Contents

3Chapter 1

Introduction
3
1.1 Background and Motivation
3
1.2 Objectives
3
1.3 Basic Approach
4
Chapter 2
5
System Overview and Modeling
5
2.1 System Overview
5
2.2 Application Modeling
7
2.3 Architecture Modeling
9
2.3.1 Characterizing the CPUs
9
2.3.2 Characterizing the Main Memory
12
2.3.3 Characterizing the Bus
13
2.3.4 Characterizing the IP/Peripheral Devices
14
Chapter 3
15
Mathematical Formulation
15
3.1 Memory Space Utilization
15
3.2 Memory Bandwidth Utilization
16
3.2.1 WTNWA Cache:
16
3.2.2 CBWA Cache:
17
3.2.3 No Cache
17
3.3 Processor Utilization
18
3.3.1 Calculation of Effective Access Time of Memory System
19
3.3.2 Calculation of computation and memory delay times
20
3.3.2.1 WTNWA Cache:
20
3.3.2.2 CBWA Cache:
21
3.3.2.3 No Cache:
21
3.3.3 Calculation of processor utilization
21
3.4 Bus bandwidth Utilization
22
3.4.1 WTNWA Cache
23
3.4.2 CBWA Cache
23
3.4.3. No Cache
23
Chapter 4
25
Implementation
25
4.1 Data Structures
25
4.1.1 Data structure for high-level task graph
25
4.1.2 Data structure for storing IO information
28
4.2 Software Implementation/Environment
29
4.2.1 Why Java?
29
4.2.2 User-friendly GUI
30
Chapter 5
31
Examples and Case Study
31
5.1 Example 1
31
5.1.1 Application specification.
31
5.1.2 Architecture Specification.
33
5.2 Case study using a real application
36
5.2.1 Application Specification using task graph
36
5.2.2 Hardware Specifications
37
5.2.3 Binding and Computation of results
40
Chapter 6
41
Conclusions and Future Work
41
6.1 Summary and conclusions
41
6.2 Future Work.
41
Annexure I
42
Algorithms
42
Annexure II
47
Run time Environment
47
Bibliography
49

List of Tables

32Table 5.1 Task characteristics

Table 5.2 Inter-task-communication among tasks
32
Table 5.3 Architecture specification for example task graph
33
Table 5.4 Cache characteristics of MIPS Core I
33
Table 5.5 Example memory characteristics
34
Table 5.6 Example bus characteristics
34
Table 5.7 Example IP characteristics
34
Table 5.8 Binding characteristics of tasks to components (example)
35
Table 5.9 Task characteristics of case study application
37
Table 5.10 Inter task communication among tasks
37
Table 5.11 Architecture specification for case study application
38
Table 5.12 Cache characteristics of SUN ULTRA I 1
38
Table 5.13 SDRAM characteristics
39
Table 5.14 Case study bus characteristics
39
Table 5.15 Case study IP characteristics
39
Table 5.16 Binding characteristics of case study tasks to components
40

List of Figures

6Figure 1.1

Figure 3.1 List of high level tasks
26
Figure 3.2 Biding channels to ports
27
Figure 3.3 Specific instance of architecture
28
Figure 3.4 Data Structure for storing binding information
29
Figure 5.1 Example Task graph
31
Figure 5.2 Case study task graph
36

Chapter 1

Introduction

1.1 Background and Motivation

 The standard, flexible platforms implementing a variety of applications like high-speed video applications or compute intensive number crunching applications need to be analyzed using standard applications and thus benchmarked rapidly. Thus the idea of “building block” approach is used extensively in designing such platforms. System development using such flexible platforms involves making a number of decisions regarding configuration based on specific options, busses, connectivity etc., followed by design of custom modules like the memory interface unit, interrupt handler etc.

