
PAPERS

Weighting-Function–Based Rapid Mapping of
Descriptors to Audio Processing Parameters*

ANDREW TODD SABIN
(a-sabin@northwestern.edu)

Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL

AND

ZAFAR RAFII AND BRYAN PARDO
(zafarrafii@u.northwestern.edu) (pardo@northwestern.edu)

EECS Department, Northwestern University, Evanston, IL

Complex interfaces for audio processing tools can prevent novices from achieving their

desired modifications. Here we adapt a correlational method used widely in psychoacoustics to

quickly map from high-level language-based descriptors (such as ‘‘warm’’) to audio processing

parameters. This allows automated construction of simpler interfaces for audio processing

tools. This approach was applied to and evaluated on an audio equalizer and an artificial

reverberator.

0 INTRODUCTION

In recent decades audio production tools have increased

in performance and decreased in price. These trends have

enabled an increasingly broad range of musicians, both

professional and amateur, to use technology to create

music. These tools can be complex (often with more than

20 parameters; see Fig. 1) and conceptualized in param-

eters that are unfamiliar to many users. As a result potential

users may be discouraged from using these tools, or may

not use them to their fullest capacity.

The parameters provided to users in audio production

tools generally reflect the algorithm used to manipulate the

sound rather than how manipulating that parameter will

influence the way in which that sound is perceived. For

example, the parameters of an audio equalizer interface

(see Fig. 1) might provide the user with the ability to

increase the gain (in dB) above a particular frequency (in

Hz). However, the perceptual effect of that manipulation

might be to make the sound more ‘‘bright.’’ We contend

that many users approach an audio production tool with an

idea of the perceptual effect that they would like to bring

about, but lack the technical knowledge to understand how

to achieve that effect using the interface provided.

In some cases a musician can hire a professional

recording engineer and verbally describe the desired

effect (for example, ‘‘make it sound like I’m playing in a

church’’). The engineer will attempt to interpret the

description to create that effect (perhaps, ‘‘in a church’’
means ‘‘increase reverberation time’’). This approach can

be expensive, since it requires paying a human expert by

the hour. It is also limited by the musician’s ability to

convey a desired effect with language, the engineer’s

ability to translate that language into parametric changes,

and the extent to which the two individuals agree on the

parametric correlates of that descriptor.

A better solution would be an audio production tool

that lets the musician manipulate the sound using the

terms that he or she is more comfortable with (for

example, a ‘‘bright’’ or ‘‘church-like’’ slider). This would

free the musician to focus on achieving the desired

perceptual effect, rather than on learning the processing

parameters. Toward this end some researchers have

designed systems in which the user manipulates sounds

in a space labeled with common descriptors rather than

algorithm parameters [1]–[3]. In one such approach [1]

researchers trained a self-organizing map [4] to represent

common equalizer settings in a two-dimensional space

organized by similarity, and labeled the space with

descriptors that they felt were intuitive. Other researchers

have designed systems that allow the user to manipulate

sounds in terms of perceptual dimensions, which in turn

control processing parameters (see, for example, [5], [6]).

While this fixed descriptor-to-parameter mapping

approach has demonstrated some success, it too is limited

by the extent to which there is agreement across*Manuscript received 2010 April 11; revised 2011 March 10.
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individuals on the parametric correlates of descriptors.

However, while there is some across-individual agree-

ment in the correlates of some descriptors [7], there is also

considerable individual-to-individual variation. For ex-

ample, it appears that listeners from the United States and

the United Kingdom differ in how they use descriptors

such as ‘‘warm’’ and ‘‘clear’’ to describe the sound of pipe

organs [8]. Further complicating the use of a fixed

descriptor-to-parameter mapping, the same parameter

settings might lead to the perception of different

descriptors depending on the sound source. For example,

a boost to the midrange frequencies might ‘‘brighten’’ a

sound with energy concentrated in the low frequencies

(such as a bass guitar), but might make a more broad-band

sound (such as a piano) to seem ‘‘tinny.’’
This problem of idiosyncrasies in descriptor-to-param-

eter mapping can be mitigated if the user’s preference is

learned on a case-by-case basis. To our knowledge

procedures that learn the user’s preference for audio

processing on a case-by-case basis have been largely

limited to setting the parameters of hearing aids and

cochlear implants [9]–[16]. Perhaps the most studied

technique of this type is the modified simplex procedure

[13]. This approach requires the user to judge a series of

paired examples differing in high- and low-frequency

gain. These judgments guide the search to converge on

the desired setting. While this procedure can be relatively

quick in the case of two frequency bands [12], the number

of potential equalization curves explored is quite small.

