
1

Ogres and Fairies
Secrets of the NVIDIA Demo Team

2

Overview

Demo engine overview

Procedural shading for aging effects in “Time
Machine”

Depth of field and post processing effects in
“Toys”

Subdivision surfaces and ambient occlusion
shading in “Ogre”

Advanced skin and hair rendering in “Dawn”

Questions

3

4 demos for the launch of GeForce FX
“Dawn”

“Toys”

“Time Machine”

“Ogre”
(Spellcraft Studio)

The GeForce FX Demo Suite

4

Why Do We Do Demos?

To demonstrate capabilities of new hardware
Features

Performance

To provide a practical test bed for new rendering
techniques and algorithms

Shading teapots is easy

To inspire application and game developers

NVIDIA spends a lot of money on demos

At launch there usually aren’t many applications that take full advantage
of the hardware

We are aware demos are not representative of games (often a single
character, simple background).

Games have long development cycles, need to support a wide range of
hardware

We have very early access to hardware

It’s easy to do shaders on teapots, using real models is more complicated.

5

NVIDIA Demo Engine

All demos were developed using the same engine

NRender – rendering API abstraction
Thin layer on top of OpenGL or DirectX 9

Uses Cg compiler and runtime for shaders

NVDemo - object-oriented scene graph library
Handles state management, culling, sorting

Complete scene can be stored in a single ASCII or
binary file

Includes Maya and 3DS MAX converters

6

The Time Machine Demo
Hubert Nguyen

7

Goals of Time Machine

Show the potential of a new architecture
More data

16 texture inputs

8 texture coordinate interpolators

Higher precision (128 bits)

More instructions (up to 1024)
Shading done in a single pass

Faster pixel processing

Higher clock speed

Greater data access & faster processing

8

A truck ?

Old pick-up trucks have a wide variety of surfaces.
Paint and rusting and oxidizing

Wood splintering and fading

Chromes being damaged and dirty

And more…

9

Live demo

http://www.nvidia.com/object/demo_timemachine.html

10

A Simple “aging shader” : Chrome

Aging shaders are multi-layered shaders
Several stand-alone effects blended
together by a function of time & space

Case study : chrome
2 layers :

Chrome (shiny) layer

Rust layer

Both are fully lit, bumped
and shadowed

Each would barely fit on a
DX8-class shader

11

Chrome : getting older

Chrome still shines over the years

Reflection fades slightly (dust, dirt, small damages)

Bumps, scratches & rust shows up

12

Chrome: aging snapshots

Full lighting, bump & shadows on all the layers

Reflection blurred by blending two cube maps

Bumpy reflection using EMBM, for performance

“Reveal” texture pinpoints the rust location

13

Chrome : reveal map

Time

Rust lit&shadowed Chrome lit&shadowed FinalRust reveal

=

14

Chrome : texture inputs

Lightmap Spotmask Chrome bump Rust Reveal

Rust Color

Shadow Map

Cube map new Cube map old

15

Procedural Shading Effects
Gary King

16

Time Machine Effects : Paint

Specular color shift Oxidation

Bubbling Rusting

60 Pixel Shader instructions, 11 textures

Paint textures:
•Paint Color
•Rust LUT
•Shadow map
•Spotlight mask
•Light Rust Color*
•Deep Rust Color*
•Ambient Light*
•Bubble Height*
•Reveal Time*
•New Environment*
•Old Environment*
(* = artist created)

17

Effects (cont’d) : Wood, Chrome, Glass

Wood fades and cracks Chrome welts and corrodes

Headlights fog

23 instructions, 8 textures31 instructions, 6 textures

24 instructions, 4 textures

18

Procedural or Not?

Procedural shading normally replaces textures
with functions of several variables.

Time Machine uses textures liberally.

The only parameter to our shaders is time.

Artists love sliders when finding a look, but hate
sliders when creating one.

Demos (and games) are art-driven – don’t sacrifice
image quality to satisfy technical interests.

Turning everything into math is expensive

Time Machine’s solution
Give artist direct control (textures) over final image,
use functions to control transitions

19

Techniques : Faux-BRDF Reflection
Many automotive paints exhibit a color-shift as a
function of the light and viewer directions.