 The building block approach, which is being taken up rapidly by the computer architecture designers helps making the products in less time, as it employs the idea of re -combining on the basic blocks of the architecture based on some rules of compliance. This approach is heavily based on the concept of block re-use. In order to achieve such reusability some predefined rules have to be followed. They might introduce a loss in area (VLSI) or performance but will provide a very fast product to market. This project helps in benchmarking such platforms easily.

1.2 Objectives

 The objectives of my project would be to develop models and associated tools, which would be capable of doing the following:

1. Analyzing the present configuration.

2. Checking the consistency and/or the feasibility of the present configuration.

3. Making suggestions for decisions based on options.

4. Providing visualization to the designer.

 One aspect of this project is also to provide the user with a better interface so as to reduce the errors in describing the configuration. This project does not assume that the input should be in some standard language designed for template architecture analysis etc. One of the key feature is to make everything user friendly and the entire project remotely inviolable.

1.3 Basic Approach

 The idea is to take the configuration from the user in the form of GUI forms and analyze for any potential conflicts in the given platform like connecting the same processor to more than two memories, mapping the same port of an IP to two different busses at the same time etc. So, the first step in the project constitutes the reporting phase of all conflicts in the entered platform and suggesting any possible solutions for that, if there are any. The second phase of the analysis involves the calculation of different parameters like CPU utilization, memory utilization, etc., taking into consideration carefully one by one the different input parameters as entered by the user. At the end of second phase, suggestions based on the results for resolving the conflicts in the platform are proposed. In third and the last phase of the analysis the graphical view of the platform according to some pre-determined floor plan is presented to the user. The flexibility of choosing the given position for a given component in the floor plan of the platform is disabled for complexity reasons. Though it is said that the visualization is the last phase, the user has always the option of viewing the configuration being built in one of the frames on the screen as he goes on adding the components one by one.

Chapter 2

System Overview and Modeling

2.1 System Overview

 The system chosen for analyzing consists of the following basic components

(Figure 1.1).

· CPUs : The processors Tri Media Core and MIPS Core are chosen as example processors. Although these processors may have multi-level caches, presently we analyze using only a single level cache. The Cache set is described in I/O model of hardware section in detail.

· DMA devices: These devices are used for memory read or writes. They remain slaves for PIO transactions, i.e., they read and write transactions of control and status registers from CPUs. These devices are classified into two sub categories.

1. Fast for devices that require intensive interaction with the CPUs.

2. Slow for devices that require very few interactions with the CPUs or where latency (i.e., response time of CPU) is not an issue.

· Internal Busses: They can be expressed as:

1. DMA Only Busses: These busses will carry only main memory traffic. This category is in turn divided into two flavors.

(i) High bandwidth DMA bus which probably is unique in the system and allows draining all the memory traffic towards/from external memory. It is usually expensive and should not have a lot of devices connected to it.

(ii) The second order memory traffic busses which gather DMA traffic for slow DMA devices.

 Figure 1.1

2. PIO Only Busses: These busses will carry only PIO traffic. This category is divided into 2 flavors.

(i) High speed busses for fast PIO devices.

(ii) Low speed busses for slow PIO devices.

· Mixed Busses: These are the busses that carry both PIO and DMA traffic. They are labeled in the diagram as PIO+DMA busses. They are essentially connected to IPs or peripherals and one of the Fast DMA devices to deliver the data required by the IP/peripheral through the high bandwidth DMA bus.

· Gates: Gates are useful to cross the busses. They are masters in one of the busses it is connected to and slave on the other. Though this feature of the platform is not used in my project they can still be useful in future work in this area. These are also divided into 2 flavors.

(i) PIO Gates: These transfer the CPU PIO requests to the devices.

(ii) DMA Gates: These are used to provide access to slow DMA devices to the main memory.

· Off Chip Connections: Like Peripheral Component Interconnect (PCI), or EBIU.

· External Memory Connections: Shown in the diagram as the memory interface block that connects the system to external main memory, may be SDRAM.

 The analysis and visualization is based on a set of underlying tools and models. Some of the key models/analysis modules that are evolved and/or designed are discussed in the following sections of this chapter.

