
Analysis and Design of Algorithms

Design Docu ment for
Lab Ass ignment #1

Investigation of the performance of
Binary Heaps and Fibonacc i Heaps in
the context of f ind ing Minimum Cost

Spanning Trees

Description of Prob lem
Investigation of the performance of Binary Heaps and Fibonacci Heaps in the context of finding
Minimum Cost Spanning Trees

Introdu ction
Heaps are widely used Data Structures which are used in many areas of Computer Science
like Heap Sorting, Prim’s Minimum Spanning Tree Algorithm, Dijktra’s Shortest Path Algorithm
and so on. Various designs of heaps exist which vary in design complexity and performance.
Therefore the performance characteristics of a particular heap can greatly affect the running
time characteristics of the application which use heaps. Some types of heaps are:

1. Binary Heap
2. Binomal Heap
3. Fibonacci Heap
4. 2-3 Heap

All the above heaps have different running times for operations and therefore their use
depends on the particular application.
In this assignment, performance of Binary Heaps and Fibonacci Heaps will be investigated and
compared in the context of finding Minimum Cost Spanning Tree of graphs of varying sizes.

Strategy
The Algorithm used for finding the Minimum Cost Spanning Tree will be Prim’s Algorithm.
Since Prim’s Algorithm requires heaps for its implementation, both Binary heaps and Fibonacci
Heaps will be used for implementing the Prim’s Algorithm. After the algorithms have been
implemented, graphs of various sizes will be generated randomly within the system and used
for finding Minimum Cost Spanning Tree using both the above heaps and their performance
compared as a function of graph size. It will be analysed, which heap performs better in which
situations. Constants are expected to play a major role in the above performance analysis.

The various components in this assignment can be identified as:
1. Prim’s Algorithm for finding Minimum Cost Spanning Trees
2. Binary Heap
3. Fibonacci Heap
4. Graph Generator

Prim’s
Algorithm

Graph
Generator

Binary Heap Fibonacci Heapor

Performance
Statistics

Implementation
The above algorithms will be implemented on JAVA Development Platform. The following
sections discuss the implementation of the above components which will aid in their
implementation in JAVA.

Binary Heaps

Heaps are primarily used to implement Priority Queues. It is an Abstract Data Type which
offers methods that allow removal of the item with the maximum (or minimum) key value ,
insertion , deletion and other operations like decrease_key and arbitrary_delete.

Various implementations of heaps are possible each having its own design and performance
characteristics.

A Binary Heap is a binary tree which has the following characteristics :
1. It is complete. Level I has 2I nodes except the last level which may have less than 2I nodes

but there are no gaps between the leftmost leaf and the rightmost leaf.
2. It is usually implemented using arrays. Arrays offer an efficient and convenient

implementation of Complete Binary Trees.
3. Each node in the heap , satisfies the heap condition , which states that the node’s key is

smaller than or equal to the keys of its children.

The operations which will be supported in the Binary Heap are :
1. Insertion
2. DeleteMin
3. ReturnMin
4. DecreaseKey

Representation
The array representation is useful because it is very easy ro get from a node to its fathers and
sons. The father of the node in position j is in position j div 2 , and , conversely , the two sons
of the node in position j are in position 2j and 2j+1. This makes traversal of such a tree even
easier than if the tree were implemented using a standard linked representation. The minimum
key is always the first position of the array.

Time Complexity
All of the algorithms operate along some path from the root to the bottom of the heap. It is easy
to see that, in a heap of N nodes , all paths have about log(n) nodes on them. The number of
levels in a complete binary tree are log(n). Thus all the operations can be done in logarithmic
time using heaps.

Algorithms
The heap algorithms all work by first making a simple structural modification which could
violate the heap condition, then travelling through the heap modifying it to ensure that the heap
condition is satisfied everywhere.

The nodes in the heap can be defined as follows :

Class : Node

// Class for Node
public class Node
{

public int key; // The key of the node

// Also declare other auxiliary data associated with the node

// Constructor
public Node(int k)
{

key=k;
}

// Returns the key of this node
public int returnkey()
{

return key;
}

}

The above class written in JAVA will represent the nodes in the heap. An array can be
declared of the above type to represent the heap.

