Scheme with Classes, Mixins, and Traits

Matthew Flatt', Robert Bruce Findler?, and Matthias Felleisen?

! University of Utah
2 University of Chicago
3 Northeastern University

Abstract. The Scheme language report advocates language design as the com-
position of a small set of orthogonal constructs, instead of a large accumulation
of features. In this paper, we demonstrate how such a design scales with the ad-
dition of a class system to Scheme. Specifically, the PLT Scheme class system
is a collection of orthogonal linguistic constructs for creating classes in arbitrary
lexical scopes and for manipulating them as first-class values. Due to the smooth
integration of classes and the core language, programmers can express mixins
and traits, two major recent innovations in the object-oriented world. The class
system is implemented as a macro in terms of procedures and a record-type gen-
erator; the mixin and trait patterns, in turn, are naturally codified as macros over
the class system.

1 Growing a Language

The Revised® Report on the Scheme programming language [20] starts with the famous
proclamation that “[p]Jrogramming languages should be designed not by piling feature
on top of feature, but by removing the weaknesses and restrictions that make additional
features appear necessary.” As a result, Scheme’s core expression language consists
of just six constructs: variables, constants, conditionals, assignments, procedures, and
function applications. Its remaining constructs implement variable definitions and a few
different forms of procedure parameter specifications. Everything else is defined as a
function or macro.

PLT Scheme [25], a Scheme implementation intended for language experimenta-
tion, takes this maxim to the limit. It extends the core of Scheme with a few constructs,
such as modules and generative structure definitions, and provides a highly expressive
macro system. Over the past ten years, we have used this basis to conduct many lan-
guage design experiments, including the development of an expressive and practical
class system. We have designed and implemented four variants of the class system, and
we have re-implemented DrScheme [13]—a substantial application of close to 200,000
lines of PLT Scheme code—in terms of this class system as many times.

Classes in PLT Scheme are first-class values, and the class system’s scoping rules
are consistent with Scheme’s lexical scope and single namespace. Furthermore, the
class system serves as a foundation for further macro-based explorations into class-like
mechanisms, such as mixins and traits.

A mixin [11] is a class declaration parameterized over its superclass using lambda.
Years of experience with these mixins shows that they are practical. Scoping rules for

methods allow both flexibility and control in combining mixins, while explicit inheri-
tance specifications ensure that unintentional collisions are flagged early.

In this setting, a trait [29] is a set of mixins. Although mixins and traits both rep-
resent extensions to a class, we distinguish traits from mixins, because traits provide
fine-grained control over individual methods in the extension, unlike mixins.

Last but not least, objects instantiated by the class system are efficient in space and
time, whether the class is written directly or instantiated through mixins and or traits.
In particular, objects in our system consume a similar amount of space to a Smalltalk
or Java object. Method calls have a cost similar to Smalltalk method calls or interface-
based Java calls. In short, the class system is efficient as well as effective.

2 Classes

In PLT Scheme, a class expression denotes a first-class value, just like a lambda
expression:

(class superclass-expr decl-or-expr*)

The superclass-expr determines the superclass for the new class. Each decl-or-expr is
either a declaration related to methods, fields, and intialization arguments, or it is an
expression that is evaluated each time that the class is instantiated. In other words,
instead of a method-like constructor, a class has initialization expressions interleaved
with field and method declarations. Figure 1 displays a simplified grammar for decl-or-
expr.

By convention, class names end with %. The built-in root class is object?’. Thus the
following expression creates a class with public methods get-size, grow, and eat:

(class object’

(init size) ; initialization argument
(define current-size size) ; field
(super-new) ; superclass initialization

(define/public (get-size)

current-size)
(define/public (grow amt)

(set! current-size (+ amt current-size)))
(define/public (eat other-fish)

(grow (send other-fish get-size))))

The size initialization argument must be supplied via a named argument when instan-
tiating the class through the new form:

(new (class object), (init size) ...) [size 10])
Of course, we can also name the class and its instance:

(define fishj (class object), (init size) ...))
(define charlie (new fishj, [size 10]))

In the definition of fish, current-size is a private field that starts out with the value
of the size initialization argument. Initialization arguments like size are available

decl-or-expr ::= (define id expr) private field definition
| (define/method-spec (method-id id") method definition

expr®)

| (init id-with-expr*) initialization argument

| (field id-with-expr*) public field

| (inherit method-id*) inherit method, for direct access

| expr initialization expression
method-spec ::= public new method

| override override method

| private private method
id-with-expr .= id without initial value or default

| [id expr] with initial value or default
expr = (new class-expr [id expr]™) object creation

| (send object-expr method-id expr*) external method call

| (method-id expr*) internal method call (in class)

| this object self-reference (in class)

| (super method-id expr*) call overridden method (in class)

| (super-new [id exprl™) call super initialization (in class)

| ... all other Scheme expression forms
superclass-expr, class-expr, and object-expr are aliases for expr; method-id is an alias for id

Fig. 1. Simplified PLT Scheme class system grammar

only during class instantiation, so they cannot be referenced directly from a method.
The current-size field, in contrast, is available to methods.

The (super-new) expression in £fishy invokes the initialization of the superclass.
In this case, the superclass is object’, which takes no initialization arguments and
performs no work; super-new must be used, anyway, because a class must always
invoke its superclass’s initialization.

Initialization arguments, field declarations, and expressions such as (super-new)
can appear in any order within a class, and they can be interleaved with method decla-
rations. The relative order of expressions in the class determines the order of evaluation
during instantiation. For example, if a field’s initial value requires calling a method that
works only after superclass initialization, then the field declaration is placed after the
super-new call. Ordering field and initialization declarations in this way helps avoid
imperative assignment. The relative order of method declarations makes no difference
for evaluation, because methods are fully defined before a class is instantiated.