 2.2 Application Modeling

 A comprehensive model of the application as a graph with nodes representing “program modules” with edges representing the complex communication requirements is developed. Each node or “program module” corresponds to the granularity of the software for implementation on any one of the processor. The edges will represent not only the rates but also the nature (periodic or bursty or some random distribution) of IO requirements. The proposed models would be specifically suitable for Digital Video Platform, as one needs to distinguish between DMA and PIO communications.

 Each node as specified above, in the graph consists of the following specific information about the module.

· Module Identifier : This field identifies uniquely the given module. This must be different and unique for all entered modules. Though the term module in general refers to a set of tasks, we assume in this project that a module refers to some high level task with its inter-task-communications requirements. As it can be easily seen, the idea of single task in a module can be extended quickly to multiple tasks by simply grouping the tasks according to some well-defined feature in to a module (a set of tasks).

· The Periodicity: This gives information about how often the task gets repeated. This is an essential parameter required in calculating the Bus bandwidth utilization etc. We shall see how it is used in computing different parameters in later sections of this chapter.

· The Source Code Pointer: This locates the executable file of the task on the disk. It is included for the facility of extracting characteristic features of the task on a specific processor or IP by inputting it to the profiler.

· The Precedence: Though this information about the task is not useful presently, it is included for facilitating the future work.

· The Inter Task Communication (ITC): This forms the core of communication of the task with the other tasks. In the graph it is represented by the edges. If a task has an edge connecting the node of another task that means it communicates with that task. The specific details as how much data is being communicated and in what direction (i.e., whether this task is sender or a recipient of data) should be a part of inter-task-communication.

· Size: The task size is required in calculating the CPU utilization. This consists of 3 sizes.

1. Stack size: The stack maintained in the main memory is used in storing temporary information like function arguments, data and return address etc. while the processor switches from one task to another task. This is specific to a task, in the sense that each task requires its own stack space in the memory and will be dependent upon different characteristics that define the task.

2. Data Size: This represents the amount of data the task requires to complete its execution once. It is important to note that this is different from the amount of data it sends or receives from other tasks. It can be static, if there is no dynamic memory allocation policy supported by the language. If dynamic memory allocation is supported, this should give the total code size occupied at run time. If there is no dynamic allocation of memory, then it can be estimated by looking at the static declarations in the task. These three fields are used in calculating the memory space computation.

3. Code size: The number of instructions the task is constituted of.

4. Load/Store Reference count: The number of dynamic load as well as store references along with the number of program instructions are useful in calculating the bus, CPU as well as memory bandwidth utilizations. It is important to note that they should be dynamic and they give a more precise way to calculate the number of memory references than simply multiplying the mref/instructions with the total number of L/S instructions.

These parameters uniquely represent a particular node in the task graph the user enters. The way the task graph data is entered is largely dependent on the implementation issues, but irrespective of implementation the comprehensive task graph has to be maintained by any implementation of this project. The annexure II gives graphical idea about the run time environment and chapter 4 discusses some examples and case study using a real application.

2.3 Architecture Modeling

 A comprehensive model to represent I/O requirements of hardware modules is developed in this section. The communication model also contains response constraints if any apart from specifying DMA and PIO bandwidths separately.

 The following key characteristic features of different hardware components are identified to be of importance in calculating the required parameters and thus to benchmark the given standard platform.

 2.3.1 Characterizing the CPUs

 The following information about the CPUs uniquely characterizes them.

· Processor ID :

 This field identifies uniquely a particular node in the comprehensive graph representing different components as well as their dependencies like masters/slaves etc. This can be the name of the processor followed by some instance number of the same kind of processors already existing in the platform.

