
Produce an image of 3D world, in world device coordinate
not interested in entire world, only portion
this portion is called a "window"
WIndow is set via some command such as

SetWindow2d(xmin, Ymin, Xmax Ymax)

Can use the window to change the apparent size and/or location of object in the image.
Changing the window affects all of the objects in the image

These effects are called zooming and panning
They can be done two ways: 
Setting the window or moving the camera
First we will talk about the window

Zooming

Now increase the window size and the house appears smaller, i.e., you have zoomed out:

Set_window( -60, +60, -30, +30 ) 

If you decrease the window size the house appears larger, i.e., you have zoomed in:
Set_window( -21, +21, -11, +11 )

Thus apparent size of image can be changed by changing the window size

What about position

A. Set_window(-40, +20,-15,+15)

B.Set_window(-20,+40,-15,+15)



Moving all objects in the scene by changing the window is called "panning".

---------------------------------------

Viewport

Windowing system is responsible for opening the window (GLUT)

By default in OpenGL, sets the viewport to be the entire set of pixels in the rectangle defined by this window.

You can use glViewport() to choose a smaller drawing region
For example you may want to subdivide the window to create a split-screen effect for multiple views in the same 
window
(See slide on viewport)

Can display multiple images in different viewports:
Set_window( -30, +30, -15, +15);
Set_viewport(0.0, 0.5, 0.0, 0.5); -- lower left
Draw_house;
Set_viewport(0.5, 1.0, 0.0, 0.5); -- lower right
Draw_house;
Set_viewport(0.0, 0.5, 0.5, 1.0); -- upper left
Draw_house;
Set_viewport( 0.5, 1.0, 0.5, 1.0); -- upper right
Draw_house;

This gives the following image: 

----------------------

3D Camera Transformation



Use camera analogy
viewer observes scene thru camera and can move around the scene

Define a viewing coordinate system: position and orientation of the camera
align view coordinate system  with world coordinate system -> viewing transformation matrix

viewing transformation  matrix is applied to all objects moves them into proper position as seen by camera

First step : Choosing the VCS origin (in world coordinates). This is the VRP, that is, the position of the camera 
(observer). Next, we define a projection plane (view plane or image plane). Choose a view plane normal 
vector, N which determines the positive Z axis direction. Next choose a view up vector, V which determines the 
positive y axis direction. We are through since the positive U (X) axis is orthogonal to the V (Y) and N (Z) axis.

Now that we have defined a VCS (left handed) we must perform a coordinate transformation to align the WCS 
with the VCS.



Problem choosing N and orthogonal vector V

So we use an alternative method
choose: Eye point, Look at point, and Up vector

Normal to view plane becomes the normalized vector from Eye to Lookat
length of this vector is the view plane distance

gluLookAt(..)
Defines a viewing matrix and multiplies it to the right of the current matrix



In the default position, the camera is at the origin, is looking down the negative z-axis, and has the
positive y-axis as straight up. This is the same as calling
gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);
The z value of the reference point is -100.0, but could be any negative z, because the line of sight will
remain the same. In this case, you don’t actually want to call gluLookAt(), because this is the default
(see Figure 3-11) and you are already there! (The lines extending from the camera represent the viewing
volume, which indicates its field of view.)

This is the same as doing translation and rotations to get the camera to where you want it.

----------

3D Viewing Projections

 

Map 3D object to 2D display
Two General methods:  Parallel (orthographic) and Perspective

Parallel Viewing Projections



Parallel rays (projectors) emanate from a center of projection (the eye)
and intersect the projection plane

For Orthographic projections, center of projection is at infinity

Two classes of parallel projections
orthographic: direction of projection is perpendicular to projection plane
oblique projection: direction of projection is not perpendicular to projection plane

Draw projection of point to projection plane similar to this (for orthographic and parallel):

orthographic: discard the z coordinates
Engineering drawing frequently use front, side, top orthographic views of an object
(Maya: modeling)



orthographic projection that show more than 1 side of an object are called axonometric orthographic 
projections

The most common axonometric projection is an isometric projection where the projection plane intersects each 
coordinate axis in the model coordinate system at an equal distance.