2.1 Methods

Each of the three def ine/public declarations in £ish7, introduces a new method. The
declaration uses the same syntax as a Scheme function, but a method is not accessible
as an independent function. A call to the grow method of a fish7, object requires the
send form:

(send charlie grow 6)
(send charlie get-size) ; = 16

Within fish}, self methods can be called like functions, because the method names
are in scope. For example, the eat method within fishy, directly invokes the grow
method. Within a class, attempting to use a method name in any way other than a
method call results in a syntax error.

In some cases, a class must call methods that are supplied by the superclass but not
overridden. In that case, the class can use send with this to access the method:

(define hungry-fishj, (class fishj, (super-new)
(define/public (eat-more fishl fish2)
(send this eat fishil)
(send this eat fish2))))

Alternately, the class can declare the existence of a method using inherit, which
brings the method name into scope for a direct call:

(define hungry-fishj, (class fishj, (super-new)
(inherit eat)
(define/public (eat-more fishl fish2)
(eat fishl) (eat fish2))))

With the inherit declaration, if fish7, had not provided an eat method, an error
would be signaled in the evaluation of the class form for hungry-fishj. In contrast,
with (send this ...), an error would not be signaled until the eat-more method is
called and the send form is evaluated. For this reason, inherit is preferred.

Another drawback of send is that it is less efficient than inherit. Invocation of a
method via send involves finding a method in the target object’s class at run time, mak-
ing send comparable to an interface-based method call in Java. In contrast, inherit-
based method invocations use an offset within the class’s method table that is computed
when the class is created.

To achieve performance similar to inherit-based method calls when invoking
a method from outside the method’s class, the programmer must use the generic
form, which produces a class- and method-specific generic method to be invoked with
send-generic:

(define get-fish-size (generic fishj, get-size))

(send-generic charlie get-fish-size) ; = 16

(send-generic (new hungry-fishj, [size 32]) get-fish-size) ; = 32
(send-generic (new object%) get-fish-size) ; Error: not a fishj

Roughly speaking, the form translates the class and the external method name to a
location in the class’s method table. As illustrated by the last example, sending through
a generic method checks that its argument is an instance of the generic’s class.

Whether a method is called directly within a class, through a generic method, or
through send, method overriding works in the usual way:

(define picky-fishj, (class fishj, (super-new)
(define/override (grow amt)
;; Doesn’t eat all of its food
(super grow (x 3/4 amt)))))
(define daisy (new picky-fishj, [size 20]))
(send daisy eat charlie) ; charlie’ssizeis 16
(send daisy get-size) ; = 32

The grow method in picky-fishj is declared with define/override instead of
define/public, because grow is meant as an overriding declaration. If grow had been
declared with define/public, an error would have been signaled when evaluating the
class expression, because fishj already supplies grow.

Using define/override also allows the invocation of the overridden method via
a super call. For example, the grow implementation in picky-fishj uses super to
delegate to the superclass implementation.

2.2 Initialization Arguments

Since picky-fish7, declares no initialization arguments, any initialization values sup-
plied in (new picky-fishj, ...) are propagated to the superclass initialization, i.e.,
to fishj. A subclass can supply additional initialization arguments for its superclass
in a super-new call, and such initialization arguments take precedence over arguments
supplied to new. For example, the following size-10-fish7, class always generates
fish of size 10:

(define size-10-fishj, (class fishj), (super-new [size 10])))
(send (new size-10-fish],) get-size) ; = 10

In the case of size-10-fishJ, supplying a size initialization argument with new
would result in an initialization error; because the size in super-new takes prece-
dence, a size supplied to new would have no target declaration.

An initialization argument is optional if the class form declares a default value.
For example, the following default-10-fishj class accepts a size initialization
argument, but its value defaults to 10 if no value is supplied on instantiation:

(define default-10-fishj, (class fishy,

(init [size 10])

(super-new [size sizel)))
(new default-10-fishj) ; = a fish of size 10
(new default-10-fish), [size 20]) ; = a fish of size 20

In this example, the super-new call propagates its own size value as the size initial-
ization argument to the superclass.

2.3 Internal and External Names

The two uses of size in default-10-fishJ, expose the double life of class-member
identifiers. When size is the first identifier of a bracketed pair in new or super-new,
size is an external name that is symbolically matched to an initialization argument in
a class. When size appears as an expression within default-10-fishj,, size is an
internal name that is lexically scoped. Similarly, a call to an inherited eat method uses
eat as an internal name, whereas a send of eat uses eat as an external name.

The full syntax of the class form allows a programmer to specify distinct internal
and external names for a class member. Since internal names are local, they can be o
renamed to avoid shadowing or conflicts. Such renaming is not frequently necessary,
but workarounds in the absence of o-renaming can be especially cumbersome.

2.4 Interfaces

Interfaces are useful for checking that an object or a class implements a set of methods
with a particular (implied) behavior. This use of interfaces is helpful even without a
static type system (which is the main reason that Java has interfaces).

An interface in PLT Scheme is created using the interface form, which merely
declares the method names required to implement the interface. An interface can ex-
tend other interfaces, which means that implementations of the interface automatically
implement the extended interfaces.

(interface (superinterface-expr*) id")

To declare that a class implements an interface, the class* form must be used instead
of class:

(classxk superclass-expr (interface-expr*) decl-or-expr*)

For example, instead of forcing all fish classes to be derived from fishj, we can
define fish-interface and change the fishj class to declare that it implements
fish-interface:

(define fish-interface (interface () get-size grow eat))
(define fishj, (classx object), (fish-interface) ...))