This effect has been approximated with analytic
BRDFs (Lafortune’s cosine lobes)

And measured by Cornell University’s graphics lab

Goal: Incorporate this effect in real-time
BRDF factorization [McCool, Rusinkiewicz] is one
method to use this data on graphics hardware

Represents BRDF as product of multiple 2D textures

Closely approximates the original BRDFs

Rotated/projected axes hard to visualize, editing
textures is unintuitive

20

Techniques : Faux-BRDF Reflection 2
Our solution: project BRDF values onto a single 2D
texture, and factor out the intensity

Compute intensity in real-time, using (N.H)s

Texture varies slowly, so it can be low-res (64x64).

Anti-aliasing texture fixes laser noise at grazing angles

For automotive paints, N.L and N.H work well for axes.

Not physically accurate, but fast and high-quality.

Easy for artists to tweak.

Dupont Cayman lacquer Mystique lacquer

21

Techniques : Reveal and Velocity maps

Artists do not want to paint hundreds of frames of
animation for a surface transition (e.g., paint->rust)

Ultimately, effect is just a conditional:

if (time > n) color = rust; else color = paint;

Or an interpolation between a start and end point

paint = interpolate(paint, bleach, s*(time-n));

So all intermediate values can be generated.

For continuous effects, use velocity (dXdT) maps

Can be stored in alpha in a DXT5 texture.

22

Techniques : Dynamic Bump mapping

Scaling a normal map by a constant doesn’t
change surface topology.

),(),(yxhyxyxN =∂∂∫∫),(),(yxchyxyxcN =∂∂∫∫

To change surface topology, the height map needs to
be updated every frame, and the normals recomputed
from that (chain rule).

yx
yxh

yxN
∂∂

∂
=

),('
),('

This is analogous to techniques that use the GPU to
solve partial differential equations.

initial heights

merged after time t

23

Techniques : Dynamic Bump mapping 2

By multiplying each object’s height map by a
growth function (dXdT map) and recomputing the
normals, we created a bubble effect that allows
bubbles to grow, merge, and decay realistically.

As a side benefit, all normals are computed from
mip-mapped height maps.

*

Height map Growth factor at t=n

=

New normals

yx
tyxgyxh

tyxN
∂∂

∂
=

),,(),(
),,('

24

Performance Concerns

Executing large shaders is expensive.
First rule of optimization: Keep inner loops tight

Shaders are the inner loop, run >1M times per frame.

But graphics cards have many parallel units
Vertex, fragment, and texture units

Modern GPUs do a great job of hiding texture latency

Bandwidth is unimportant in long shaders

Time Machine runs at virtually the same framerate on a
500/500 GeForceFX as it does on a 500/400 or 500/550

So not using textures is wasting performance!

25

Performance Concerns…

Convert arithmetic expressions into textures
If…

8 (RGBA) or 16 (HILO) bit precision sufficient

Approximately linear, above some resolution

Depends on a limited number of variables

LUTs = 2x performance in Time Machine

Rust Interpolation
Computes the normalized difference of reveal maps.

Dependent on current and reveal time, blends 2 textures.

Surround Maps
Recomputing the normal requires heights of neighbors

Each height is only 1 8-bit component

Instead of 4 dependent fetches, we can pack
S(s,t) = [H(s-1, t), H(s+1, t), H(s,t-1), H(s,t+1)]

26

Performance Concerns…

Defer common operations
Lighting for each effect layer is (Ks*(N.H)b + Kd*(N.L))*v

Compute normal, select Ks, b, and Kd based on the per-
pixel layer, and light once (don’t call pow() more times
than absolutely necessary!).

Invisible results don’t need to be correct.
Example: The texture coordinates for the specular
color-shift don’t matter once the paint has rusted

27

Summary

We aren’t limited to vertex animation anymore

Shaders should provide artists the inputs they need
to create the effects they want

Start and end points are critical to overall quality

In-betweens are less-so, and more tedious to paint

Once you have the right effect, look for shortcuts
500 arithmetic instructions will not run in real-time

Don’t be afraid of textures

Be creative – programmable hardware has near-
limitless effect and optimization opportunities.