Although this simplex procedure could theoretically be

expanded to include more variables (such as the

processing parameters of a parametric equalizer), the

time to convergence grows exponentially with the number

of parameters, quickly making this design unrealistic. For

example, ten parameters that can each take on ten values

results in 1010 (ten billion) combinations, making a

simplex or a full factorial design using behavioral data

impossible. Indeed most of the approaches that learn a

user’s equalizer preference on a case-by-case basis only

explore a small range of parameter settings (see, for

example, [11], [16]) and therefore would probably not be

sufficient for music production.

In the current investigation we begin to examine the

extent to which a procedure from psychoacoustics can be

used to quickly learn a user’s descriptor-to-parameter

mapping on a case-by-case basis, while still exploring a

wide range of parameter settings. The current approach is

an adaptation of the weighting function procedure, used

widely in psychoacoustics to determine the relative

influences of different stimulus components on hearing

performance [17–22]. For example, this procedure has

previously been used to examine how different spectral

regions are weighted during speech sound identification.

Listeners are asked to identify speech sounds in back-

Fig. 1. Representative interface for audio equalizer with 21 virtual potentiometers and 12 virtual switches.
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ground noise, while the signal-to-noise ratio (SNR) in each

frequency band varies randomly from trial to trial. Then,

on a band-by-band basis, the linear fit between the signal-

to-noise ratio in that band and the performance on the

speech sound identification task is computed. The central

assumption is that the relative extent to which that band

influences speech sound identification will be reflected in

the steepness of the slope of the fitted line. A band that

strongly influences perception will have a steep SNR

versus performance slope, while a band with little

influence will have a shallow slope. The array of slopes

across all frequency bands is called the weighting function.

The primary goal of this investigation is to apply this

correlational approach to mapping from descriptors to the

parameters of an audio processor (either an equalizer or

an artificial reverberator). In this case each correlation is

between an audio processing parameter and a user-

generated rating. User ratings indicate the extents to

which the processed sounds exemplify what is meant by a

descriptor such as ‘‘warm’’ or ‘‘tinny.’’ While it is likely

that a more complex classifier would be more successful

at learning the descriptor-to-parameter mapping, the

weighting function approach is a reasonable starting

point due to its simplicity and its previous success in

characterizing psychoacoustical data.

In the remainder of this paper we apply this approach to

map quickly from high-level language-based descriptors

(such as ‘‘warm’’) to the processing parameters for two of

the most commonly used audio processing tools—equal-

izers and reverberators. We then report the results of two

user studies to measure the effectiveness of this approach.

1 AUDIO EQUALIZER INTERFACE DESIGN

Audio equalizers are perhaps the most common type of

processing tool used in audio production. Equalizers

affect the timbre and audibility of a sound by boosting or

cutting the level in focused regions of the frequency

spectrum. Commercial equalizers often have complex

interfaces (see Fig. 1). Here we simplify this interface by

building a single personalized controller that manipulates

all frequency bands simultaneously. This new interface is

designed to let the user modify a sound in terms of a

subjective perceptual descriptor, such as ‘‘warm.’’

The overview of our approach is as follows:

1) The user selects an audio file and a descriptor (such

as ‘‘warm’’ or ‘‘tinny’’).

2) The audio file is processed once with each of N

probe equalization curves, making N examples.

3) The user rates how well each example sound

captures the descriptor.

4) A model of the descriptor is built, estimating the

influence of each frequency band on the user

response by correlating user ratings with the

variation in gain of each band over the set of

examples.

5) The system presents a new controller to the user (for

example, a slider) that controls filtering of the audio,

based on the learned model.

1.1 Stimulus Processing

The unmodified sound file is first passed through a bank

of gammatone bandpass filters designed to mimic the

human peripheral auditory system [23] with center

frequencies. The center frequencies of these channels

are distributed evenly on an ERBN scale [24, eq. 1],

ERBN number ¼ 21:4 log10ð4:37Fþ 1Þ ð1Þ

where F is frequency in kHz. The ERBN scale was derived

to ensure that a change of 1 ERBN corresponds to a change

in frequency equivalent to one critical band [24].