If the definition of fishj, does not include get-size, grow, and eat methods, then
an error is signaled in the evaluation of the classx* form, because implementing the
fish-interface interface requires those methods.

The is-a? predicate accepts either a class or interface as its first argument and an
object as its second argument. When given a class, is-a? checks whether the object
is an instance of that class or a derived class. When given an interface, is-a? checks
whether the object’s class implements the interface. In addition, the implementation?
predicate checks whether a given class implements a given interface.

2.5 Final, Augment, and Inner

As in Java, a method in a class form can be specified as final, which means that a
subclass cannot override the method. A final method is declared using public-final
or override-final, depending on whether the declaration is for a new method or an
overriding implementation.

Between the extremes of allowing arbitrary overriding and disallowing overrid-
ing entirely, the class system also supports Beta-style augmentable methods [22]. A
method declared with pubment is like public, but the method cannot be overridden
in subclasses; it can be augmented only. A pubment method must explicitly invoke an
augmentation (if any) using inner; a subclass augments the method using augment,
instead of override.

In general, a method can switch between augment and override modes in a class
derivation. The augride method specification indicates an augmentation to a method
where the augmentation is itself overrideable in subclasses (though the superclass’s
implementation cannot be overridden). Similarly, overment overrides a method and
makes the overriding implementation augmentable. Our earlier work [19] motivates
and explains these extensions and their interleaving.

2.6 Controlling the Scope of External Names

As noted in Section 2.3, class members have both internal and external names. A mem-
ber definition binds an internal name locally, and this binding can be locally o-renamed.
External names, in contrast, have global scope by default, and a member definition does
not bind an external name. Instead, a member definition refers to an existing binding for
an external name, where the member name is bound to a member key; a class ultimately
maps member keys to methods, fields, and initialization arguments.

Recall the hungry-fishj, class expression:

(define hungry-fishj, (class fishj
(inherit eat)
(define/public (eat-more fishl fish2)
(eat fish1l) (eat fish2))))

During its evaluation, the hungry-fishj and fishj, classes refer to the same global
binding of eat. At run time, calls to eat in hungry-fishj, are matched with the eat
method in fishy through the shared method key that is bound to eat.

The default binding for an external name is global, but a programmer can introduce
an external-name binding with the def ine-member-name form.

(define-member-name id member-key-expr)

In particular, by using (generate-member-key) as the member-key-expr, an exter-
nal name can be localized for a particular scope, because the generated member key is
inaccessible outside the scope. In other words, def ine-member-name gives an exter-
nal name a kind of package-private scope, but generalized from packages to arbitrary
binding scopes in Scheme.

For example, the following fishj and pondj classes cooperate via a get-depth
method that is only accessible to the cooperating classes:

(define-values (fish/ pondJ) ;; two mutually recursive classes
(let () ; create a local definition scope
(define-member-name get-depth (generate-member-key))
(define fishy
(class ... (define my-depth ...)
(define my-pond ...)
(define/public (dive amt)
(set! my-depth
(min (+ my-depth amt)
(send my-pond get-depth))))))
(define pond}
(class ... (define current-depth ...)
(define/public (get-depth) current-depth)))
(values fish), pond’)))

External names are in a namespace that separates them from other Scheme names. This
separate namespace is implicitly used for the method name in send, for initialization-
argument names in new, or for the external name in a member definition. The special
member-name-key provides access to the binding of an external name in an arbitrary
expression position: (member-name-key id) form produces the member-key binding
of id in the current scope.

A member-key value is primarily used on with a def ine-member-name form. Nor-
mally, then, (member-name-key id) captures the method key of id so that it can be
communicated to a use of def ine-member-name in a different scope. This capability
turns out to be useful for generalizing mixins (see Section 3.4).

2.7 Implementation of Classes

The class form is implemented in terms of a primitive make-struct-type procedure,
which generates a data type that is distinct from all existing data types. The new data
type’s specification includes the number of slots that should be allocated for instances
of the data type, plus properties for the data type. A class corresponds to a fresh data
type with one slot for each field and with a property for the class’s method table.

Most of the compile-time work for the class macro is in expanding the individual
expressions and declarations in the method body, and ensuring that the declarations are
locally consistent (e.g., no duplicate method declarations). Indeed, of the roughly 3,500
lines of Scheme code that implement the class system, 3/4 implement compile-time
work (especially syntax checking to provide good error messages), and 1/4 of the lines
implement run-time support.

The run-time representation of a class includes the method implementations—as
procedures transformed to take an explicit this argument—and information about in-
troduced methods and expected superclass methods. The run-time work of class cre-
ation mostly checks the consistency of the class extensions with a supplied superclass,
closes the method implementations with specific methods for super calls, and closes
method implementations with specific vtable indices for direct method calls.

3 Mixins

Since class is an expression form instead of a top-level declaration as in Smalltalk and
Java, a class form can be nested inside any lexical scope, including 1ambda. The result
is a mixin, i.e., a class extension that is parameterized with respect to its superclass [11].

For example, we can parameterize the picky-fishj class over its superclass to
define picky-mixin:

(define (picky-mixin %)
(class % (super-new)
(define/override (grow amt) (super grow (x 3/4 amt)))))
(define picky-fishj, (picky-mixin fishj))

Many small differences between Smalltalk-style classes and our classes contribute to
the effective use of mixins. In particular, the use of define/override makes explicit
that picky-mixin expects a class with a grow method. If picky-mixin is applied to
a class without a grow method, an error is signaled as soon as picky-mixin is applied.