28

Further Reading

M. McCool, J. Ang and A. Ahmad, “Homomorphic
Factorization of BRDFs for High-Performance
Rendering, Computer Graphics (Proceedings of
SIGGRAPH 01), pp. 171-178 (August 2001, Los
Angeles, California).

P. Hanrahan and J. Lawson, “A Language for Shading
and Lighting Calculations”, Computer Graphics
(Proceedings of SIGGRAPH 90), 24 (4), pp. 289-298
(September 1990, Dallas, Texas).

Simon Rusinkiewicz, “A New Change of Variables for
Efficient BRDF Representation,” Rendering
Techniques (Proceedings of Eurographics Workshop
on Rendering 98).

29

Further Reading

NVIDIA Developer Website
http://www.nvidia.com/developer

Cornell University Program of Computer Graphics
Light Measurement Laboratory

http://graphics.cornell.edu/online/measurements

30

Depth of Field in the Toys Demo
Fun with Realtime Post-Processing

31

What is Depth of Field?

In computer graphics, it’s easier to pretend we
have a perfect pinhole camera, with no lens or film
artifacts.

Real lenses have area, and therefore only focus
properly at a single depth.

Anything in front of this or behind this appears
blurred, due to light rays from this point not
focusing on a single point on the film.

For a circular lens, each point in space projects to
a circle on the film, called the circle of confusion.

32

Simple Depth of Field

Render scene to color and depth textures

Generate mipmaps for color texture

Render fullscreen quad with simpledof shader:
Depth = tex(depthtex, texcoord)

Coc (circle of confusion) = abs(depth*scale + bias)

Color = txd(colortex, texcoord, (coc,0), (0,coc))

Scale and bias are derived from the camera:
Scale = (aperture * focaldistance * planeinfocus * (zfar – znear)) /

((planeinfocus – focaldistance) * znear * zfar)

Bias = (aperture * focaldistance * (znear – planeinfocus)) /
((planeinfocus * focaldistance) * znear)

33

Artifacts: Bilinear Interpolation/Magnification

Bilinear artifacts in extreme back- and near-ground

Solution: multiple jittered samples
Even without jittering, a 4 or 5 sample rotated grid
pattern brings smaller artifacts under control

Larger artifacts need jittered samples, and more of
them

Then it’s just a tradeoff between noise from the
jittering and bilinear interpolation artifacts

(and of course the quality/performance tradeoff with
number of samples)

34

Noise vs. Interpolation Artifacts

With Noise Without Noise

35

Artifacts: Depth Discontinuities

Near-ground (blurry) pixels don’t properly blend
out over top of mid-ground (sharp) pixels

Easy solution: Cheat!
Either don’t let objects get too far in front of the
plane in focus, or blur everything a little more when
they do – soft edges help hide this fairly well.

Harder solution: Depth imposters.
For plane-like objects, you can render an imposter
extended to the extents of the blur, use a color
texture of just that object, and the depth of the
imposter, and then apply the simple technique

36

Depth Discontinuities

37

Artifacts: Pixel Bleeding

Mid-ground (sharp) pixels bleed into back- and
fore-ground (blurry) pixels

Solution: integrate standard layers technique
Split the scene into layers, and render each
separately into its own color and depth texture

Then blend these layers on top of each other, using
the simple depth of field technique

Fortunately, this tends not to be much of a problem
except in artificial situations

38

Simple DOF Vs. Layered DOF

Layered DOF Simple DOF

39

Advanced Depth of Field

Auto-mipmap generation vs. intelligent mipmaps
It may be possible to generate “smart” mipmaps that
blur with their neighbors based upon their coc.

It feels slightly easier to split the scene into behind
and in front of the plane in focus, but not much…

Splatting and forward warping techniques
This is probably the most intuitive way of thinking
about depth of field, but the least hardware-friendly.

You could render a particle per pixel of the color
texture, sized based upon its coc, and blend them

PDR and vertex programs help, but it’s still

 a LOT of particles!

40

Fun With Color Matrices

Since we’re already rendering to a full-screen
texture, it’s easy to muck with the final image.