Therefore a uniform distribution of ERBN values likely

corresponds to a uniform spatial distribution of best

frequencies along the basilar membrane of the cochlea. We

use 40 channels with center frequencies ranging from 20

Hz to 19.7 kHz, or on ERBN of 0.78–41.5, in steps of 1.04.

Each of the 40 bandpass filters (channels) is designed to

have a bandwidth and shape similar to the auditory filter

(critical band). To remove any filter-specific time delay,

the filtered sounds are time reversed, passed through the

same filter, and time reversed again. Next the gain of each

channel is adjusted according to a trial-specific probe

equalization curve. Once the gain is adjusted, the

channels are summed together, shaped by 100 ms on/off

ramps, and played to the listener binaurally over

headphones (Sony MDR-7506). Each processed sound

is scaled to have the same rms amplitude as the

unmodified sound file, and users are free to adjust the

overall level.

1.2 Building the Probe Equalization Curve Set

The weighting function method requires a good

estimate of the relationship between gain and rating in

each frequency channel. To create each probe equaliza-

tion curve, we concatenate Gaussian functions side by

side until the array reaches a length of at least 80 gain

values. The maximum amplitude of each Gaussian

function is drawn randomly from a uniform distribution

spanning �20 to 20 dB, and the bandwidths are drawn

randomly from a uniform distribution spanning 5 to 20

channels. We operationally define this bandwidth as the

distance between the locations along the Gaussian

function that cross the amplitude value corresponding to

1/20 of the maximum. Finally to randomize the center

frequencies of the Gaussian peaks, we randomly select 40

contiguous gain values from the array of 80. Therefore

each probe equalization curve is comprised of 2–8 side-

by-side Gaussian functions with random amplitudes,

bandwidths, and center frequencies.

We developed a greedy method to select a subset of

25 filters from the library that has a wide spread of

within-channel gains. This was done as follows. We first

generate a library of 1000 random probes, so that our

initial set has a wide diversity of shapes. We then select
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a random probe curve f from our library of 1000 curves

L. We place this in the empty set of probe curves P.

Given a set of probe curves P, a set of channels C

(frequency bands), and a channel c drawn from this set,

we denote the standard deviation of channel c over this

set of curves by stdc(P). We then select the next filter to

add to the probe set P in accordance with the value

function described by

vð f Þ ¼ 1

jCj
X

c2C

stdcðP [ ff gÞ: ð2Þ

This function maximizes the mean of the standard

deviations over all channels.

The next filter curve to add to the probe set is chosen by

picking the one with the highest value,

fnext ¼ arg max
|fflfflfflffl{zfflfflfflffl}

f2L

½vð f Þ�: ð3Þ

Our second concern was to ensure that the distribution of

within-channel gains would be comparable across chan-

nels. However, we noticed that when Eq. (3) is used to

select probes, the distribution of gains differed consider-

ably across channels. To address this problem, we impose

a penalty p(f) for across-channel distribution differences

in the probe set,

pð f Þ ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jCj
X

c2C

½iqrcðP [ ff gÞ � iqrlðP [ ff gÞ�2
s

:

ð4Þ

Here we denote the interquartile range (the difference

between the 25th and 75th percentiles) of gains in channel

c by iqrc. The mean interquartile range across all channels

is denoted iqrl, and G is a hand-tuned constant, set to

0.25. This penalty is equivalent to 0.25 times the across-

channel standard deviation of within-channel interquartile

ranges. The entire expression used to select a new probe

curve is given by the equation

fnext ¼ arg max
|fflfflfflffl{zfflfflfflffl}

f2L

½vð f Þ � pð f Þ�: ð5Þ

We repeat filter selection using Eq. (5) until we have 25

elements in the probe set P.

1.3 User Rating

For each trial the user hears the audio modified by a

probe equalization curve. The interface displays a slider

labeled ‘‘very opposite’’ (�1), ‘‘somewhat opposite’’

(�0.5), ‘‘neutral’’ (0), ‘‘somewhat’’ (0.5), and ‘‘very’’ (1).

The user is instructed to give feedback by moving the

slider to the spot that describes how well the sound

corresponds to the descriptive term shown. There was no

limit on the number of times the user could replay the

modified sound. Once the user was satisfied with the

slider position, he/she clicked a button to move on to the

next trial.