Similarly, a use of inherit enforces a “method existence” requirement when the
mixin is applied:

(define (hungry-mixin %)
(class % (super-new)

(inherit eat)
(define/public (eat-more fishl fish2) (eat fishl) (eat fish2))))

The advantage of mixins is that we can easily combine them to create new classes
whose implementation sharing does not fit into a single-inheritance hierarchy—without
the ambiguities associated with multiple inheritance. Equipped with picky-mixin and
hungry-mixin, creating a class for a hungry, yet picky fish is straightforward:

(define picky-hungry-fishj, (hungry-mixin (picky-mixin fish7)))

The use of keyword initialization arguments is critical for the easy use of mixins.
For example, picky-mixin and hungry-mixin can augment any class with suitable
eat and grow methods, because they do not specify initialization arguments and add
none in their super—new expressions:

(define personj, (class object,
(init name age)

(define/public (eat food) ...)

(define/public (grow amt) ...)))
(define child) (hungry-mixin (picky-mixin personj,)))
(define oliver (new child), [name "Oliver"] [age 6]))

Finally, the use of external names for class members (instead of lexically scoped iden-
tifiers) makes mixin use convenient. Applying picky-mixin to personyj, works be-
cause the names eat and grow match, without any a priori declaration that eat and
grow should be the same method in fish7 and persony. This feature is a potential
drawback when member names collide accidentally; some accidental collisions can be
corrected by limiting the scope external names, as discussed in Section 2.6.

3.1 Mixins and Interfaces

Using implementation?, picky-mixin could require that its base class implements
grower-interface, which could be implemented by both fishj and personj:

(define grower-interface (interface () grow))
(define (picky-mixin %)
(unless (implementation? % grower-interface)
(error "picky-mixin: not a grower-interface class"))
(class % ...))

Another use of interfaces with a mixin is to tag classes generated by the mixin, so that
instances of the mixin can be recognized. In other words, is-a? cannot work on a
mixin represented as a function, but it can recognize an interface (somewhat like a spe-
cialization interface [21]) that is consistently implemented by the mixin. For example,
classes generated by picky-mixin could be tagged with picky-interface, enabling
the is-picky? predicate:

(define picky-interface (interface ()))
(define (picky-mixin %)
(unless (implementation? % grower-interface)
(error "picky-mixin: not a grower-interface class"))

(classx % (picky-interface) ...))
(define (is-picky? o)
(is-a? o picky-interface))

3.2 The Mixin Macro

To codify the lambda-plus-class pattern for implementing mixins, including the use of
interfaces for the domain and range of the mixin, PLT Scheme’s class system provides
amixin macro:

(mixin C(interface-expr*) (interface-expr*) decl-or-expr*)

The first set of interface-exprs determines the domain of the mixin, and the second set
determines the range. That is, the expansion is a function that tests whether a given
base class implements the first sequence of interface-exprs and produces a class that
implements the second sequence of interface-exprs. Other requirements, such as the
presence of inherited methods in the superclass, are then checked for the class
expansion of the mixin form.

3.3 Mixins, Augment, and Inner

Mixins not only override methods and introduce public methods, they can also augment
methods, introduce augment-only methods, add an overrideable augmentation, and add
an augmentable override — all of the things that a class can do (see Section 2.5).

Bracha and Cook [11] observed that mixins alone can express both Smalltalk-style
method overriding and Beta-style method augmenting, depending on the order of mixin
composition. Their result, however, depends on choosing an order of composition; oth-
erwise, the security benefits of Beta-style augmenting are lost (as we have observed [19]
to be the case for gbeta). Our goal in adding augment and inner to the class system is
to provide the same sort of security guarantees as Beta, which explains why we imple-
ment mixins in terms of classes, not classes in terms of mixins.

3.4 Parameterized Mixins

As noted in Section 2.6, external names can be bound with def ine-member-name.
This facility allows a mixin to be generalized with respect to the methods that it defines
and uses. For example, we can parameterize hungry-mixin with respect to the external
member key for eat:

(define (make-hungry-mixin eat-method-key)
(define-member-name eat eat-method-key)
(mixin () () (super-new)
(inherit eat)
(define/public (eat-more x y) (eat x) (eat y))))

To obtain a particular hungry-mixin, we must apply this function to a member key that
refers to a suitable eat method, which we can obtain using member-name-key:

((make-hungry-mixin (member-name-key eat))
(class object’ ... (define/public (eat x) ’yum)))

Above, we apply hungry-mixin to an anonymous class that provides eat, but we can
also combine it with a class that provides chomp, instead:

((make-hungry-mixin (member-name-key chomp))
(class object), ... (define/public (chomp x) ’yum)))

4 Traits

A trait [28,29] is similar to a mixin, in that it encapsulates a set of methods to be added
to a class. A trait is different from a mixin in that its individual methods can be ma-
nipulated with trait operators such as sum (merge the methods of two traits), exclude
(remove a method from a trait), and alias (add a copy of a method with a new name;
do not redirect any calls to the old name). The practical difference between mixins and
traits is that two traits can be combined, even if they include a common method and
even if neither method can sensibly override the other. In that case, the programmer
must explicitly resolve the collision, usually by aliasing methods, excluding methods,
and merging a new trait that uses the aliases.

Suppose our fishj programmer wants to define two class extensions, spots and
stripes, each of which includes a get-color method. The fish’s spot color should
not override the stripe color nor vice-versa; instead, a spots+stripes-fishy, should
combine the two colors, which is not possible if spots and stripes are implemented
as plain mixins. If, however, spots and stripes are implemented as traits, they can be
combined. First, we alias get-color in each trait to a non-conflicting name. Second,
the get-color methods are removed from both and the traits with only aliases are
merged. Finally, the new trait is used to create a class that introduces its own get-color
method based on the two aliases, producing the desired spots+stripes extension.