· Speed :

This is the speed of the processor in MIPS or some other units like MHz. There are two ways of measuring the speed of processors. Generally the speed of a scalar processor is measured by the number of instructions executed per unit time, such as the use of a million instructions (MIPS) per second as a measure. For a vector processor it is universally accepted to measure the number of arithmetic operations performed per unit time, such as the use of mega floating point operations per second. It is important to note that the conversion depends on the machine type. Even though we make use of MIPS in this project to measure the performance of a processor, it can be easily extended to using the mega flops also, if at all the user wants to incorporate a vector processor into the platform. In the analysis we will not be using the peek performance rate of the processor, but the average speed / execution rate of the processor. It is important to note the difference between the peak performance rate and the average performance rate of the processor when benchmark programs or test computations are executed on each machine. The peak speed corresponds to the maximum theoretical speed of the processor, where as the average speed is determined by the processing times of a large number of mixed jobs including both CPU and IO operations.

· Number Of Memory References per Instruction :

This is the average number of memory references the processor makes for one instruction. Again, this is important in computing the memory access delay and memory bandwidths. Its use in computing the above-mentioned parameters is discussed in later chapters.

· Memory Reference Width in Bytes :

This is the number of bytes accessed when one memory reference is made by the processor. This depends mainly on the bus width and the interleaving of memory. Interleaving of memory to which this processor is connected. This is useful in computing the processor utilization, and memory bandwidth utilization.

· Cache properties:

Caches operate on the principle of spatial and temporal locality. Regions and words of memory that have been recently accessed will probably be accessed again the near future. The effect of a cache is to provide the processor with a memory access time equivalent to that of a high-speed buffer, and significantly faster than the memory access time would be without the cache. There can be a hierarchy of caches staring from the primary cache. In this project only single level caches are permitted to be possessed by a processor, but it can easily be extended to more than one level. In calculating the required efficiency of the given platform in carrying put the assigned task, caches play an important role in improving the overall access time of the memory and thus by reducing the memory bandwidth considerably. In the mathematical formulation chapter, we shall see how the cache size and their hit ratio’s are going to be useful in computing the performance of a processor and the memory bandwidth. We assume a simple model of cache hierarchy in this project, leaving the complexities delays due to TLB misses etc. Further we assume that there are no split caches, that is there are no separate instruction (I-Cache) and Data caches (D-Cache). We assume that the processor possesses (If at all) an integrated cache having global miss rate. While developing equations in the mathematical formulation chapter, we shall discuss briefly how these are going to simplify the overall complexity of calculating the performance of the standard platform. The most important properties which characterize the cache are

· Cache access time: This is the access time for one word or one reference to the cache.

· Cache Size: Cache size plays an important role in determining the hit ratio of the cache. Presently, in this project we are not going to utilize this, as we are directly taking the default hit ratio of the cache.

· Cache Policy: This forms the most important factor in determining the utilizations of CPU, memory and bus. Two most general write policies of cache tat are supported in this project are

1. WTNWA : This is Write Through No Write Allocate policy. In this each time a store reference is made it directly goes to the main memory and cache and both will update their contents, irrespective of the fact that cache may or may not contain the copy of the line to be written. In case of load references the hit ratio determines how many lines will be brought from main memory in the case of a cache miss. The formulae are derived in the 3rd chapter.

 2. CBWA: This is Copy Back Write Allocate policy. In this, each

 time either load or store reference is made, depending upon the

 probability of dirty page occurring and the hit ratio the memory

 traffic and thus bus as well as processor utilization will depend.

· Dirty Page Ratio: This is the dirty page probability for the cache, if it is WB Cache. This represents the number of pages that will be dirty at any time and need to be written back to main memory thus increasing the main memory traffic, when a cache read miss occurs, irrespective of the page replacement strategy the cache uses.

2.3.2 Characterizing the Main Memory

 The following parameters of main memory uniquely characterize them in any platform.

· Memory ID:

As every component is uniquely identified by its name in the system, each memory component has also some name, which identifies that particular memory uniquely in the architecture. This can be again the name of the memory like DRAM or SDRAM etc., followed by its instance number in the architecture.

