
1

Introduction to OpenGL

CS 351-50

OpenGL: Open Graphics Library

• Graphics API
(Application Programming Interface)
– Software library
– Layer between programmer and graphics

hardware (and other software
• Several hundred procedures and functions

Programmer’s View
Applicaton

Graphics Package

OpenGL Application Programming Interface

Hardware and software

Output Device Input Device

Applicaton

Input Device

What is OpenGL

• Configurable state machine
– Input is 2D or 3D data
– Output is framebuffer
– Modify state to modify functionality

2

What is OpenGL

• Widely used and supported
• “the” choice for Linux developers
• Very well documented
• Easy to use
• Supports high-end graphics features
• Geometric and pixel processing

OpenGL History

• Originally developed by SGI in early 90’s
• No longer SGI propritary
• License free

OpenGL History

• Evolution controlled by OpenGL ARB
(architecture review board)
– One vote per company

• Includes Microsoft, SUN, SGI, nVidia, ATI

What is OpenGL used for

• Real-time applications
• Fast preview for visualizations
• Interactive virtual environments
• Video games (Quake, by id Software)

3

What OpenGL is not used for

• Quality rendering
– OpenGL uses scan-line rasterization
– Use ray-tracing or radiosity for quality

How does OpenGL do it?

• Client-server interpretation
– Program (client) issues commands

• Eg. Enable lighting, render triangle, etc.
– Commands interpreted and processed by server

• the “GL”

OpenGL

• Does not provides a means of modeling complex
objects
– Requires a higher level API

• Does not provide support for peripherals
– Ie mouse, sound, etc
– Requires other libraries

• Does not provide windowing or a GUI
– For this we use GLUT

• (Graphics Library Utility Toolkit)

OpenGL: In a nut shell

• 2D, 3D data goes in

• Framebuffer comes out

MAGIC!

4

What does this mean to you?
(Why lean thru OpenGL)

• High quality rendering
• Easy to program
• Portable code (hopefully)

What you need to know

• How GL works
• How to interface with it

– How to configure it
– How to pass data to it

• How to know what went wrong

Libraries

• #include <GL/gl.h>
• #include <GL/glu.h>
• #include <GL/glut.h>

Window System Interaction

• OpenGL is completely platform dependent
• Need a windowing system for things like

– Interaction
– Opening/Closing Windows
– Handling events

• Options:
– GLX (*nix)
– WGL (windows)
– GLUT (window-system independent)

5

Event Driven Interaction

• OpenGL does not dictate any particular model of
interaction

• Applications respond to events generated by
devices (ie mice) and window system events (ie
window resized)

• Events usually placed in a queue awaiting action
• Callbacks let you associate a function with a

particular type of event
– Mouse callback

Create a window with GLUT

• glutInitWindowSize
• glutInitDisplayMode
• glutCreateWindow

How do I render a geometric
primitive?

• To Framebuffer
• OpenGL primitives

– A group of one or more vertices
– Vertex defines:

• A point
• An endpoint of an edge
• A corner of a polygon where two edges meet

OpenGL Rendering

• Data consists of
– Positional coordinates
– Colors
– Normals
– Texture Coordinates

• Each vertex is processed
– independely
– In order
– In the same way

6

OpenGL Primitives

Points Lines Polygon

Triangle Quad Quad strip

Triangle strip Triangle Fan

OpenGL drawing

• To draw a primitive, call glBegin()
• glEnd() encloses a list of vertices and their

attributes
• Coordinates of a primitive are given

counter-clockwise order

Function calls to draw a primitive

glBegin(GL_POINTS);
glVertex3f(0.0f, 0.0f, 0.0f);

glEnd();

Draw a triangle:

glBegin(GL_TRIANGLES);
glVertex3f(0.0f, 1.0f, 0.0f);
glVertex3f(-1.0f, -1.0f, 0.0f);
glVertex3f(1.0f, -1.0f, 0.0f);

glEnd();

7

Draws a triangle with different
colors at each vertex

glBegin(GL_TRIANGLES);
glColor3f(1.0f, 0.0f, 0.0f); //pure red
glVertex3f(0.0f, 1.0f, 0.0f);

glColor3f(0.0f, 1.0f, 0.0f); //pure green
glVertex3f(-1.0f, -1.0f, 0.0f);

glColor3f(0.0f, 0.0f, 1.0f); //pure blue
glVertex3f(1.0f, -1.0f, 0.0f);

glEnd();