4.1 Traits as Sets of Mixins

One natural approach to implementing traits in PLT Scheme is as a set of mixins, with
one mixin per trait method. For example, we might attempt to define the spots and
stripes traits as follows, using association lists to represent sets:

(define spots-trait
(1ist (cons ’get-color
(lambda (%) (class % (super-new)
(define/public (get-color) ’black))))))
(define stripes-trait
(1ist (cons ’get-color
(lambda (%) (class % (super-new)
(define/public (get-color) ’red))))))

A set representation, such as the above, allows sum and exclude as simple manipula-
tions; unfortunately, it does not support the alias operator. Although a mixin can be
duplicated in the association list, the mixin has a fixed method name, e.g., get-color,
and mixins do not support a method-rename operation. To support alias, we must pa-
rameterize the mixins over the external method name in the same way that eat was
parameterized in Section 3.4.

4.2 Traits as Parameterized Mixins

To support the alias operation, spots-trait should be represented as:

(define spots-trait
(1ist (cons (member-name-key get-color)
(lambda (get-color-key %)
(define-member-name get-color get-color-key)
(class % (super-new)
(define/public (get-color) ’black))))))

When the get-color method in spots-trait is aliased to get-trait-color and
the get-color method is removed, the resulting trait is the same as

(1list (cons (member-name-key get-trait-color)
(lambda (get-color-key %)
(define-member-name get-color get-color-key)
(class % (super-new)
(define/public (get-color) ’black))))))

To apply a trait T to a class C and obtain a derived class, we use (apply-trait T C).
The apply-trait function supplies each mixin of T the key for the mixin’s method
and a partial extension of C:

(define (apply-trait T C)
(foldr (lambda (m %) ((cdr m) (car m) %)) C T))

Thus, when the trait above is combined with other traits and then applied to a class, the
use of get-color becomes a reference to the external name get-trait-color.

4.3 Inherit and Super in Traits

This first implementation of traits supports alias, and it supports a trait method that
calls itself, but it does not support trait methods that call each other. In particular, sup-
pose that a spot-fish’s market value depends on the color of its spots:

(define spots-trait
(1ist (cons (member-name-key get-color) ...)
(cons (member-name-key get-price)
(lambda (get-price %)
(class % ...
(define/public (get-price) ... (get-color) ...))))))

In this case, the definition of spots-trait fails, because get-color is not in scope
for the get-price mixin. Indeed, depending on the order of mixin application when
the trait is applied to a class, the get-color method may not be available when
get-price mixin is applied to the class. Therefore adding an (inherit get-color)
declaration to the get-price mixin does not solve the problem.

One solution is to require the use of (send this get-color) in methods such as
get-price. This change works because send always delays the method lookup until
the method call is evaluated. The delayed lookup is more expensive than a direct call,
however. Worse, it also delays checking whether a get-color method even exists.

A second, effective, and efficient solution is to change the encoding of traits. Specif-
ically, we represent each method as a pair of mixins: one that introduces the method and
one that implements it. When a trait is applied to a class, all of the method-introducing
mixins are applied first. Then the method-implementing mixins can use inherit to
directly access any introduced method.

(define spots-trait
(list (list (local-member-name-key get-color)
(lambda (get-color get-price %)
(class % ...
(define/public (get-color) (void))))
(lambda (get-color get-price %)
(class % ...
(define/override (get-color) ’black))))
(1ist (local-member-name-key get-price)
(lambda (get-price get-color %)
(class % ...
(define/public (get-price) (void))))
(lambda (get-color get-price %)
(class % ...
(inherit get-color)
(define/override (get-price)
(get-color) ...))))))

With this trait encoding, alias works as in the Squeak implementation of traits. It adds
anew method with a new name, but it does not change any references to the old method.

In contrast to the Squeak implementation [28], we can easily support a rename
operation for traits with a bit of additional external-name parameterizations. Indeed,
our rename operation even works for references in inherit and send.

Properly supporting super calls within a trait requires relatively little work when
each super call to a method appears in an overriding implementation for the same
method. In that case, no method-introducing mixin is needed, since overriding implies
that the method exists already in the superclass. Special care is required if a super
call is allowed in a method other than an overriding implementation, and a cycle of
mutually super-calling methods may require an indirection to prevent a super call
from accessing an implementation in the trait instead of the base class. Fortunately, the
trait-application operator can generate this indirection automatically.

4.4 The Trait Macro

The general-purpose trait pattern is clearly too complex for a programmer to use di-
rectly, but it is easily codified in a trait macro:
(define/method-spec (id id*) expr)*)

?

(trait (inherit id*)

The ids in the optional inherit clause are available for direct reference in the method
exprs, and they must be supplied either by other traits or the base class to which the trait
is ultimately applied.

Using this form in conjunction with trait operators such as sum, exclude, alias,
and apply-trait, we can implement spots-trait and stripes-trait as desired;
see Figure 2.

(define spots-trait

(trait
(define/public (get-color) ’black)
(define/public (get-price) ... (get-color) ...)))

(define stripes-trait
(trait
(define/public (get-color) ’red)))

(define spots+stripes-trait
(sum (exclude (alias spots-trait get-color get-spots-color)
get-color)
(exclude (alias stripes-trait get-color get-stripes-color)
get-color)
(trait
(inherit get-spots-color get-stripes-color)
(define/public (get-color)
(get-spots-color) ... (get-stripes-color) ...))))