· Memory Cycle Time :

In general a state is defined as a particular configuration of storage (i.e., registers or memory), and a state transition is a change in that configuration. Therefore a cycle is defined as the time between state transitions. If the storage being reconfigured is registers, we have an internal or machine cycle. If the storage is memory, we have memory cycle. Therefore the time to change the state of a particular storage in the memory is referred to as the memory cycle time. It can also be defined as the minimum time between requests directed at the same module. This is generally expressed in nano seconds. This is useful in computing the memory bandwidth utilization.

· Memory Access Time / Word read time:

It is simply the amount of time required to retrieve a word into the output memory buffer register of a particular memory module, given a valid address in its address register. We shall see how the memory cycle and access times are going to be useful in the next chapter of mathematical formulation. Various technologists present a significant range of relationships between the access time and the cycle time. The access time is the total time for the processor to access a word in memory. In a small, simple memory system (equivalent to a single module), this may be little more than the chip access time plus some multiplexing and transit delays. The cycle time is approximately same as the chip cycle time. In a large interleaved memory system the access time may be greatly increased, as it now includes the module access time plus transit time on the bus (two directions), bus access overhead, error detection and correction delay etc. The cycle time (for the module) remains the same. In general, one should not be surprised to find system access times that are less than, equal to, or greater than the cycle time of a particular module, depending on the complexity of the system. For now, we can easily see that these two play an important role in computing the processor utilization by giving us the time the memory takes in producing the data CPU has requested for. Thus it takes an integral amount of time in the computation of CPU Utilization.

· Memory Size :

Memory size is the number of basic storage elements in the memory. This is generally expressed in Mega Bytes. For example a memory can have 8 MB of DRAM. This is useful in computing the space utilization of memory. We can know how much memory is taken by what task executing on which processor.

· Line size: This defines the number of Bytes (and not memory words) a line contains. Caches read in lines, so this information is used to calculate the performance of the memory and CPUs etc.

· Line read and line write times: Line read time is the time to retrieve one line from the main memory. This is important, as caches will be reading in lines (not in words) from the main memory.

2.3.3 Characterizing the Bus

 Traditionally busses have been a means to transfer data between multiple ICs within a PCB based system. As chips have grown in capacity all the functions that previously resided on multiple chips can now be integrated into a single chip, hence the data transfer between these chips is also integrated. Nonetheless busses and their bandwidths play an important role in improving the overall performance of the system. We characerize the buses with the following information. Chapter 4 discusses exapmle tasks, their binding with hardware and characteristics.

· Bus ID :

This, as for the other devices, identifies uniquely in the system a particular bus. In case of the Digital Video Platform, this can be high bandwidth DMA bus or PIO bus or a mixed bus like DMA+PIO bus, which carries both the low bandwidth PIO data and low bandwidth DMA data.

· Bus Bandwidth:

This is the number of Mega Bytes the bus can transfer in a second, expressed in terms of Mega Bytes per Second (MBPS). This is the rate at which the bus carries the signals, and therefore is an important bottleneck in limiting the bus processor performance. In a raw sense, the total bandwidth that a bus must support should not be less than the sum of the bandwidths of the devices that are connected to that bus. For example, if two IP devices are connected to a bus having the bandwidths of 20 MBPS and 35 MBPS respectively, then the bandwidth of the bus must not be less than 55 MBPS. It should be more than the sum, as there are conflicts on the bus which make the bus unavailable for any device connected to the bus.

2.3.4 Characterizing the IP/Peripheral Devices

 Much in the similar way a bus is characterized, an IP (pre-designed modules) or peripherals can be characterized.

· IP ID :

This is the identifier of a particular IP.

· Number of Ports :

This is the number of ports the IP has. For example an MPEG decoder may be having two ports, which are connected to two different busses. Then the bus bandwidth is dominated by that channel of the task, which is bound to the port of MPEG decoder connected to this bus. So ports form an important information in computing different busses’ bandwidths.

 In the next section we shall formulate the necessary mathematical equations to calculate the performance of various devices in the architecture.