1.4 Correlating User Feedback to Audio

We use listener evaluations of the probe curves to

compute a weighting function that represents the relative

influence of each frequency channel on the descriptive

word. Given N evaluations, there are N two-dimensional

data points per frequency channel. For each point the gain

applied to the channel forms the x coordinate and the

listener rating of how well the sound exemplifies the

descriptor is the y coordinate (Fig. 2). The central

assumption of this method is that the extent to which a

channel influences the perception of the descriptor will be

reflected in the direction and steepness of the slope of a

line fit to these data. We therefore compute the slope of

the regression line fit to each channel’s data. A single

multivariate linear regression that simultaneously relates

all channels to the rating will not be meaningful in this

situation because the gains in adjacent channels are highly

correlated to each other, leading to the problem of

multicollinearity [25].

Examples of these regression lines calculated for a run

of 75 user ratings (three sets of 25) are plotted for three

channels in insets A through C of Fig. 2. The channels

represented in A and B weigh heavily on the descriptor,

albeit in opposite directions, while the channel represent-

ed in C has little weight on the descriptor. Following the

terminology used in psychoacoustics, the array of

regression line slopes across all channels is referred to

as the weighting function (Fig. 2, curve D). In all cases

the weighting function is normalized by the slope with the

largest absolute value.

Once the weighting function is learned, a new on-

screen slider is provided. The slider position determines

the scaling of the weighting function. The spectrum of the

sound is shaped by the weighting function multiplied by a

value of between�20 (‘‘very opposite’’) and 20 (‘‘very’’).
Thus the maximum boost or cut for any channel ranges

from 20 to �20 dB.

Fig. 2. Weighting function calculation. A–C—relationship

between gain and ratings for three frequency channels; D

(main panel)—learned weighting function for sound file/

descriptor combination of drums/warm.
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2 AUDIO EQUALIZER EXPERIMENT

We conducted a behavioral study to examine the

effectiveness of this approach for building an interface for

equalization. Nineteen listeners (mean age 28) participat-

ed. All reported normal hearing and were native English

speakers. Thirteen listeners reported at least three years of

experience playing a musical instrument. We observed no

systematic differences between the results for musicians

and nonmusicians, and therefore all analyses are reported

on the entire group. The stimuli were five short musical

recordings of solo instruments: a saxophone, a female

singer, a drum set, a piano, and an acoustic guitar. Each 5-

second sound was recorded at a local recording studio at a

sampling rate of 44.1 kHz and bit depth of 16.

2.1 Procedures

Listeners were seated in a quiet room with a computer

that controlled the experiment and recorded listener

responses. The stimuli were presented binaurally over

headphones. Each listener participated in a single one-

hour session.

Audio file/descriptor pairs were chosen for listeners.

Each session was grouped into five runs, one for each audio

file/descriptor combination (such as, saxophone/bright).

The descriptors ‘‘bright,’’ ‘‘dark,’’ and ‘‘tinny’’ were each

tested once per listener. The descriptor ‘‘warm’’ was tested

twice per listener with the recordings of the drum set and

the female singer. The remaining three descriptors were

randomly assigned to the remaining recordings. The five

runs were tested in a randomly determined order.

In a single trial, the audio file was modified by a single

probe equalization curve and then presented to the listener

to be rated. For each run, we generated two sets of 25

unique probe curves (50 in total) using the procedure in

Section 1.2. We then duplicated 25 of these curves and

inserted them in the set, for a total of 75 curves. This was

done to measure each listener’s self-consistency, as

described in Section 2.2.2. The third set was comprised

of a unique set of 25 new probe curves. These sets were

presented to participants in a random order.

2.2 Results

2.2.1 Weighting Functions

The weighting functions of eight representative listen-

ers are plotted in Fig. 3, showing that the descriptor-to-

parameter mapping was consistent for a given listener/

descriptor combination. Each row in Fig. 3 is an individual

listener, and each column is a different descriptor (though

‘‘warm’’ was tested twice, each time with a different sound

file). In each of the plots, the squares along the line

represent the average weight across all three subsets of 25

trials associated with each frequency band, and the error

bars represent one standard error of the mean. The small

error bars indicate that the weighting function shape was

largely consistent across repetitions (evaluated further in

Section 2.2.2).