Isometric Projection

The projection plane intersects the x, y, z axes at equal distances and the projection plane Normal makes an 
equal angle with the three axes.

To form an orthographic projection xp = x, yp= y , zp = 0. To form different types e.g., Isometric, just manipulate 
object with 3D transformations.

The projectors are not perpendicular to the projection plane but are parallel from the object to the projection 
plane 



????? (error from note copy?)

The projectors are defined by two angles A and d where:
A = angle of line (x,y,xp,yp) with projection plane,
d = angle of line (x, y, xp, yp) with x axis in projection plane
L = Length of Line (x,y,xp,yp).

Then:
cos d = (xp - x) / L ------> xp = x + Lcos d ,
sin d = (yp - y) / L ------> yp = y + Lsin d ,
tan A = z / L

Now define L1 = L / z ----> L= L1 z ,
so tan A = z / L = 1 / L1 ; xp = x + z(L1cos d) ; yp = y + z(L1sin d) 

    |1      0      0 0 |
P = |0      1      0 0 |
    |L1cosq L1sinq 1 0 |
    |0      0      0 1 |

Now if A = 90° (projection line is perpendicular to PP) then tanA = infinity => L1 = 0, so have an rthographic 
projection.

Two special cases of oblique projection
A) A = 45° , tanA = 1 => L1 = 1 This is a Cavalier projection such that all lines perpendicular to the projection 
planeare projected with no change in length.

 

B) tanA = 2, A= 63.40°, L1 = 1 / 2
Lines which are perpendicular to the projection planeare projected at 1 / 2 length . This is a Cabinet projection.

------------------------------

Perspective Viewing Projection

Objects are projected directly toward the eye and they are drawn where they meet a view plane in front of the 
eye

size of object is proportional to 1/z for eye at origin looking up at negative z axis

y_s = (d/z)*y  (for slide image or figure 6.9 of Shirley book)



Eye at finite distance from projection plane

That distance determines size of objects in projection plane
farther the object, the smaller it is 

Perspective projection is thus more realistic since distance object appear smaller

OpenGL
specify projection 

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,
                             GLdouble top, GLdouble near, GLdouble far);
Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The
frustum’s viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)
specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping
plane; near and far give the distances from the viewpoint to the near and far clipping planes.
They should always be positive.

frustum has a default orientation in 3D space
You can perform rotation or translations on the projection matrix to alter this orientation, but it is tricky and 
nearly always avoidable

glFrustum can be nonintuitive
Instead may want to use gluPerspective

void gluPerspective(GLdouble fovy, GLdouble aspect,
                                      GLdouble near, GLdouble far);
Creates a matrix for a symmetric perspective-view frustum and multiplies the current matrix by it.
fovy is the angle of the field of view in the x-z plane; its value must be in the range [0.0,180.0].
aspect is the aspect ratio of the frustum, its width divided by its height. near and far values the
distances between the viewpoint and the clipping planes, along the negative z-axis. They should
always be positive.

Picking the FOV is the hardest part.... it involves knowing the eyepoint (where the user views the screen from) 
and the size of the window.  

For example, if you window is 11 inches high and you choose field of view of 90 degrees, then your eye has to 
be about 7.8 inches from the screen for the image to appear undistorted.

usually FOV of 40 to 60 degrees works.  See Example 3-3 for calculating FOV in OpenGL book

See the troubleshooting pg 129 of Chapter 3 of OpenGL book (pg # refers to book version1.1)

------

Vanishing Points



--------

FINISH up on powerpoint slides

-------------

THinking towards the assignment and
back to zoom and panning via the camera

The assignment:

This project will help you familiarize yourself with three-dimensional modeling and viewing, and user input, and 
makes you write an OpenGL program from scratch. Completing the basic assignment will be worth 100 points. 
Focus first on the mechanics of viewing and interaction, and only worry about making a fancy model, and other 
special features, if you have time.