To color shift, rotate around the vector (1,1,1)

To (de)saturate, scale in the plane (1,1,1,d)

To change brightness, scale around black: (0,0,0)

To change contrast, scale around midgrey: (.5,.5,.5)

These are all matrices, so compose them together,
and apply them as 3 dot products in the shader

41

Original Image

42

Colorshifted Image

43

Black and White Image

44

Further Reading

Paul Haeberli, “Matrix Operations for Image Processing”:
http://www.sgi.com/grafica/matrix/

Richard Cant, et al, “New Anti-Aliasing And Depth of Field
Techniques For Games”:
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Game-
18.pdf

Jurriaan Mulder, Robert van Liere, “Fast Perception-Based
Depth of Field Rendering”:
http://www.cwi.nl/~robertl/papers/2000/vrst/paper.pdf

Tomas Arce, Matthias Wloka, “In Game Special Effects and
Lighting”:
http://developer.nvidia.com/docs/IO/2714/ATT/GDC2002_InGa
meSpecialEffects.pdf

45

Inside the “Ogre” Demo

Simon Green

46

47

Overview

Introduction

Subdivision surfaces

Shading

Ambient occlusion

Out-takes

48

The “Ogre” Demo

A real-time preview of Spellcraft Studio’s in-
production short movie “Yeah! The Movie”

Created in 3DStudio MAX

Character Studio used for animation, plus Stitch
plug-in for cloth simulation

Original movie was rendered in Brazil with global
illumination

Available at: www.yeahthemovie.de

Our aim was to recreate the original as closely as
possible, in real-time

49

The Original Short Movie

50

What are Subdivision Surfaces?

A curved surface defined as the limit of repeated
subdivision steps on a polygonal model

We used the Catmull-Clark subdivision scheme

Subdivision surfaces do not have the continuity
problems associated with some other surface
representations – e.g. Bezier triangles

MAX, Maya, Softimage, Lightwave all support
forms of subdivision surfaces

Subdivision surfaces are beginning to replace
NURBS for character modeling in movie
production (e.g. Weta)

51

Why Use Subdivision Surfaces?

Content
Characters were modeled with subdivision in mind
(using 3DS MAX “MeshSmooth” modifier)

Scalability
wanted demo to be scalable to lower-end hardware

“Infinite” detail
Can zoom in forever without seeing hard edges

Animation compression
Just store low-res control mesh for each frame

Test bed for future hardware support

52

Realtime Adaptive Tessellation

Brute force subdivision is expensive
Generates lots of polygons where they aren’t needed

Number of polygons increases exponentially with
each subdivision

Adaptive tessellation
subdivides based on screen-space flatness test

Guaranteed crack-free

Generates normals and tangents on the fly

Culls off-screen and back-facing patches

CPU-based (uses SSE were possible), GPU assisted

Written by Michael Bunnell of NVIDIA

We will release this as a library soon

53

Control Mesh vs. Subdivided Mesh

4000 faces 17,000 triangles

Control mesh is mainly four-sided faces, with some five and three sided.

Output is quads

54

Control Mesh Detail (3DS MAX)

55

Subdivided Mesh Detail (Realtime)

56

Shading

Skin shader
Uses 4 textures:

Color map, bump map, specular map, shadow map

Uses Blinn-style bump mapping (not tangent space)
float3 bump = f3tex2D(bumpTex, v2f.texcoord)

float3 bumpedNormal = normalize(normal +
 bumpScale * (bump.x*v2f.tangent + bump.y*v2f.binormal)));

Ambient term comes from pre-calculated occlusion

Shadows
Uses hardware shadow map support

2k x 2k resolution

Uses 8 jittered samples on floor to soften edges

57

Ambient Occlusion Shading

Helps simulate the global illumination “look” of the
original movie

Self occlusion is the degree to which an object
shadows itself

Simulates a large spherical light surrounding the
scene

Popular in production rendering – e.g. Pearl Harbour
(ILM), Stuart Little 2 (Sony)

Occlusion is pre-calculated for every vertex in
control mesh, interpolated by subdivision code

Occlusion tool written by Eugene D’Eon,
University of Waterloo

Self occlusion is the main reason why hard to reach areas, such as the
corners of rooms, tend to be darker.