Overall there was some across-individual agreement in

descriptor-to-parameter mapping, but there were also

considerable individual differences. The weighting func-

tions in Fig. 3 indicate that ‘‘bright’’ had a fairly

consistent shape across individuals and was associated

with a positive spectral tilt. The weights generally return

to zero below 250 Hz because the sound files (voice, sax,

or guitar) had little energy below that frequency. In

contrast the descriptor ‘‘warm’’ varied dramatically across

listeners. For example, compare ‘‘warm’’ rated on a voice

between listeners L1 and L2 (Fig. 3, left column, top two

rows). For listener L1 ‘‘warm’’ is associated with a large

increase to the low frequencies, a modest cut to the

middle frequencies, and little change to the high

frequencies. For listener L2 ‘‘warm’’ is associated

primarily with a cut to the low frequencies, and a modest

boost to the middle and high frequencies. Similarly,

different listeners use different words to refer to similar

weighting functions. For example, it appears that ‘‘dark’’
for listener L7 (Fig. 3, row 7, middle column) is similar in

meaning to ‘‘tinny’’ for listener L6 (Fig. 3, row 6, fourth

column). Finally it appears that the sound source itself has

some influence on the shape of the weighting function.

Consider listener L7 where ‘‘warm’’ in reference to a

voice (Fig. 3, row 7, left column) means nearly the

opposite of ‘‘warm’’ in reference to drums (Fig. 3, row 7,

second column). In all these examples the weighting

function error bars are relatively small, indicating that the

functions reflect actual descriptor-to-parameter mapping,

rather than patterns that emerged randomly.

2.2.2 Statistics

By comparing paired human responses to the same

probe curves, we can further evaluate the consistency in

individual listener responses. To assess consistency, we

computed the Pearson correlation coefficient r between

two responses to the same probe curves. The value of r

can range from 1 (responses 1 and 2 are perfectly

proportional) to 0 (no relation between responses 1 and 2)

to �1 (responses 1 and 2 are perfectly and inversely

proportional). The distribution of those values across all

95 (19 listeners 3 5 runs) audio file/descriptor pairs is

plotted in the left box of Fig. 4. Here the median

correlation coefficient of 0.69 indicates that the users

generally gave consistent responses, though there was

room for improvement.

Second, to assess the predictiveness of the weighting

functions, we computed correlations between machine-

generated ratings and user ratings. We first computed the

weighting function using the responses to the 50 trials used

in the consistency analysis. We then used that weighting

function to create machine ratings for each of the trials on

the unique set of 25 probes. A machine rating for each probe

was generated by multiplying each gain value in the probe

by its associated weight, and summing those values across

all channels. The middle box in Fig. 4 shows the

distribution of the machine response versus user response

correlation coefficients computed across all 95 runs. The
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median value of 0.67 is comparable to that of the

consistency analysis and therefore suggests that the

weighting function predicts listener ratings nearly as

accurately as prior ratings of the same probe by the same

listener.

Once the weighting function was learned for each

sound/descriptor pair, the listener was provided a slider to

modify the sound, where the position of the slider

determined the scaling of the weighting function, which

was then applied as an equalization curve (see Section

1.4). After listeners heard sounds modified by the scaled

versions of the weighting function, they indicated how

well the weighting function captured their intended

meaning by placing a new on-screen slider in the range

�1 (learned the opposite) to 0 (did not learn) to 1 (learned

perfectly). The distribution of those values is plotted in

the rightmost box plot of Fig. 4. The median value was

0.75, indicating that the weighting function typically

captured user understanding of the descriptor, though

there is some room for improvement.

Finally to determine the number of listener responses

required to reach asymptotic performance, we computed

the weighting function after each of the 75 user ratings.

We then used the weighting function generated after each

trial to create machine ratings for all 75 trials, and

correlated those ratings with the actual listener ratings.

Fig. 5 shows the distribution of all machine versus listener

correlation coefficients plotted as a function of the

number of responses used to generate the weighting

function. The bottom of the grey area indicates the 25th

percentile, the top indicates the 75th percentile, and the

black line is the 50th percentile (the median). Visual

inspection indicates that the weighting function reached

asymptotic performance at around 20 trials. The higher

correlation coefficients appear to asymptote earlier (;15

trials) than the lower correlation coefficients (;30 trials).

Fig. 3. Subset of equalization weighting functions. Rows—listeners L1–L8; columns—descriptors. Each point along line is the

mean weight of that frequency channel computed across 3 subsets of 25 trials, with error bars reflecting one standard error of

that mean.
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3 REVERBERATOR INTERFACE DESIGN

To test the generality of this weighting-function-based

approach we also applied it to artificial reverberation.

