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ABSTRACT

Suppose that you are at a music festival checking on an artist,
and you would like to quickly know about the song that is be-
ing played (e.g., title, lyrics, album, etc.). If you have a smart-
phone, you could record a sample of the live performance and
compare it against a database of existing recordings from the
artist. Services such as Shazam or SoundHound will not work
here, as this is not the typical framework for audio fingerprint-
ing or query-by-humming systems, as a live performance is
neither identical to its studio version (e.g., variations in in-
strumentation, key, tempo, etc.) nor it is a hummed or sung
melody. We propose an audio fingerprinting system that can
deal with live version identification by using image process-
ing techniques. Compact fingerprints are derived using a log-
frequency spectrogram and an adaptive thresholding method,
and template matching is performed using the Hamming sim-
ilarity and the Hough Transform.

Index Terms— Adaptive thresholding, audio fingerprint-
ing, Constant Q Transform, cover identification

1. INTRODUCTION

Audio fingerprinting systems typically aim at identifying an
audio recording given a sample of it (e.g., the title of a song),
by comparing the sample against a database for a match. Such
systems generally first transform the audio signal into a com-
pact representation (e.g., a binary image) so that the compari-
son can be performed efficiently (e.g., via hash functions) [1].

In [2], the sign of energy differences along time and fre-
quency is computed in log-spaced bands selected from the
spectrogram. In [3], a two-level principal component analy-
sis is computed from the spectrogram. In [4], pairs of time-
frequency peaks are chosen from the spectrogram. In [5], the
sign of wavelets computed from the spectrogram is used.

Audio fingerprinting systems are designed to be robust to
audio degradations (e.g., encoding, equalization, noise, etc.)
[1]. Some systems are also designed to handle pitch or tempo
deviations [6, 7, 8]. Yet, all those systems aim at identifying
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the same rendition of a song, and will consider cover versions
(e.g., a live performance) to be different songs. For a review
on audio fingerprinting, the reader is referred to [1].

Cover identification systems precisely aim at identifying
a song given an alternate rendition of it (e.g., live, remas-
ter, remix, etc.). A cover version essentially retains the same
melody, but differs from the original song in other musical
aspects (e.g., instrumentation, key, tempo, etc.) [9].

In [10], beat tracking and chroma features are used to
deal with variations in tempo and instrumentation, and cross-
correlation is used between all key transpositions. In [11],
chord sequences are extracted using chroma vectors, and a
sequence alignment algorithm based on Dynamic Program-
ming (DP) is used. In [12], chroma vectors are concatenated
into high-dimensional vectors and nearest neighbor search is
used. In [13], an enhanced chroma feature is computed, and a
sequence alignment algorithm based on DP is used.

Cover identification systems are designed to capture the
melodic similarity while being robust to the other musical as-
pects [9]. Some systems also propose to use short queries
[14, 15, 16] or hash functions [12, 17, 18], in a formalism
similar to audio fingerprinting. Yet, all those systems aim at
identifying a cover song given a full and/or clean recording,
and will not apply in case of short and noisy excerpts, such
as those that can be recorded from a smartphone in a concert.
For a review on cover identification, and more generally on
audio matching, the reader is referred to [9] and [19].

We propose an audio fingerprinting system that can deal
with live version identification by using image processing
techniques. The system is specially intended for applications
where a smartphone user is attending a live performance from
a known artist and would like to quickly know about the song
that is being played (e.g., title, lyrics, album, etc.). As com-
puter vision is shown to be practical for music identification
[20, 5], image processing techniques are used to derive novel
fingerprints that are robust to both audio degradations and au-
dio variations, while still compact for an efficient matching.

In Section 2, we describe our system. In Section 3, we
evaluate our system using live queries against a database of
studio references. In Section 4, we conclude this article.



2. SYSTEM

2.1. Fingerprinting

In the first stage, compact fingerprints are derived from the
audio signal, by first using a log-frequency spectrogram to
capture the melodic similarity and handle key variations, and
then an adaptive thresholding method to reduce the feature
size and handle noise degradations and local variations.