Fig. 2. An example use of full-fledged traits

o« oo [| -
applications
‘ DrScheme ‘

] e | -
ibraries ‘ MrEd (GUI) ‘
kerne]{ MzScheme

Fig. 3. PLT Scheme architecture

S History and Experience

DrScheme is the most recognizable application that is built with PLT Scheme, and its
implementation makes extensive use of the class system. Figure 3 shows how DrScheme
fits into the architecture of PLT Scheme. MzScheme is the core compiler and run-time
system, analogous to the JVM for Java. MrEd is the core GUI layer, analogous to AWT
for Java. The application framework provides skeleton classes for typical kinds of GUI
applications. Finally, DrScheme supports plug-in tools that extend the programming
environment. (Ellipses in the figure represent other PLT libraries and applications.)

The language, kernel, and programming environment are sometimes difficult to dis-
tinguish, in part because they reinforce each other: MzScheme and MrEd were created
as a platform to build DrScheme, and many programmers now choose PLT Scheme
specifically because it is supported by DrScheme. Nevertheless, the distinctions are
useful for understanding the uses of classes in DrScheme’s implementation.

5.1 Current Uses of Classes

DrScheme employs classes primarily for its graphical interface, since the benefits of
class-oriented programming are well understood for GUIs. In particular, the MrEd layer
exports a class- and interface-based API for GUI programming, and it uses mixins in-
ternally to build most of the widget classes. The application framework layer exports
a class-, interface-, and mixin-based API; the framework even includes classes with
overrideable methods that act as mixins.

DrScheme’s editor classes demonstrate many typical uses of classes and mixins. An
editor represents the content of a window with interactive text and images:

Editors in MrEd Every editor implements the editor< 7> interface, which has
two base implementations: the text7 class for a text-oriented, line-based layout, and
the pasteboardy class for a free-form, two-dimensional layout.

The text/ and pasteboardy classes are derived from more primitive, private vari-
ants wx-text), and wx-pasteboardy,. The wx- variants share a superclass that im-
plements common behavior at the primitive level, but text/, and pasteboardy also
share behavior that cannot be implemented in the primitive layer. Instead of duplicating
refinements of wx-text7, and wx-pasteboardy,, the common refinements are imple-
mented once in an internal mixin, thus creating a single point of control for shared
behavior in text7, and pasteboardy.

The text/, and pasteboardy, classes cooperate with the editor-canvasy class,
which is instantiated to display an editor. Locally scoped external names serve the same
role as package-private declarations to hide methods that are required for this inter-class
cooperation.

Although most methods of text), and pasteboardy are overrideable, a few are
augmentable only. For example, the can-insert? method is called before any in-
sertion attempt to determine whether the editor can be modified. This method is aug-
mentable only, which prevents a subclass from allowing insertions if a superclass (pos-
sibly defined by a more primitive layer) must disallow insertions to preserve invariants.

Editors in the Framework The application framework provides several editor
mixins, such as an autosave mixin, a mixin to display editor state (such as the current
line and column) into an information panel, and a mixin for chaining keymaps together.
The framework also supplies nearly a dozen mixins that are specific to text7,. The
framework’s top-level window class includes get-editor/, and get-canvasj, meth-
ods, so that a mixin for top-level windows can consistently extend the editor and canvas
classes that are created for the window.

Certain editor and text mixins cooperate with a corresponding mixin for the dis-
play canvas. So far, we have mostly relied on naming conventions and run-time checks
to help keep mixin applications in sync; we are considering implementing mixin lay-
ers [30] (via macros) for this purpose.

Editors in DrScheme A tool that extends to the DrScheme programming envi-
ronment is implemented as a unit [16]. DrScheme supplies each tool unit with functions
to register mixin refinements of its editors. That is, tool implementors get the same con-
venient API as the DrScheme implementors for extending the environment, even though
tools can be mixed and matched in a given installation.

0.1 v49 v100 v200 v300 v353

1995 2007
original abandoned public vs. true methods, augmentable traits
class multiple override by-nameinits, methods
system inheritance as macro

Fig. 4. PLT Scheme class system timeline

5.2 Language Evolution

Figure 4 shows how the class system in PLT Scheme has evolved over the project’s 11-
year history. To create the initial GUI base for DrScheme, we combined an embeddable
Scheme system, libscheme [8], with a C++-based multi-platform GUI library, wxWin-
dows [31]. We also added our own C++-based editor classes, which is why the GUI
layer is called “MrEd.” To make the C++ classes available in Scheme (for both class
extension and instantiation), we extended libscheme with a built-in object system. As
our changes to libscheme accumulated, we renamed it “MzScheme.”

Our earliest design for classes included support for both mixins (as class plus
lambda) and multiple inheritance of classes. We soon abandoned multiple inheritance,
since it was rarely used, whereas mixins took hold early in our libraries.

For the first major re-design, we introduced the distinction between public meth-
ods and override methods. This avoided occasional confusion where a mixin applica-
tion that was intended to introduce a method would instead override an existing method.

Through the first two major design stages, the class system implemented objects
as records of closures, where a method is represented as a closure with this as a free
variable. Such records are a typical way to represent objects in Scheme, and it worked
well enough when objects were used in small quantities, such as objects for windows,
buttons, and drawing pens. Over time, the addition of new kinds of snips to the edi-
tors, especially the nesting of text objects inside of editors, caused an overwhelming
consumption of space and time.

The third major design abandoned methods as closures over this in favor of a more
Smalltalk-like implementation where an object is a record of field values, plus a class-
specific table of method procedures that accept an implicit this argument. This change
eliminated performance problems related to the size of text objects in editors.

The third design also introduced by-name initialization arguments as an alternative
to by-position arguments. As noted in Section 3, named initialization arguments com-
plement mixin composition; in contrast, by-position arguments often force mixins to
provide imperative initialization methods, since there is no simple way to distinguish
optional initialization arguments for the mixin from initialization arguments intended
for the superclass. In the current design, both forms of initialization arguments remain,
but by-position arguments are used only in older libraries.