Along with equalization, reverberation is one of the most

widely used audio processing tools. Natural reverberation

is caused by the reflections of a sound in an enclosed

space causing a large number of echoes to build up and

then slowly decay as the sound is absorbed by the walls

and air. The reflections influence the spatial perception of

the sound, informing the listener of the environment in

which the sound occurred [26]. Artificially reverberation

can be simulated using multiple feedback delay circuits to

create large, decaying series of echoes [27].

3.1 Stimulus Processing

We use a digital reverberator (Fig. 6) with six comb

filters in parallel and two all-pass filters in series, one at

each channel. Each of the filters is characterized by a delay

factor dk and a gain factor gk (k ¼ 1, 2, . . . , 8). A small

difference m is introduced between the delays of the all-

pass filters to ensure a difference between the left and right

channels. Finally a low-pass filter of cutoff frequency fc
and a gain parameter G are added at each channel.

3.2 Building the Probe Reverberation Set

For the reverberator, we chose to map user ratings onto

a set of measures derived from the reverberation impulse

response, rather than higher level parameters such as

‘‘room size.’’ We made this decision so that our results

could generalize across reverberators (there is no

universal mapping of parameters to ‘‘room size’’). We

selected five measures that have previously been used to

describe reverberation.

1) Reverberation time (RT) is defined as the time in

seconds required for the reflections of a direct sound to

decay by 60 dB below the level of the direct sound.

Most artificial reverberators provide a direct control

for this parameter [26].

2) Echo density (ED) is the number of echoes per second

between 0 and 100 ms [27]. Echo density focusing on

the first 100 ms is loosely related to the common

artificial reverberation parameter predelay (the amount

of time between the direct sound and the first

reflection). All else being equal, as predelay increases

up to 100 ms, echo density will decrease.

3) Clarity (C) is defined as the ratio in dB of the energies

in the impulse response before and after time t [28].

Here we evaluated clarity at t ¼ 0 versus t . 0.

Therefore our measure of clarity is proportional to the

direct-to-reverberant ratio, which is related to the wet/

dry control on an artificial reverberator.

4) Central time (CT) is defined as the ‘‘center of gravity’’
of the energy in the temporal impulse response [28].

This value is proportional to the reverberation time if

the energy decay function has a consistent shape.

5) Spectral centroid (SC) is defined as the ‘‘center of

gravity’’ of the energy in the magnitude spectrum of

Fig. 4. Population-level statistics of equalizer experiment.

Each boxplot represents the distribution of that statistic for

95 sound/descriptor pairs. Each box contains upper quartile,

median, and lower quartile values, with whiskers extending

to maximum and minimum values. Outliers were removed.

Fig. 5. Correlation of machine responses to user responses as

a function of number of responses used to compute weighting

function. Weighting function reaches asymptotic perfor-

mance after 10–30 ratings. Fig. 6. Digital reverberator used in study.
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the impulse response [29]. This value is related to the

low-pass filter cutoff frequency parameter on an

artificial reverberator.

Unlike with the equalizer, here no effort was made to

ensure that across-probe differences were maximized.

Maximizing across-probe differences in this case is

challenging because the relative saliency of each impulse

response measure is not predictable a priori. Instead

reverberation probes are chosen randomly on a trial-by-

trial basis, with the constraints that reverberation times

ranges from 0.02 to 2.5 s, the echo density ranges from

100 to 8000 echoes/s, the clarity ranges from �30 to 10

dB, the central time ranges from 0.01 to 0.25 s, and the

spectral centroid ranges from 35 to 9500 kHz.

3.3 User Rating

After hearing each reverberation setting, the user

moves the slider to indicate how well it (the processed

sound) fits the descriptive word. The slider is labeled with

‘‘not at all’’ (�1), so-so (0), and ‘‘very’’ (1). When the user

is satisfied with the slider position, he/she clicks a button

to move on to the next trial. There was no limit on the

number of times that a user could replay the sound.

3.4 Correlating User Feedback to Audio

As with the equalizer, our central assumption is that the

extent to which a change in a given reverberation measure

influences the perception of the descriptor will be

reflected in the direction and magnitude of the slope

relating that measure to the user ratings. Each measure

was normalized by its upper constraint. The five slopes

corresponding to the five reverberation measures com-

prise the weighting function. In the example in Fig. 7 the

user rated how ‘‘church-like’’ a sound was. In this case

reverberation time and central time had a strong positive

correlation with ratings, while the other four reverberation

measures had little or no correlation to responses.