The project is to model an object in 3D, and move it around using the ``glass-ball'' (aka ``arc-ball'') user 
interface. The idea if the interface is that we imagine the object to be embedded in a clear glass trackball. When 
you hold any mouse button down in the window containing the object, moving the mouse spins the glass 
trackball, and the object along with it. Notice that the object should rotates around an axis perpendicular to the 
direction that the mouse is moving. Moving the mouse with the buttons released does nothing.

-----

Good set of input for moving the camera, 
2 numbers:  degrees rotate around x axis
degrees rotate around y axis

Think about drawing a line dividing the screen left to right
if we move our camera up, we expect things on that line to stay in the center



things in front of that line move down, thing behind that line move up
call this the "apparent X axis"

Similiarly if divide screen  horizontally, we get an "apparent Y axis"
if we move left or right, we expect things on tine wih the axis not to move

Our eye coordinate system has Y toward top, X to right

Note the eye coordinate system is not what we want to rotate around
Use the LookAt point, which should be the center of our model
if it is not, we can still pan around, but it will be less intuitive and look like the model is moving around as well as 
spinning

Problem: Order of operations 

pan(0,15) pan(15,0) not necessarily equal to pan(15,15)

however if we do small changes each time, as with the mouse, we may not notice
if do large (pan 45 deg to right), do only one axis at a time to not surprise user

Consider the task
if want function to pan camera up, what do we change?
don't want to change at point, keeps us looking at model
don't want to change the view angle, because we aren't changing the camera, just moving it
that leave Eye and Up 

Move both (Up is more subtle)
if up vector at 90 degree from line of sight (Y axis) and we moved up 90 degrees
we could be looking "down" on object compared to original view

if we did not move up vector, up would be along line of sight.. viewing model breaks

if move left to right still need to move up to keep orthogonal basis
luckily it is easy to do, because apply same thing to Eye and Up, keeping them in the same relative position 
with respect to one another.

How to find the axes:

work with Eye first
and we know how to rotate a point around x, y or z axis and the origin
reduce current problem to rotating around "

movement around apparent X (vertical divide) is a rotate around axis that is left to right
know left to right is perpendicular to  to plane made by up and line of sight  
this screams cross product, getting sign correct, we can get a vector to the right
Up x (Eye - At)
Note we have to take these to the origin to use it as a vector in the cross product
Then the "apparent Y axis" (may or may not be the up vector) is
(Eye-At ) x apparent Xaxis

Find easier axis
we convert points for drawing on the screen
took from world to eye coordinates  then project them onto the screen

our eye is in world coordinates, not eye, but we have a matrix that can give us eye coordinates

convert eye to eye coordinates
move it slightly



rotate it around basic axes
convert back to world coordinates

tricky bits:
eye coordinate >> origin at Eye point
 need origin at "At" point, and Eye relative to 
 From in eye coordinates is always 0,0,0

From Peter shirley's book (pg 115)
we have two coordinate systems
e= Eye point
 g=  gaze direction (at-eye)
t = up

Align this relative to a new coordinate system, uvw

let Mv = 

xu  yu  zu  0   | |   1   0   0  -xe
xv  yv  zv   0   | |   0   1   0  -ye
xw yx  zw  0   | |   0   0   1  -ze
0    0    0    1   | |   0   0   0    1

Applying Mv to point p aligns p to the coordinate axis

Given Mo as the orthogonal view matrix (6.4 of pg 113 of Shirley)

compute Mv
compute Mo
M = MoMv
apply M to each point

For perspective viewing

compute Mv
computer Mo
compute Mp
M = MoMpMv
apply M to each point

where Mp

1  0      0          0
0  1      0          0
0  0  (n+f)/n    -f
0  0    (1/n)      0

----------------------