The first two implementations of classes were built into the language kernel. The
implementation of the third design was greatly facilitated by MzScheme’s switch from
traditional Lisp macros to a modular macro system based on syntax-case [12,15],

so that the class system could be implemented through macros instead of built into the
kernel.

The relative ease of changing the macro-based implementation enabled the most
recent major change to the class system, which was the addition of augment and
inner. The change was motivated by bugs due to incorrect overriding of methods like
can-insert?, especially within tools that extend DrScheme.

5.3 Open Issues

The PLT Scheme class system has evolved in response to ever more stringent require-
ments for stability, performance, and expressiveness. The regularity of events in Fig-
ure 4 is surprising—the tick marks correspond to actual dates when changes became
widely deployed to users—but they match the consistent growth of PLT Scheme. Pre-
dicting further change (and, apparently, its timing) is easier than predicting the specific
nature of the change, but several open issues are likely to attract attention.

The class forms’s distinction between initialization arguments and fields makes
explicit that values used only for initialization need not be stored in the object. Never-
theless, initialization arguments often turn into fields, and there seems to be no advan-
tage in forcing programmers to explicitly designate such conversions; merely referenc-
ing an initialization argument from a method should be enough to convert it to a field.
Automatic conversion, however, requires expanding all subexpressions when expand-
ing a class form, but the class form needs to expand sub-expressions differently for
fields than for initialization arguments. In other words, our macro technology affects
our language design (in much the same way that parsing and type-checking concerns
sometimes influence the outcome of other language design decisions).

In a similar vein, the class system prohibits an internal reference to a method that
is not in an application position (i.e., as a method call). Occasionally, we would like
to pass a method as a first-class value to functionals such as map. In this case, the
class macro could easily convert the method to a closure over this; we instead force
programmers to wrap the method with a 1ambda so that the closure allocation is more
apparent. We may reconsider this design decision.

The run-time cost of object instantiation is higher than it should be. For an object
with two initialization arguments that are both converted to fields, the instantiation time
is a factor of 20 slower than for a comparable PLT Scheme record. The difference is in
gathering and finding initializations arguments by name (which accounts for a factor of
10) and copying saved initialization arguments into fields (remaining factor of 2). One
possible solution is to provide a form for specializing new in much the same way that
send-generic specializes send.

Like most class systems, the PLT Scheme system conflates implementation inheri-
tance and interface inheritance. That is, a subclass automatically implements any inter-
face that its superclass implements. We are in a good position to try detaching interface
inheritance from subclassing, but we have not yet explored that possibility.

Finally, although we have designed a class system that supports mixins and traits as
separate extensions, the class system itself includes many built-in features that seem or-
thogonal: initialization protocols, several method overriding and augmenting protocols,

and both implementation and interface inheritance. Future work may uncover ways to
remove weaknesses and restrictions, making our little pile of features even smaller.

6 Related Work on Classes in Scheme

Our approach of adding objects to Scheme closely resembles Friedman’s [18] object-
oriented style, but it also differs significantly from his work. The key difference con-
cerns the instantiation of classes, which we separate from the macro expansion phase.
Instead of specifying a class’s method statically, we rely on a run-time computation to
completely determine a class’s shape. As a result, combining our class with lambda
defines mixins that work on varieties of superclass shapes.

Historically, implementors of class systems for Scheme have used the message-
passing metaphor literally, representing an object as a procedure that accepts a method-
selecting symbol [1,2]. More generally, Scheme programmers are often tempted to
think of an object as a collection of closures, where this is built into each method’s
closure instead of passed as an (implicit) argument. Unfortunately, the cost of this per-
object representation depends on the number of methods the object supports, instead of
just the number of fields. In our experience, the extra overhead is bearable when classes
are used sparingly, but it becomes overwhelming otherwise.

Finally, the CLOS approach to classes is relatively popular in Scheme, e.g., the
Meroon library [26] or Barzilay’s Swindle library [7]. In contrast to Smalltalk-style
classes, where behaviors are added by changing a class or deriving a new subclass,
behavioral extensions in CLOS are attached to generic methods. An advantage of this
approach is that it provides a clear path for adding “methods” to existing data types,
including primitive types like numbers and strings. Another advantage is that it gen-
eralizes well to multi-method dispatch, which can easily specialize an operation to a
particular combination of classes. A major drawback is that it encourages an impera-
tive programming style, where generic methods are mutated to add new class-specific
implementations.

7 Related Work on Mixins and Traits

The terms mixin and trait have a somewhat troubled and intertwined history, making
comparisons among “mixin’ and “trait” systems potentially confusing. In this paper, we
have committed to particular definitions of the terms, and in the following comparisons,
we add a superscript (*, T, or ¥) to each use of a term that does not match our definition.

The term mixin* originates with Flavors [23], which inspired the Common Lisp
Object System (CLOS). In Flavors and CLOS, a mixin* is simply a class that is meant
to be combined with other classes via multiple inheritance.

Bracha and Cook refined the definition of mixin to “a subclass definition that may
be applied to different superclasses” [11]. As defined by Bracha and Cook, mixins sub-
sume classes, and we took a similar approach in our previous model of mixins for
Java [17]. Implementations, however, typically define mixins over a base language with
classes, as in PLT Scheme and the Jam language [4]. In the same vein, Smaradagkis and

Batory implement mixins with C++ templates [30] in the spirit of our mix of class and
lambda.

For his dissertation, Bracha used the term mixin® for a construct in his Jigsaw lan-
guage [10], which included operations on mixins’ such as sum and exclude. Ancona
and Zucca explore a formal framework [5, 6] for mixins’.