Insertion
The code for insertion is as follows. It uses another function upheap to trickle the new element
upwards until the heap property is satisfied.

N represents the current size of the heap.

The Insertion function can be defined as follows:

Insertion(Node node)
{

N=N+1;
heap[N]=node;
upheap(N);

}

Function uph eap is defined as:

upheap(k)
{

Node node=heap[k];
While (heap[k div 2]>=node.returnkey()) do
Begin

Heap[k]=heap[k div 2];
K=k div 2;

End;
Heap[k]=node;

}

DeleteMin (Delete Minimum)
The DeleteMin function works by replacing the first node in the array by the last node (thus
decreasing the size of the heap by 1 in the process) and then percolating the first node until
the heap property is satisfied.

The DeleteMin function is defined as follows:

// returns and deletes the minimum node from the heap

DeleteMin()
{

Node r=heap[1];
heap[1]=heap[N];
N=N-1;
downheap(1);
return r;

}

The downheap function is responsible for restoring the heap property after replacing the first
element by the last element. It is defined as follows :

Downheap(k)
{

Node node=heap[k];
while(k <= N div 2) do
begin

j=k*2;
if (j < N and heap[j].returnkey() > heap[j].returnkey()) then j=j+1;
if(node.returnkey() <= heap[j].returnkey()) then exit loop;
heap[j]=heap[k];
k=j;

end;
heap[k]=node;

}

ReturnMin (Return Minimum key node)

The ReturnMin function is trivial to implement as it just returns the first element of the array.
It is defined as follows :

ReturnMin()
{

return heap[1];
}

DecreaseKey

DecreaseKey functions by decreasing the key of a particular node and then percolating it
upwards until the heap property is satisfied. It is defined as follows :

DecreaseKey(index, val)
{

//
heap[index].key=heap[index].key-val;
upheap(index);

}

It calls the uph eap function to percolate the concerned node upwards.

Fibonacci Heaps

Fibonacci Heaps is a more sophisticated implementation of heaps. They have some
advantages, which greatly reduce their amortised operation cost. In fact all operations where
deletion of an element is not involved, they run in O(1) amortised algorithm. However, due to
the complicated nature of Fibonacci Heaps, various overheads in maintaining the structure are
involved which increase the constant term in the order. Hence in practical terms, it is not very
clear when Fibonacci heaps will outperform Binary heaps. The purpose of this investigation is
to study and identify when this happens in the context of finding the Minimum Cost Spanning
Tree.

The operations, which will be implemented, are:

1. Insertion
2. Union
3. ReturnMin
4. DeleteMin
5. DecreaseKey

Representation
Fibonacci Heap is essentially a collection of heap – ordered trees. We can store the collection
by linking the roots with a doubly linked list. Each node has children which are further linked
with a doubly linked list. The order of the trees in the root linked list is arbitrary.

Algorithms
The key idea in heap operations on Fibonacci heaps is to delay work as long as possible.
Thus, there will be a trade off among various operations in terms of performance.

No attempt to link the trees in any fashion is made during insertion, melding. We simply add
the node or tree in the doubly linked list. Thus, these operations result on O (1) time. However,
during delete all the trees are combined in such a manner such that for a particular outdegree
of the root, only one tree is present. This reduces the number of trees and by further analysis it
can be shown that number of trees which result is of O(log n).

The total number of nodes in the heap and a pointer to the minimum node is also maintained.

Structure of Node
The nodes used in the Fibonacci Heaps are defined as follows :

class FBNode
{

public Node node; // This contains the actual information. For defn. see previous section.
public FBNode next,prev; // Pointer to next and previous nodes
public int outdegree; // Number of children
public FBNode child,parent; // Pointers to first child and parent
boolean marked; // Whether this node is marked. Used in Cascading cuts

}

Insertion
Insertion simply involves creation of a new node with the required key and adding it to the root
list. No attempt is made to combine the resulting list in any manner thus resulting in a constant
time operation
Insertion function is defined as follows:

Insert(heap,key)
{

Create new node and set its key;
node.degree=0;
node.parent=null;
node.child=null;
node.right=node;
node.left=node;
node.marked=false;

Add the newly created node to the root list , adjusting its left and right pointer appropriately
Increase the node counter of the heap by 1
Update the minimum node pointer if new key is the new minimum.