58

Occlusion

N

59

60

61

Porcelain shader

62

Future Work

Displacement mapped subdivision surfaces

Optimize subdivision

Bent normals

Spherical harmonic lighting

63

Acknowledgements

Special thanks to:
Vadim Pietrzynski and Matthias Knappe of Spellcraft
Studio

Michael Bunnell

Eugene D’Eon

64

References

http://graphics.cs.ucdavis.edu/CAGDNotes/

http://www.subdivision.org

“Production-Ready Global Illumination”, Hayden
Landis, Industrial Light & Magic, Siggraph 2002
Renderman Course Notes
http://www.renderman.org/RMR/Books/index.html

65

Outtakes

66

Bumpy shiny test

67

Shadow test (high noon)

68

Transform bug

69

Animation and Shading in “Dawn”

Curtis Beeson

70

71

Overview – The Devil is in the Details

Introduction

Vertex Shaders
Blendshapes

Indexed Skinning

Fragment Shader Setup

Fragment Shaders
Skin Shader Inputs

Skin Shader Algorithm

Simplification and Generalization

Summary

72

Dawn Demo - Introduction

Content created in Alias/Wavefront Maya
Modeling, texturing, and animation

Character setup directly from Maya

Hair created in Simon Green’s hair combing tool

Occlusion generated using Eugene D’Eon’s tool

Motion capture performed by House of Moves

Realtime engine is in-house “Demo Engine”
Vertex and Fragment shaders read as data

Vertex shaders procedurally generated

Code for engine and art path available

73

Vertex Shader: Blendshapes (1/2)

Collected from Maya “Blendshape” node

50 faces
30 emotion faces (angry, happy, sad…)

20 modifiers (left eyebrow up, right smirk …)

Each target stored as difference vector

A blendshape is a single multiply-add
Per active blend target

Per attribute

Result is a weighted sum of all active targets

An active blendshape takes vertex attributes
12 * (coodinate)

6 * (coordinate + normal)

4 * (coordinate + normal + tangent)

74

Vertex Shader: Blendshapes (2/2)

In the ApplicationToVertex connector:
// normals & normal targets are float4(normal.x, normal.y, normal.z, occlusion)

struct a2vConnector : application2vertex {

float4 coord; float4 normal;

 float3 coordMorph0; float4 normalMorph0;

 float3 coordMorph1; float4 normalMorph1;

 float3 coordMorph2; float4 normalMorph2;

 …

}

In the vertex shader body:
 float4 objectCoord = a2v.coord;

 objectCoord.xyz = objectCoord.xyz + morphWeight0 * a2v.coordMorph0;

 objectCoord.xyz = objectCoord.xyz + morphWeight1 * a2v.coordMorph1;

 objectCoord.xyz = objectCoord.xyz + morphWeight2 * a2v.coordMorph2;

 …

 float4 objectNormal = a2v.normal;

objectNormal = objectNormal + morphWeight0 * a2v.normalMorph0;

 objectNormal = objectNormal + morphWeight1 * a2v.normalMorph1;

 objectNormal = objectNormal + morphWeight2 * a2v.normalMorph2;

 …

75

Vertex Shader: Indexed Skinning (1/2)

Mesh exported in “Bind Pose”

Skinning Vertex Data
Float4 channel(s) for indices

Float4 channel(s) for weights

Sort from strongest to weakest weight

“Accumulated Matrix” Skinning
Accumulates all used bones and weights

Faster when doing >2 vertex quantities and >2 bones

Not intuitive, but the math works out

76

Vertex Shader: Indexed Skinning (2/2)

What is a skinning matrix?
To global space(skinWorld): Model * Model-1

bindpose

To eye space(skinEye): Model * Model-1
bindpose * View

How to accumulate skinWorld or skinView:
float4x4 accumulate_skin(float4x4 bones[98], float4 boneWeights0, float4 boneIndices0){

 float4x4 result = boneWeights0.x *bones[boneIndices0.x];

 result = result + boneWeights0.y *bones[boneIndices0.y];

 result = result + boneWeights0.z *bones[boneIndices0.z];

 result = result + boneWeights0.w*bones[boneIndices0.w];

 return result;

 }

Skinning is now just a single matrix multiply
float4x4 skinWorld = accumulate_skin(skinWorldMatrices, a2v.boneWeights0, a2v.boneIndices0);

float3 worldCoord = mul(skinWorld, a2v.coord);

float3 worldNormal = vecMul(skinWorld, a2v.normal);

float3 worldTangent = vecMul(skinWorld, a2v.tangent);

