Introduction to OpenGL

CS 351-50

OpenGL: Open Graphics Library

* Graphics API

(Application Programming Interface)
— Software library

— Layer between programmer and graphics
hardware (and other software

 Several hundred procedures and functions

Programmer’s View

‘ Applicaton

?
‘ Applicaton ‘ ‘ Graphics Package ‘

‘ OpenGL Application Programming Interface ‘

!

‘ Hardware and software ‘

! ! !

‘ Output Device ‘ ‘ Input Device ‘

‘ Input Device ‘

What is OpenGL

* Configurable state machine
— Input is 2D or 3D data
— Output is framebuffer

— Modity state to modify functionality

What is OpenGL OpenGL History

* Widely used and supported ¢ Originally developed by SGI in early 90°s
 “the” choice for Linux developers * No longer SGI propritary
* Very well documented ¢ License free

¢ Easy to use
 Supports high-end graphics features
* Geometric and pixel processing

OpenGL History What is OpenGL used for
* Evolution controlled by OpenGL ARB * Real-time applications
(architecture review board) * Fast preview for visualizations
~ One vote per company * Interactive virtual environments

¢ Includes Microsoft, SUN, SGI, nVidia, ATI . .
* Video games (Quake, by id Software)

What OpenGL is not used for

* Quality rendering
— OpenGL uses scan-line rasterization
— Use ray-tracing or radiosity for quality

How does OpenGL do it?

¢ Client-server interpretation
— Program (client) issues commands
* Eg. Enable lighting, render triangle, etc.

— Commands interpreted and processed by server
e the “GL”

OpenGL

* Does not provides a means of modeling complex
objects
— Requires a higher level API
* Does not provide support for peripherals
— Ie mouse, sound, etc
— Requires other libraries
* Does not provide windowing or a GUI

— For this we use GLUT
¢ (Graphics Library Utility Toolkit)

OpenGL: In a nut shell

* 2D, 3D data goes in

¢ Framebuffer comes out

MAGIC!

What does this mean to you?
(Why lean thru OpenGL)
 High quality rendering
¢ Easy to program
¢ Portable code (hopefully)

What you need to know

* How GL works
* How to interface with it
— How to configure it
— How to pass data to it
* How to know what went wrong

Libraries

* #include <GL/gl.h>
e #include <GL/glu.h>
e #include <GL/glut.h>

Window System Interaction

* OpenGL is completely platform dependent
* Need a windowing system for things like
— Interaction
— Opening/Closing Windows
— Handling events
¢ Options:
— GLX (*nix)
— WGL (windows)
— GLUT (window-system independent)

Event Driven Interaction

OpenGL does not dictate any particular model of
interaction

Applications respond to events generated by
devices (ie mice) and window system events (ie
window resized)

Events usually placed in a queue awaiting action
Callbacks let you associate a function with a
particular type of event

— Mouse callback

Create a window with GLUT

¢ glutlnitWindowSize
¢ glutlnitDisplayMode
¢ glutCreateWindow

How do I render a geometric
primitive?

¢ To Framebuffer

* OpenGL primitives
— A group of one or more vertices
— Vertex defines:

* A point

* An endpoint of an edge

* A corner of a polygon where two edges meet

OpenGL Rendering

¢ Data consists of
— Positional coordinates
— Colors
— Normals
— Texture Coordinates
* Each vertex is processed
— independely
— In order

— In the same way

OpenGL Primitives

oA 0

Points Lines Polygon
Triangle Quad Quad strip
Triangle strip Triangle Fan

OpenGL drawing

e To draw a primitive, call glBegin()
» glEnd() encloses a list of vertices and their
attributes

* Coordinates of a primitive are given
counter-clockwise order

Function calls to draw a primitive

glBegin(GL_POINTS);
glVertex3£(0.0f, 0.0f, 0.0f);
glEnd();

Draw a triangle:

glBegin(GL_TRIANGLES);
glVertex3f(0.0f, 1.0f, 0.0f);
glVertex3f(-1.0f, -1.0f, 0.0f);
glVertex3f(1.0f, -1.0f, 0.0f);
glEnd();

Draws a triangle with different
colors at each vertex

glBegin(GL_TRIANGLES);
glColor3f(1.0f, 0.0f, 0.0f); //pure red
glVertex3£(0.0f, 1.0f, 0.0f);

glColor3£(0.0f, 1.0f, 0.0f); //pure green
glVertex3f(-1.0f, -1.0f, 0.0f);

glColor3£(0.0f, 0.0f, 1.0f); /pure blue
glVertex3f(1.0f, -1.0f, 0.0f);
glEnd();