}

Union of two heaps
To unite two Fibonacci Heaps , we simply need to combine one root list with the another ,
update node count and minimum node pointer appropriately. It is a constant time operation.

Union is defined as follows :

Union(heap1,heap2)
{

make new empty heap;
assign the min node pointer to the minimum of the two min pointers of the two heaps;
combine the root lists of heap1 and heap2 and assign the resulting heap to heap;
heap.count=heap1.count + heap2.count;
return heap;

}

Find Minimum Node
It simply returns the minimum node pointer maintained with the heap. It is a constant time
operation.

FindMin is defined as follows :

FindMin(heap)
{

return heap.minnode; // Return pointer to the minimum node in the tree
}

Delete Minimum Node
The operation of deleting the minimum node is much more complicated than the previously
defined operations. The task of combining all the trees in the root list to to reduce their number
is also done in the DeleteMin operation.

Using amortised analysis, the running time of DeleteMin comes out be O(log n).

DeleteMin function is defined as follows:

// Deletes and returns minimum node from the heap. Returns null if tree is empty
DeleteMin(heap)
{

if (heap.minnode is not null) // Check if heap is not empty
{

Add each child of the minimum node to the root list making its parent pointer null;
remove heap.minnode from the root list of heap;
Combine(heap);
heap.count = heap.count –1;

}

return heap.minnode;
}

The DeleteMin operation calls the Combine operation, which combines the root list such that
for a particular value of outdegree of the root, only one tree is present.

This is done by making an array of trees with the outdegree of the tree as its index. Obviously
the array can store only one tree with a particular outdegree.
Now all the trees in the root list are fetched and added to this array according to their
outdegree. If another tree is already present in the location , the two trees of equal outdegree
are linked such that heap property is maintained resulting in a tree with outdegree increased
by unity. This tree is again added to the next index location and the above process repeated
until an empty index is found for the new tree resulting at each step.

The maximum resulting outdegree by following the above process can shown to be O(log n).

The Combine function is defined as:

Combine(heap)
{

// maxd denotes the maximum resulting outdegree
// array denotes the array used in combining the nodes in the root list
for every node v in the root list of heap
{

d = v.outdegree;
while (array[d] is not empty)
{

w=array[d];
link v and w maintaining the heap property and assign to v
array[d] = empty;
d = d + 1;

}
array [d] = v;

}
//___Now rebuild the root list and update the min pointer in the combined list
heap.rootlist = empty;
for all elements of the array
{

if(current element not empty)

{
add to root list
if added node is minimum node till now then update heap.minnode pointer;

}
}

}

The Combine operation needs to link two nodes. The link function can be defined as follows :

link(node v1 , node v2)
{

make v2 a child of v1 and increment outdegree of v1 by unity
unmark v2;
return v1;

}

Decrease Key operation
In Fibonacci Heaps, the DecreaseKey operation is performed by simply cutting the node from
its parent if the heap property is violated by the decreased node. However if cut trees
arbitrarily, the exponential relation between the outdegree and the number of nodes may no
longer be maintained. To avoid this, we follow a marking scheme, which ensures the
exponential relationship. The marking scheme is shown in the algorithms below.

Using amortised analysis, the running time of DecreaseKey operation comes out to be O(1).