2.1.1. Constant Q Transform

First, we transform the audio signal into a time-frequency rep-
resentation. We propose to use a log-frequency spectrogram
based on the Constant Q Transform (CQT) [21]. The CQT is
a transform with a logarithmic frequency resolution, mirror-
ing the human auditory system and matching the notes of the
Western music scale, so well adapted to music analysis. The
CQT can handle key variations relatively easily, as pitch devi-
ations correspond to frequency translations in the transform.

We compute the CQT by using a fast algorithm based on
the Fast Fourier Transform (FFT) in conjunction with the use
of a kernel [22]. We derive a CQT-based spectrogram by us-
ing a time resolution of around 0.13 second per time frame
and a frequency resolution of one quarter tone per frequency
channel, with a frequency range spanning from C3 (130.81
Hz) to C8 (4186.01 Hz), leading to 120 frequency channels.

2.1.2. Adaptive Thresholding

Then, we transform the CQT-based spectrogram into a binary
image. We propose to use an adaptive thresholding method
based on two-dimensional median filtering. Thresholding is a
method of image segmentation that uses a threshold value to
turn a grayscale image into a binary image. Adaptive thresh-
olding methods adapt the threshold value on each pixel of the
image by using some local statistics of the neighborhood [23].

For each time-frequency bin in the CQT-based spectro-
gram, we first compute the median of the neighborhood given
a window size. We then compare the value of the bin with the
value of its median, and assign a 1 if the former is higher than
the latter, and 0 otherwise, as shown in Equation 1. We use a
window size of 35 frequency channels by 15 time frames.

∀(i, j), M(i, j) = median
i−∆i≤I≤i+∆i
j−∆j≤J≤j+∆j

X(I, J)

∀(i, j), B(i, j) =

{
1 if X(i, j) > M(i, j)

0 otherwise

(1)

The idea here is to cluster the CQT-based spectrogram
into foreground (1), where the energy is locally high, and
background (0), where the energy is locally low, as shown in
Figure 1. This method leads to a compact fingerprint, that can
handle noise degradations, while allowing local variations. It
can be thought as a relaxation of the peak finder used in [4].

Fig. 1. Overview of the fingerprinting stage. The audio signal
is first transformed into a log-frequency spectrogram by us-
ing the CQT. The CQT-based spectrogram is then transformed
into a binary image by using an adaptive thresholding method.

2.2. Matching

In the second stage, template matching is performed between
query and reference fingerprints, by first using the Hamming
similarity to compare all pairs of time frames at different pitch
shifts and handle key variations, and then the Hough Trans-
form to find the best alignment and handle tempo variations.

2.2.1. Hamming Similarity

First, we compute a similarity matrix between the query and
all the references. We propose to use the Hamming similar-
ity between all pairs of time frames in the query and refer-
ence fingerprints. The Hamming similarity is the percentage
of bins that matches between two arrays (1’s and 0’s) [24].

We first compute the matrix product of the query and ref-
erence fingerprints, after converting the fingerprints via the
function f(x) = 2x− 1. We then convert the matrix product
via the function f−1(x) = (x + 1)/2, and normalize each
value by the number of frequency channels in one fingerprint.
Each bin in the resulting matrix then measures the Hamming
similarity between any two pairs of time frames in the query
and reference fingerprints. We compute the similarity matrix
for different pitch shifts in the query. We used a number of
±10 pitch shifts, assuming a maximum key variation of ±5
semitones between a live performance and its studio version.

The idea here is to measure the similarity for both the
foreground and the background between fingerprints, as we
believe that both components matter when identifying audio.



2.2.2. Hough Transform

Then, we identify the best alignment between the query and
the references, which would correspond to a line around an
angle of 45◦ in the similarity matrix, that intersects the bins
with the largest cumulated Hamming similarity. We propose
to use the Hough Transform, based on the parametric repre-
sentation of a line as ρ = x cos θ+y sin θ. The Hough Trans-
form is a technique used to detect lines (or other shapes) in an
image by building a parameter space matrix and identifying
the parameter candidates that give the largest values [25].