4 REVERBERATOR EXPERIMENT

Seventeen listeners (average age 27) participated in the

reverberation experiment. All reported normal hearing and

were native English speakers. Three listeners had little or

no musical background and 14 had a strong musical

background (more than 3 years of experience). We

observed no systematic differences between musicians

and nonmusicians, and therefore all analyses are reported

on the entire group. All audio examples were created using

a 5.5-s recording of an unaccompanied singing male

sampled at 44.1 kHz.

4.1 Procedures

The overall procedure was very similar to that

described in the equalization experiment. Each listener

rated the same five audio descriptors: ‘‘boomy,’’ ‘‘church-

like,’’ ‘‘bright,’’ ‘‘clear,’’ and ‘‘bathroom-like’’ in that

order. For each descriptor the listener gave 60 ratings, 25

of which were duplicates.

4.2 Results

4.2.1 Weighting Functions

The weighting functions of eight representative listen-

ers plotted in Fig. 8 show that the descriptor-to-parameter

mapping was largely consistent for a given listener/

descriptor combination. Each row in this figure is an

individual listener, and each column is a different

descriptor. In each plot, the heights of the bars represent

the average weight associated with each reverberation

measure across three subsets of 20 trials, and the error

bars represent one standard error of the mean. The

generally small error bars indicate that the weighting

function shape was largely consistent across repetitions.

As with the equalizer, there was some across-individual

agreement in descriptor-to-parameter mapping, but also

considerable individual differences. ‘‘Boomy’’ and

‘‘church’’ (Fig. 8, first and second columns) tend to be

associated positively with reverberation time, while

‘‘bright’’ (Fig. 8, third column) tends to be associated

positively with spectral centroid. In contrast the descriptor

‘‘bathroom’’ varied dramatically across listeners. For

example, compare ‘‘bathroom’’ from listeners L1 and L6

(Fig. 8, rows 1 and 6). For listener L1 ‘‘bathroom’’ is

negatively correlated with reverberation time, central

time, and spectral centroid, while for listener L6

‘‘bathroom’’ is positively correlated with reverberation

time, and there is little influence of spectral centroid.

4.2.2 Statistics

Statistical analysis of the user data followed the same

general pattern as that of the equalizer. We first assessed

the consistency in user responses by computing the

Fig. 7. One participant’s learned weighting function for

descriptive term ‘‘church-like.’’ Each dot represents a single

rating of an audio file manipulated by reverberator. Slope of

each line—weight applied to reverberation measure in

question.
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Pearson correlation coefficient r for the 25 instances

where there were two responses to the same probe

reverberation setting. The distribution of those values

across all 85 (17 listeners 3 5 runs) runs is plotted in the

left box of Fig. 9. The median correlation coefficient of

0.76 indicates that the users gave consistent responses,

which were slightly more consistent than those to the

equalization curves.

Next, to determine the predictiveness of the weighting

functions we computed correlations between machine-

generated ratings and user ratings. We first computed a

weighting function using the responses to the first 30

ratings, and used them to predict the responses to the next

30 ratings. A machine rating for each probe was generated

by multiplying each reverberation measure by its weight

and then summing those values together. The right box in

Fig. 9 shows the distribution of the machine versus user

response correlation coefficients computed across all 85

runs. The median value of 0.74 is comparable to that of

the consistency analysis and therefore suggests that the

weighting function might predict listener ratings as

accurately as prior ratings of the same stimulus by the

same listener.

Finally to determine the number of listener responses

required to reach asymptotic performance, we computed

the weighting function after each of the 60 user ratings.

We then used the weighting function generated after each

trial to create machine ratings for all 60 trials and

correlated them with the user ratings. Fig. 10 shows the

distribution of all machine versus user correlation

coefficients plotted as a function of the number of

responses used to generate the weighting function. The

bottom of the grey area represents the 25th percentile, the

top represents the 75th percentile, and the black line is the

50th percentile (the median). The weighting function

reached asymptotic performance very quickly (10–15

trials) with the higher correlation coefficients reaching

asymptote earlier than the lower correlation ones. The

Fig. 8. Subset of reverberation weighting functions. Rows—listeners L1–L8; columns—descriptors. Height of bar is the mean

weight of that measure computed across 3 subsets of 20 trials, with error bars reflecting one standard error of that mean. RT—

reverberation time; ED—echo density; C—clarity; CT—central time; SC—spectral centroid.
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quicker time course of the reverberator than the equalizer

might be due to the fact that there were fewer parameters

in the reverberator (five reverberation measures versus 40

frequency bands).