The DecreaseKey function can be defined as follows :

DecreaseKey(heap,node,amount)
{

decrease node.key by amount;
if node.parent is not null and node.parent.key > node.key
{

Cut node from node.parent;
Perform Cascading – cut operation on node.parent;

}
Update heap.minnode pointer if decreased node in new minimum node;

}

The DecreaseKey operation performs two other operations namely :
1. Cut
2. Cascading Cut

The Cut function is defined as follows:

// Cuts v from its parent
Cut(heap , v)
{

remove v from its parent’s child list;
decrease outdegree of v.parent by unity;
v.parent=null;

v.marked=false;
}

The CascadingCut function is defined as follows:

CascadingCut(heap, v)
{

if (v.parent is not null)
{

if(v.marked=false)
{

v.marked=true;
}
else
{

Cut(heap,v);
CascadingCut(heap,v.parent)

}
}

}

Prim’s Algorithm

A minimum spanning tree of a weighted graph is a collection of edges that connects all the
vertices such that the sum of the weights of the edges is at least as small as the sum of
weights of any other collection of edges that connects all the vertices. The minimum spanning
tree for a particular graph may not be unique.

The basic method to finding a Minimum Spanning Tree is based on a greed approach. From
a particular vertex , the next vertex is so chosen so that it can be connected to the current tree
using the edge of the lowest weight. Repeating this process until all the nodes are included
yields the Minimum Spanning Tree.

The Prim’s Algorithm is based on the above approach. It uses a Heap for finding the next
vertex with the minimum edge weight which can be included in the Minimum spanning tree.

Prim’s Algorithm can be defined as :

Prim(graph,root)
{

Create empty heap; // heap will contain all vertices not included in MST
Add all the vertices of graph to heap with keys set as infinity;
Set the key of root to zero;
Set the parent of root to null;

while heap is nonempty
{

extract vertex with minimum key and assign it to v;
add v as a child of parent of v;
for all vertices w adjacent to v
{

if w belongs to heap and cost(w,v) < key(w)
{

set parent of w equal to v;
set key(w) equal to cost(w,v);

}
}

}
}

The above function also calls :
1. cost(u,v) : This function returns the cost of the edge between vertex u and vertex v
2. key(v) : This function returns the key value associated with the vertex v in the heap

The performance of the Prim’s Algorithm depends on the performance of the heap used in the
above algorithm. This is is the reason this application is chosen to compare the two types of
heaps : Binary Heap and Fibonacci Heap.

We can run Prim’s Algorithm for various graphs using both types of heaps and compare their
performance. By running this algorithm on graphs of varying complexity , we can identify under
what conditions do Fibonacci Heaps perform better than Binary Heaps and how much
improvement is there. Are Fibonacci Heaps practical to use in real applications , and if the
answer is yes , then under what conditions. Such questions of practical importance can be
answered by performing the above investigation.

Rando m Graph Generation

The graphs which will be given as input to the Prim’s Algorithm will be generated randomly
within the system itself.

Let us define the rando m function as follows :
rando m(n) returns a random integer varying from 1 to n.

For Random Graph Generation some parameters will be needed which will indicate the
complexity, size etc. of the graph.

Parameters:
1. Number of vertices in the graph
2. Density of the graph (can be specified in terms of number of edges required)

Using the above parameters edges can be chosen at random between any two vertices and
added to the graph structure.

One way is to add equal number of edges for each vertex. If total number of edges required
are E and number of vertices are N , then edges per vertex will be E/N. In case E = N *N we
will get a complete graph.

// N is the number of vertices and E is the number if edges
GenerateRandomGraph(N,E)
{

// M is the number of edges required per vertex
M = E / N;
Create Empty Adjacency List for graph and assign it to G;

int array[N];
for i = 1 to N do array[i]=i;

for each vertex in G
{

// Randomly arrange the array to get a random set of vertices
for i= 1 to N
{

r = random (N);
swap array[i] with array[r];

}
Add first M elements of array to the edge list of current vertex in the adj. li st;

}
return G;

}

The above algorithm can also be modified to add random no of edges to each vertex with
some specified minimum number of edges for each vertex. One simply needs to change the
line shown in bold to add the required number of edges for each vertex.

Using the above function , we can generate graphs of varying complexity say with N = 10 , 100
, 500, 1000 and trying out different values of E (for sparse and dense graphs). We can run
the Prim’s Algorithm for each of these graphs using Binary Heaps as well as Fibonacci Heaps

and then compare their performance. The running times can be plotted vs graph complexity
and one can figure out which heap is better in which situation.