We first binarize the similarity matrix by using a thresh-
old. We then compute the Hough Transform, and identify
the (ρ, θ) candidate that gives the largest normalized value in
the space parameter matrix, i.e., the highest overall Hamming
similarity. We used a threshold of 0.6, a ρ range equal to the
number of time frames in the reference fingerprints, and a θ
range of around −45◦ ± 5◦, which corresponds to a number
of ±10 time shifts, assuming a maximum tempo variation of
±20 % between a live performance and its studio version.

The goal here is to identify a short and noisy excerpt, typ-
ically recorded from a smartphone at a live performance, by
comparing it to a database of studio recordings from a known
artist. As far as we know, this is a problem that has not been
really addressed before. Note that since we are dealing with
relatively short queries (<10 seconds) and small databases (≈
50-100 songs per artists), we chose not to use hash functions
as we want the identification to be as accurate as possible.

Fig. 2. Overview of the matching stage. The query and the
reference fingerprints are first compared by using the Ham-
ming similarity. The similarity matrix is then processed to
find the best alignment by using the Hough Transform.

3. EVALUATION

3.1. Dataset

We first build, for different artists of varied genres, a set of
studio references, by extracting full tracks from studio al-
bums, and two sets of live queries, by extracting short ex-
cerpts from live albums and from smartphone videos, using
the same subset of songs from the set of studio references.

3.1.1. Studio References

We first selected 10 different artists of varied genres. For each
artist, we extracted a number of full tracks from several studio
albums, for a total of 389 studio references. The durations of
the audio files range from 01’04” to 11’06”. For each studio
reference, we then derived a fingerprint using our system.

3.1.2. Live Queries

For each artist, we then extracted a number of full tracks from
several live albums, using songs from the studio references,
for a total of 87 full tracks. The durations of the audio files
range from 02’56” to 09’37”. We also extracted the audio
tracks from smartphone videos (posted on YouTube), using
the same songs that were extracted from the live albums. The
durations of the audio files range from 00’22” to 07’24”.

For each audio file, we selected 10 excerpts, for both the
tracks from the live albums and the smartphone videos, for a
total of 870 live queries. We used durations of 6 and 9 sec-
onds. For each artist, we then computed the similarity be-
tween the fingerprints of a live query and all the studio refer-
ences, and measured the accuracy using the top-k matches.

Compared with their studio versions, the live queries have
noticeable audio variations (e.g., instrumentation, key, tempo,
etc.). In addition, the live queries extracted from the live
albums have occasional background noises (e.g., applause,
screams, whistling, etc.), while the live queries extracted from
the smartphone videos have also considerable audio degrada-
tions (e.g., compression, interference, saturation, etc.).

artist genre #studio #live
AC/DC hard rock 36 60
Arcade Fire indie rock 33 100
Bonobo electronic 42 100
Eagles rock 32 90
Foreigner rock 29 100
Jefferson Airplane psychedelic rock 65 40
Led Zeppelin rock 40 80
Phoenix alternative rock 38 100
Portishead electronic 33 100
Suprême NTM French hip hop 41 100
all - 389 870

Table 1. Overview of the dataset.



3.2. Results

We then evaluate our system on the database of reference fin-
gerprints, by processing the live queries from the live albums
and the smartphone videos, for durations of 6 and 9 seconds,
and showing the results for different top-k matches (a match
is declared if the correct reference is in the top-k matches).

3.2.1. Album Queries

As we can see in Tables 2 and 3, the system can achieve a high
accuracy, showing that it is rather robust to audio degrada-
tions and audio variations. Furthermore, allowing more top-k
matches and increasing the duration of the query generally
improve the results. Incidentally, the system also often iden-
tifies the right location of the query in its correct reference.

Results for Bonobo and Foreigner are pretty good, even
though many of their live performances have large tempo vari-
ations (e.g., up to ±20% for Bonobo) or key variations (e.g.,
up to±5 semitones for Foreigner) compared with their studio
versions. Results for Eagles are rather high, as such artists are
fairly consistent between their studio and live performances,
while results for Jefferson Airplane are rather low, as such
artists improvise a lot from one performance to another.

