|
!
!
!
!
!
|

Test Case Generation

3) Test Cases Generation

Test Cases

;

EURECOM

15

Attack Pattern-based Test Case Generation

Multiple Execution

Breaking Multi-Steps

Breaking Server-Generated

Waypoints Detour

of Repeatable Singletons Operations Propagation Chains
1
a 3 a ‘ a] a 5 a ‘ a ‘ a o
A h\ A .lx A A A
1 Y Y Y 0 B S A A W
C — C v Cc C c 8@
L) |
d °| d """d o $€ d p'i 4
7
l 8 7 10 5 3 9
e f > c f e f e f € g=v e f
"2 "t |1 LI "1~
(a) (b) (c) (d) (e)
- 16

EURECOM

Attack Pattern-based Test Case Generation

Multiple Execution
of Repeatable Singletons

Breaking Mi
Operat

Breaking Server-Generated
Propagation Chains

Waypoints Detour

a 3 a - a —
A lx\ \ A b \ \
5 &__ _ 3 \ 3 \\i___ v 7 _‘
v b b b
Y
C — C = C
6 4 4 .
Y Y
d °l d d
3 ‘ 9
‘ f/f \-‘ //f x — - B
» 9 e © a I
~] 10_~
(a) (b) (e)

EURECOM

Test Case Execution and Oracle

l

\

Execution /\/\ 192.168.1.89 235,230_240

2) Test Cases Execution

\ 74.125.230.240 > 192.168.1.89

74.125.230.2« ..168.1.89 Verdict:

Flaw found
(in test
racle Tand2

/

\—_______—__—

EURECOM

18

Test Case Execution and Oracle

Security Property:

ordpiacea N onStore(S) =
O(paid(U, I) A toStore(S) M
O(ack(U, I) N onStore(S)))

4) Test Cases Execution

. 74.125.230.240 > 192.168.1.89

l

l

|l Execution 192.168.1.89; @5.230.240
r PZSN

l

l

/ 74.125.230.2- ..168.1.89

<.

Verdict:
Flaw found
in test

1and 2

= 19

EURECOM

Case Study: Shopping Cart Web Applications

\ Online Store

YINIES T
B0 2300 @ omato Cart

& AconteCartcom

opencart 77
(> oscommerce

H

\
Cashier-as-a-Service

Trace Collection ¢

= 21

EURECOM

Blacklbox Approach

Evaluation and Results

Experiments and Results

= Target: 7 popular eCommerce Web Applications
* Deployed by >13M online stores

= Testbed: created 12 Paypal sandbox configurations

In total 3,145
“ test cases

EURECOM

22

Experiments and Results

= Target: 7 popular eCommerce Web Applications
* Deployed by >13M online stores

= Testbed: created 12 Paypal sandbox configurations

1,253 “misuse” detected

In total 3,145
“ test cases

1,892 were
executed

EURECOM

23

Experiments and Results

= Target: 7 popular eCommerce Web Applications
* Deployed by >13M online stores

= Testbed: created 12 Paypal sandbox configurations

1,253 “misuse” detected

983 not violations

In total 3,145
“ test cases

1,892 were
executed

909 violation

EURECOM

24

Experiments and Results

= Target: 7 popular eCommerce Web Applications
* Deployed by >13M online stores

= Testbed: created 12 Paypal sandbox configurations

1,253 “misuse” detected

983 not violations

In total 3,145 849 caused by
“ test cases bugs in the GUI

1,892 were
executed

909 violation

90 caused by
logic flaws

B 25

EURECOM

Vulnerabilities

= 10 previously-unknown vulnerabilities
* Allowing to shop for free or pay less

Session
Fixation

Application Shop for

free

Pay less

AbanteCart

Magento

OpenCart X X

osCommerce X X CVE-2012-2991

PrestaShop

TomatoCart X X X X CVE-2012-4934

CS-Cart X CVE-2013-0118

EURECOM

26

Conclusion

" Proposed a black-box technique to detect logic flaws in web
applications

= Combined passive model inference and attacker pattern-based test
case generation

= Developed a prototype
* assessed against 7 popular eCommerce web applications

= Discovered 10 previously-unknown logic flaws
¢ allow an attacker to shop for free or pay less

= 28

EURECOM

Open Issues

Only tests attacks through data flow and workflow
O E.g. does not test unauthorized access to resources

Automation favors efficiency over coverage

Questions?e