5 SUMMARY AND CONCLUSIONS

This investigation was primarily designed to examine

how effective a simple method adapted from psycho-

acoustics (see [17]–[22]) is at capturing a given user’s

descriptor-to-parameter mapping. Despite the simplicity

of the current approach, it seemed to be largely

successful, and it provides a baseline against which

future descriptor-to-parameter classifiers can be evaluat-

ed. The ‘‘machine’’ ratings of audio examples created

using the learned weighting function were nearly as

predictive of the user responses as were a separate set of

user responses to the same sounds. We believe that this

indicates that our procedure captured most of the

meaningful information in the user responses. The

weighting functions appeared to reach asymptote in ,

25 ratings (; 2 minutes), indicating that this procedure is

rapid enough to be incorporated into the music creation

process.

Perhaps the most significant factor that limits the

current approach lies in the extent to which a line captures

the relationship between descriptor and parameter. To

explore this idea it is helpful to make a distinction

between two different kinds of descriptors: those that

have a monotonic relationship to parameters, and those

that have a nonmonotonic relationship. In this formulation

‘‘bright’’ is likely to be a monotonic descriptor because

the sound will become more and more ‘‘bright’’ as the

treble-to-bass ratio increases. This descriptor can be

contrasted with a nonmonotonic descriptor such as ‘‘full,’’

which, for the sake of demonstration, might mean a slight

increase in the low-frequency gain. In this case small

increases in the low-frequency gain will make the sound

become more ‘‘full,’’ but then beyond a certain point

further increases will make the sound become less ‘‘full.’’
The approach described here will only be effective for

monotonic descriptors, because it is based on linear

regression. If there is a parameter that is positively

correlated to the descriptor rating over one range of

parameter values, and negatively correlated over another

range (such as a quadratic function), the slope of the fitted

line will miss the actual relationship. In the current

experiments we specifically selected descriptors that we

thought would be monotonic. Even among monotonic

descriptors it is still possible that a line is not the best fit

between the parameters and the ratings. For example, the

parameter might have a logarithmic relationship to the

descriptor rating. The present work indicates that in many

cases a line is sufficient; however, in future work it might

be helpful to determine the effectiveness of different

functions.

Furthermore this method assumes that each parameter

is independent in how it relates to the descriptor, and it

ignores any parameter interactions. This may become

problematic with nonlinear processing devices where the

effects of certain parameters are dependent on others (for

example, compressor threshold and ratio). A more

complex classifier could attempt to model higher order

terms as well as interactions. One such approach, which

might be particularly useful, is response surface method-

ology [30].

The individual differences in descriptor-to-parameter

mapping observed here underscore the need for a method,

such as the one presented here, that learns the user’s

preferences on a case-by-case basis. The weighting

functions displayed in Figs. 3 and 8 show that across

individuals the same word can correspond to different

modifications, and different words can correspond to the

Fig. 9. Population-level statistics of reverberator. As in Fig.

4, each boxplot represents distribution of that statistic across

85 runs.

Fig. 10. Correlation of machine responses to user responses

as a function of number of responses used to compute

weighting function. Weighting function reaches asymptotic

performance after 10–25 ratings.
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same modification. Even within an individual, the same

word can correspond to a different modification across

different sound files (see ‘‘warm,’’ Fig. 3). This idiosyn-

crasy points to a weakness in fixed descriptor-to-

parameter mapping, or the approach where the client

uses descriptors to communicate a desired change to a

recording engineer. The two individuals might have

different associations with the same descriptor. A

potentially more efficient form of communication could

involve the creation of a weighting function that is tuned

to the client’s descriptor on a particular track.

This work can move forward in a number of ways. First

one could explore concepts that require combinations of

audio processing devices (such as equalization and

reverberation together). Second other learning approaches

to capture concepts that are nonmonotonic in the space of

the controller parameters need to be explored. Finally as

the number of users of these audio production tools

increase, we expect patterns to form in the descriptors they

choose to train the tools to manipulate. For example, many

may choose to define ‘‘warmth’’ as an audio descriptor,

while few might select ‘‘buttery.’’ The commonalities and

differences in the chosen concepts and their mappings will

provide insight into the concepts that form the basis of

musical creativity in individuals and within communities.

One could imagine forming an automatic synonym map,

based on the commonalities between controller mappings

(for example, your ‘‘bright’’ may be my ‘‘tinny’’). We will

pursue these directions in future work.
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