k=1 k=2 k=3 k=4 k=5
AC/DC 0.82 0.88 0.92 0.92 0.93
Arcade Fire 0.70 0.83 0.86 0.89 0.90
Bonobo 0.75 0.85 0.87 0.90 0.95
Eagles 0.88 0.90 0.93 0.97 0.97
Foreigner 0.71 0.82 0.85 0.87 0.93
Jefferson Airplane 0.60 0.70 0.78 0.80 0.83
Led Zeppelin 0.61 0.73 0.76 0.83 0.83
Phoenix 0.84 0.86 0.89 0.92 0.93
Portishead 0.78 0.87 0.89 0.91 0.92
Suprême NTM 0.89 0.97 0.98 0.98 0.98
all 0.77 0.85 0.88 0.90 0.92

Table 2. Live queries from live albums (6 seconds).

k=1 k=2 k=3 k=4 k=5
AC/DC 0.92 0.95 0.95 0.97 0.97
Arcade Fire 0.84 0.92 0.94 0.96 0.97
Bonobo 0.83 0.89 0.92 0.92 0.96
Eagles 0.93 0.97 0.98 0.99 0.99
Foreigner 0.88 0.93 0.93 0.95 0.97
Jefferson Airplane 0.60 0.68 0.78 0.78 0.80
Led Zeppelin 0.74 0.81 0.84 0.85 0.90
Phoenix 0.88 0.92 0.93 0.97 0.98
Portishead 0.92 0.93 0.93 0.93 0.93
Suprême NTM 0.87 0.95 0.96 0.97 0.97
all 0.86 0.91 0.92 0.94 0.95

Table 3. Live queries from live albums (9 seconds).

3.2.2. Smartphone Queries

As we can see in Tables 4 and 5, the system can still achieve
a high accuracy in many cases, confirming that it is rather
robust to audio degradations and audio variations.

Results for Bonobo and Suprême NTM are rather low, be-
cause of considerable audio degradations and audio variations
(e.g., very noisy recordings or the performers speak to the au-
dience). Results for Jefferson Airplane and Led Zeppelin are
particularly low, because of larger audio variations, as such
bands have long been separated, so recent recordings (i.e.,
from smartphones) come from reformations (e.g., Jefferson
Starship) or reunions (e.g., Jimmy Page and Robert Plant).

k=1 k=2 k=3 k=4 k=5
AC/DC 0.65 0.67 0.68 0.80 0.87
Arcade Fire 0.75 0.85 0.87 0.91 0.93
Bonobo 0.49 0.60 0.70 0.75 0.79
Eagles 0.62 0.69 0.73 0.78 0.80
Foreigner 0.50 0.64 0.70 0.78 0.83
Jefferson Airplane 0.23 0.28 0.33 0.35 0.43
Led Zeppelin 0.24 0.36 0.43 0.51 0.55
Phoenix 0.57 0.66 0.71 0.77 0.78
Portishead 0.64 0.77 0.80 0.82 0.86
Suprême NTM 0.23 0.32 0.40 0.48 0.53
all 0.51 0.60 0.66 0.72 0.76

Table 4. Live queries from smartphone videos (6 seconds).

k=1 k=2 k=3 k=4 k=5
AC/DC 0.70 0.83 0.85 0.87 0.93
Arcade Fire 0.79 0.86 0.89 0.91 0.93
Bonobo 0.60 0.75 0.83 0.89 0.93
Eagles 0.70 0.77 0.88 0.91 0.91
Foreigner 0.68 0.83 0.86 0.86 0.88
Jefferson Airplane 0.40 0.53 0.55 0.60 0.63
Led Zeppelin 0.28 0.39 0.48 0.53 0.54
Phoenix 0.67 0.76 0.82 0.86 0.87
Portishead 0.80 0.86 0.87 0.87 0.87
Suprême NTM 0.30 0.42 0.45 0.51 0.55
all 0.61 0.71 0.76 0.79 0.81

Table 5. Live queries from smartphone videos (9 seconds).

4. CONCLUSION

We proposed an audio fingerprinting system that can deal with
live version identification by using image processing tech-
niques. The system can achieve high accuracy in many cases,
showing that it is rather robust to audio degradations and au-
dio variations, while still being relatively fast, as it takes about
10 seconds to process a query, when implemented in Matlab
on a laptop with a 2.53 GHz processor and 8 GB of RAM.
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