77

Vertex Shader: Fragment Shader Setup

WorldEyeDirection
normalize(worldCoord-worldEyePos)

TangentToWorld Matrix
(Inverse of worldToTangent = transpose because is rotation matrix)

| worldTangent.x worldBinormal.x worldNormal.x|

| worldTangent.y worldBinormal.y worldNormal.y|

| worldTangent.z worldBinormal.z worldNormal.z|

Blood Transmission Terms
float VdotN = dot(worldEyeDirection, worldNormal)

float VdotNcomp = 1.0f - VdotN

float VdotNPow = pow(VdotN, <power>);

float VdotNcompPow = pow(VdotNcomp, <power>);

return (VdotN, VdotNcomp, VdotNPow, VdotNcompPow);

78

Fragment Shader: Skin Inputs

VertexToFragment connector provides:
WorldEyeDirection

TangentToWorld Matrix

Blood Transmission Terms

Fragment Shader texture inputs:
Normalization Cubemap (Procedural, indexed by any vector)

Diffuse Lighting Cubemap (HDRShop, indexed by normal)

Specular Lighting Cubemap (HDRShop, indexed by reflection)

Hilight Lighting Cubemap (Indexed by world eye direction)

Colormap/Specular (Texcoord, rgb = color, a = “front” specular)

Bumpmap/Specular (Texcoord, rgb = bump, a = “side” specular)

BloodColorMap (Texcoord, rgb = blood color)

BloodTransmissionMap (Texcoord)

r: blood pass-thru based on VdotN

g: blood pass-thru based on VdotNcomp

b: blood pass-thru based on VdotNpow

a: blood pass-thru based on VdotNcompPow

79

Fragment Shader: Skin Algorithm

Like anything, diddle the knobs until it’s pretty…

Our fairy shader ended up as:

worldNormal = TangentToWorldMatrix * BumpMap

diffuseLight = DiffuseLightCube(worldNormal)

specularLight = SpecularLightCube(ComputeReflection(worldEyeDir, worldNormal))

passThruLight = HilightCube(worldEyeDir)

bloodAmount = dot (BloodTransmissionMap, BloodTransmissionTerms)

diffuseColor = lerp(ColorMap, BloodColorMap, bloodAmount)

specularColor = lerp(frontSpecularMap, sideSpecularMap, BloodTransmissionVector.z)

return (occlusion*(diffuseLight *diffuseColor + specularLight *specularColor + passThruLight))

80

Skin Simplification and Generalization

Diffuse, Specular, and Hilight can be computed

Diffuse bump in tangent space was heavy
9 move instructions in vertex shader

3 dot3’s in fragment shader

Can do simpler bumpmapping in tangent space

Blood term could just interpolate constant color

Normalization cubemap optional (but cheap)

Second specular map optional

Hilight map optional

81

Summary

Blendshapes are your friend
Single multiply-add fast on GPU or CPU

Runs well in conjunction with skinning

Can improve ‘squish’ introduced by skinning

Accumulated matrix skinning works
Unintuitive but effective

Faster on GPU or CPU

Skin Shaders are a HACK
So is everything else in graphics

Beautiful artwork is key

Dot(View,SurfaceNormal) is a powerful tool

82

Acknowledgements

Thanks for the art:
Steven Giesler Modeling, Texturing

Dan Burke Animation

Thanks for the code:
Kevin Bjorke Skin Fundamentals

Gary King Skin Prototype and Optimization

Alexei Sakhartchouk Skin Iteration and Optimization

Simon Green Hair generation tool

Eugene D’Eon Occlusion generation tool

83

84

Credits

Art Team
Dan Burke, Bonnie O’Claire, Steven Gielser, Daniel
Hornick

Programming Team
Curtis Beeson, Joe Demers, Simon Green, Gary
King, Hubert Nguyen, Thant Tessman

Interns
Eugene D’Eon, Denis Dmitriev, Dean Lupini,
Jonathan McGee, Alex Sakhartchouk

Management
Mark Daly

85

Questions…

?