Schirli’s traits [28,29] are a form of mixin' in the sense of Bracha’s dissertation. In
particular, Fisher, Reppy, and Turon [14, 27] provide typed models of traits that closely
resemble the typed mixin" models of Ancona and Zucca [5, 6]. Using the sense of mixin
in Bracha and Cook (and PLT Scheme), however, fine-grained operations make traits
qualitatively different from mixins. Our encodings of mixins and traits in Scheme il-
lustrate the difference. In practice, Black et al. [9] note the importance of alias and
exclude trait operations for the refactoring of the Smalltalk collection classes. Their
experience suggests that mixins are less suited to this kind of refactoring job than traits,
but additional experience with both is needed.

The Scala programming language [24] includes a typed trait® construct, but it
does not support any operation on traits* other than inheritance and combination with
a base class; in other words, the construct may well have been called a mixin. Indeed,
since multiple Scala traits* can be composed when they override the same method,
and since the order of the composition determines the resulting pattern of super calls,
a Scala trait* closely resembles a PLT Scheme mixin (but with a static type system).
The Fortress [3] language also includes a trait* construct that is similar to Scala’s.
Again, Fortress’s traitst could be characterized as mixins, although the lack of method
overriding in Fortress makes the difference nearly insignificant.

Acknowledgements: We thank our PLT colleagues and numerous anonymous users for
coping with 11 years of changes to the class system. We wish to acknowledge the finan-
cial support of the National Science Foundation and Texas ATP through these years.

References

1. H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Programs. MIT
Press, 1984.

2. N. Adams and J. Rees. Object-oriented programming in Scheme. In Proc. ACM Conference
on Lisp and Functional Programming, pages 277-288, 1988.

3. E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S. Jr., and S. Tobin-
Hochstadt. The Fortress language specification. 2006.

4. D. Ancona, G. Lagorio, and E. Zucca. Jam - designing a Java extension with mixins. ACM
Transactions on Computing Systems, 25:641-712, Sept. 2003.

5. D. Ancona and E. Zucca. An algebraic approach to mixins and modularity. In M. Hanus
and M. Rodriguez-Artalejo, editors, Proc. Conference on Algebraic and Logic Programming,
volume 1139 of Lecture Notes in Computer Science, pages 179-193. Springer-Verlag, 1996.

6. D. Ancona and E. Zucca. A primitive calculus for module systems. In G. Nadathur, editor,
Proc. International Conference on Principles and Practice of Declarative Programming,
volume 1702 of Lecture Notes in Computer Science, pages 62—79. Springer-Verlag, 1999.

7. E. Barzilay. Swindle, 2002. http://www.barzilay.org/Swindle/.

8. Benson Jr., Brent W. libscheme: Scheme as a C library. In Proc. USENIX Symposium on
Very High Level Languages, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.
27.
28.

29.

30.

31.

. A. P. Black, N. Schirli, and S. Ducasse. Applying traits to the Smalltalk collection hierar-

chy. In Proc. ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 47-64, Oct. 2003.

G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheri-
tance. Ph.D. thesis, Dept. of Computer Science, University of Utah, Mar. 1992.

G. Bracha and W. Cook. Mixin-based inheritance. In Proc. Joint ACM Conf. on Object-
Oriented Programming, Systems, Languages and Applications and the European Conference
on Object-Oriented Programming, Oct. 1990.

R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction in Scheme. Lisp and
Symbolic Computation, 5(4):295-326, 1993.

R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and M. Felleisen. DrScheme: A
pedagogic programming environment for Scheme. In Proc. International Symposium on
Programming Languages: Implementations, Logics, and Programs, pages 369-388, Sept.
1997.

K. Fisher and J. Reppy. A typed calculus of traits. In Proc. ACM International Workshop on
Foundations of Object-Oriented Languages, 2004.

M. Flatt. Compilable and composable macros. In Proc. ACM International Conference on
Functional Programming, Oct. 2002.

M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In Proc. ACM Confer-
ence on Programming Language Design and Implementation, pages 236—248, June 1998.
M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc. ACM Symposium
on Principles of Programming Languages, pages 171-183, Jan. 1998.

D. P. Friedman. Object-oriented style (invited talk). In International LISP Conference, 2003.
D. Goldberg, R. B. Findler, and M. Flatt. Super and inner — together at last! In Proc. ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages
116-129, Oct. 2004.

R. Kelsey, W. Clinger, and J. Rees (Eds.). The revised® report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9), Sept. 1998.

J. Lamping. Typing the specialization interface. In Proc. ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 201-214, 1993.

O. Lehrmann Madsen, B. Mgller-Pedersen, and K. Nygaard. Object-oriented programming
in the BETA programming language. ACM Press/Addison-Wesley, 1993.

D. A. Moon. Object-oriented programming with Flavors. In Proc. ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 1-8, Nov.
1986.

M. Odersky and M. Zenger. Scalable component abstractions. In Proc. ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 41-57, 2005.
PLT Scheme, 2006. www.plt-scheme.org.

C. Queinnec. Meroon V3: A Small, Efficient, and Enhanced Object System, 1997.

J. Reppy and A. Turon. A foundation for trait-based metaprogramming. In Proc. ACM
International Workshop on Foundations of Object-Oriented Languages, 2006.

N. Schérli. Composing Classes from Behavioral Building Blocks. PhD thesis, University of
Berne, 2002.

N. Schirli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units of behaviour.
In Proc. European Conference on Object-Oriented Programming, volume 2743 of Lecture
Notes in Computer Science, pages 248-274. Springer-Verlag, 2003.

Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. In Proc.
European Conference on Object-Oriented Programming, pages 550-570, 1998.

Smart, J. et al. wxWindows.

http://web.ukonline.co.uk/julian.smart/wxwin/.

