
1

Introduction to OpenGL
Part II

CS 351-50

OpenGL: Open Graphics Library

• Graphics API
(Application Programming Interface)
– Software library
– Layer between programmer and graphics

hardware (and other software
• Several hundred procedures and functions

What is OpenGL

• Configurable state machine
– Input is 2D or 3D data
– Output is framebuffer
– Modify state to modify functionality

How do I render a geometric
primitive?

• To Framebuffer
• OpenGL primitives

– A group of one or more vertices
– Vertex defines:

• A point
• An endpoint of an edge
• A corner of a polygon where two edges meet

2

OpenGL Rendering

• Data consists of
– Positional coordinates
– Colors
– Normals
– Texture Coordinates

• Each vertex is processed
– independely
– In order
– In the same way

OpenGL Primitives

Points Lines Polygon

Triangle Quad Quad strip

Triangle strip Triangle Fan

OpenGL drawing

• To draw a primitive, call glBegin()
• glEnd() encloses a list of vertices and their

attributes
• Coordinates of a primitive are given

counter-clockwise order

Function calls to draw a primitive

glBegin(GL_POINTS);
glVertex3f(0.0f, 0.0f, 0.0f);

glEnd();

3

Draw a triangle:

glBegin(GL_TRIANGLES);
glVertex3f(0.0f, 1.0f, 0.0f);
glVertex3f(-1.0f, -1.0f, 0.0f);
glVertex3f(1.0f, -1.0f, 0.0f);

glEnd();

Draws a triangle with different
colors at each vertex

glBegin(GL_TRIANGLES);
glColor3f(1.0f, 0.0f, 0.0f); //pure red
glVertex3f(0.0f, 1.0f, 0.0f);

glColor3f(0.0f, 1.0f, 0.0f); //pure green
glVertex3f(-1.0f, -1.0f, 0.0f);

glColor3f(0.0f, 0.0f, 1.0f); //pure blue
glVertex3f(1.0f, -1.0f, 0.0f);

glEnd();

Types of rendering

• Wireframe
– Display only lines and curves
– No filled objects

• Flat Shading
– Compute a single color for each polygon
– Fill the polygon with that constant color

Types of rendering

• Smooth (Gouraud shading)
– Interpolate vertex colors across polygon
– Vertex colors can be specified explicitly or computed

using lighting calculations
• Texture Mapping

– Modify color of each pixel with colors from an image
• 1991 Pixar Shutterbug Example

– http://www.siggraph.org/education/curriculum/projects/slide_sets/slides91/91_01_2.htm

4

How are these options
configured?

• Functions
– glEnable, glDisable,
– glCullMode, glPolygonMode, glLightModel,

etc.

What is the OpenGL Pipeline

• Process thru which OpenGL processes data
• Geometric data and pixel data processed

separately
– Geometry subject to per-vertex operations
– Pixel data subject to per-pix operations
– Both share the same final step

• Rasterization and per-fragement ops
• (fragment is general term for pixel or vertex)

OpenGL Pipeline

Vertices

Images/
Pixels

Geomety
Primitive

Operations

Scan
Conversion

Fragment
Operations

Pixel
Operations

Texture
Memory

Fram
ebuffer

OpenGL Pipeline

• Understanding Pipeline is important!
– Helps design algorithms
– Helps find bottlenecks

• Which parts are supported by hardware

5

Pixel Primitives

• Provide a way of manipulating rectangles of pixels
• glDrawPixels, glReadPixels, glCopyPixels move

pixel rectangles to and from the framebuffer
• glBitmap takes a binary image and renders the

current color in framebuffer positions
corresponding to 1s in image (useful for drawing
fonts)

• glRasterPos defines where pixels go in the
framebuffer

Hidden Surface Removal

• When we draw a fragment, record the z
(distance to the eye) in the depth buffer

• If the z stored in the depth buffer is greater
than the z for the fragment about to be
drawn, draw it

• Otherwise, the fragment is behind
something that has already been drawn, so
throw it away

Hidden Surface Removal

• When seeing up your window, specify a depth
buffer:
– glutInitDisplayMode(GLUT_DEPTH);

• When clearing, make sure to:
– glClear(GL_DEPTH_BUFFER_BIT);

• glEnable(GL_DEPTH_TEST);
• Set the depth test comparison operation:

– glDepthFunc(GL_LESS);
– //this is the default, don’t really need to specify

Demos

• Shapes (Nate Robin’s Tutors)
– Ctrl and mouse to change primitive

6

OpenGL Color Models

• RGBA color
– Red, Green, Blue, Alpha
– Separate channel for each
– 8 bits/channel = 16 million colors

• Indexed Color
– Small number of colors accessed by indices

into a color look up table
• 8 bits = 256 colors

OpenGL Transparency

• Use the fourth component (alpha) of RGBA
color
– Alpha = 0 is fully transparent
– Alpha = 1 is fully opaque

• Objects are composited as they are rendered
– Example: C = alpha*Cs + (1 - alpha) Cf
– Cs is the color of the incoming fragment
– Cf is the color already in the framebuffer

Viewing in OpenGL

• Viewing consists of two parts
– Object positioning

• model view transformation matrix
– View projection

• projection transformation matrix
– OpenGL support both perspective and orthographic

viewing transformations
– OpenGL camera is always at the origin, pointing in the

-z direction
– Transformations move objects relative to camera

ModelView Matrix

• Positions objects in world coordinates
• Usually formed by concatenating simple

transformations
– glRotate(theta, x,y,z)
– glTranslate(x,y,z)
– glScale(x,y,z)

• Order is important

7

Modeling Transformations
glTranslatef(0.0f, 0.0f, -10.0f);
glRotatef(45.0f, 0.0f, 1.0f, 0.0f);

glBegin(GL_TRIANGLES);
glColor3f(1.0f, 0.0f, 0.0f); //pure red
glVertex3f(0.0f, 1.0f, 0.0f);

 glColor3f(0.0f, 1.0f, 0.0f); //pure green
glVertex3f(-1.0f, -1.0f, 0.0f);

glColor3f(0.0f, 0.0f, 1.0f); //pure blue
glVertex3f(1.0f, -1.0f, 0.0f);
glEnd();

Viewing in OpenGL

• Orthographic projection
– Boundaries of the parallel viewing volume
– Objects are clipped to specified viewing cube
– glOrtho(left, right, bottom, top, front, back)

• Perspective Projection
– glFrustum, gluPerspective
– Clipping volume is a frustum

• Make sure near and far clipping planes aren’t too
far apart

• Make sure near plane isn’t too close to eye

Positioning the Camera

• Use gluLookAt to specify
– Eye location
– “Look-at” point
– “up” vector

• gluLookAt(10,10,10,1,2,3,0,0,1);
– Eye is (10,10,10)
– Look at point is (1,2,3)
– Up is (0,0,1)

• Usually done in GL_PROJECTION matrix and
combined with perspective matrix

Complete Viewing Example
//Projection first
glMatrixMode(GL_PROJECCTION);
glLoadIdentity();
gluPerspective(60, 1, 1, 100);
gluLookAt(10,10,10,1,2,3,0,0,1)

//Now object transformations
glMatrixMode(GL_MODELVIEW)
glLoad Identity();
glTranslate(1,1,1);
glRotatef(90, 1,0,0);
DrawObject();

8

Matrix Stacks

• OpenGL has multiple matrix “stacks”
• glPushMatrix pushes a copy of the top fo

the stack matrix
• glPopMatrix throws away the top of the

stack
• Very useful for hierachically defined figures
• Demo:

– http://www.cs.princeton.edu/~min/cs426/jar/transform.html

Column versus row order

• OpenGL uses column, C uses row
• We will use column

From OpenGL maual (pg 103 of
Programmers 1.1)

• “If you are programming in C and declare a
matrix as m[4][4] then the element m[i][j] is
in the ith column and jth row of the
OpenGL transformation matrix. This is the
reverse of the standard C convention in
which m[i][j] is in row i and column j. To
avoid confusion you should declare your
matrices as m[16].”

OpenGL Matrix:

• (zero based)

 m0 m4 m8 m12

 m1 m5 m9 m13

 m2 m6 m10 m14

 m3 m7 m11 m15

9

Demos

• Transformations (Nate Robin’s Tutors)
– The transformation tutorial program (shown at left) demonstrates how the basic transformations of

rotate, translate and scale operate in OpenGL. The order of the transforms can be changed to see
how that effects rendering.

Slide Credits

• These slides were pieced together based
upon information in the following valuable
sources:
– Greg Humphreys, 2000 (pdf of Intro to

OpenGL, CS148 Lecture 7)
– http://www.csie.nctu.edu.tw/~jllin/D_Documents.htm
– Michael Mack,

• http://www.acm.wwu.edu/~mackm/pres/index.php