Chapter 3

Mathematical Formulation

3.1 Memory Space Utilization

 Memory space utilization refers to the amount of memory occupied by different tasks that are mapped to this memory. This can be computed as follows.

Let the total memory size be M, and the number of tasks mapped to this memory be n.

Then the total memory space occupied by this memory is given by

[image: image6.wmf]

where the summation is through i =1 to i= n and S I refers to the amount of space occupied by the task I.

The amount of space occupied by each task is the sum of its code, data and stack sizes.

Therefore the memory space utilization (SU) is given by

[image: image7.wmf]
3.2 Memory Bandwidth Utilization
 The bandwidth of a system is defined as the number of operations performed per unit time. In the case of main memory system, the memory bandwidth is measured by the number of words that can be accessed (that can be fetched or stored) per unit time. The bandwidth utilization can be calculated as follows.

[image: image8.wmf]å

=

=

i

k

k

i

t

AT

1

 Let the number of processors connected to this memory be n, and the tasks which are mapped to J th processor be designated as TIJ. Further assume that the load, store and program instructions of these tasks are represented by the letters

[image: image9.wmf]i

i

n

i

n

t

s

H

s

H

AT

)]

(

)

(

[

1

1

-

=

-

=

å

[image: image10.wmf]i

n

i

i

AT

h

AT

å

=

=

1

respectively.

Let the periodicity of I th task mapped to J th processor connected to this memory be PIJ .

There are two cases to consider.

3.2.1 WTNWA Cache:

Let the mref_width in bytes of jth processor be Mrefwj and the line_size of this processor’s cache be PLj , then the number of memory references made by one task on this processor in one invocation of the task is equal to

[image: image11.wmf]å

=

-

-

=

n

i

i

i

t

s

H

AT

1

1

)]

(

1

[

 Where h is the hit ratio of the cache.

 This equation comes from the fact that each time a store takes place in WTNA cache.

 A memory reference is made and each time a read miss occurs, a line is brought from

 the main memory.

 (

[image: image12.wmf]sec

/

*

Bytes

P

D

T

ij

ij

j

=

 The total number of bytes transferred in one sec from this task would be

 Where r_rate is the repetition rate of the task in milliseconds.

[image: image13.wmf]MBPS

T

Bip

n

j

j

å

=

=

1

 Therefore for this processor, the total number of bytes referenced is equal to

 Finally the total number of memory traffic in bytes due to all processors connected to this memory per second would be,

[image: image14.wmf]0

0

*

)

/

100

(

Bw

X

 Therefore, finally substituting this in the first equation, we get

 Memory bandwidth utilization =

[image: image15.wmf]ij

j

ij

j

j

ij

ij

i

j

rate

r

Mrefw

S

linesize

h

D

L

Bp

_

*

]

*

*

)

1

(

*

)

[(

+

-

+

=

å

3.2.2 CBWA Cache:

In this type of cache, each time a read miss occurs, a line is brought from main memory and depending on the probability of occurrence of dirty page, the dirty line is written back to main memory. Assuming the same old conventions and Dpj represents the probability of replacing a dirty page in the cache, the total number of bytes per task in a second that get transferred between memory and processor are

[image: image16.wmf]Bip

Bp

Bw

+

=

Therefore, the total number of bytes per task on one processor is

[image: image17.wmf])]

1

(

*

*

)

(

*

)

1

(

*

)

(

*

[

dpratio

T

D

S

L

h

Pa

D

S

L

h

D

lineaccess

i

i

i

i

i

i

i

+

+

+

-

+

+

+

=

[image: image18.wmf]å

=

=

n

i

i

S

X

1

Hence the bandwidth utilization is

3.2.3 No Cache

If there is no cache, which is very rarely is the case, the computation straightforward.

[image: image19.wmf]ij

ij

ij

D

S

L

,

,

The utilization is given by the formula

[image: image20.wmf]å

=

j

j

w

M

I

B

0

0

100

*

)

/

(

Memory access conflicts may cause delayed access of some of the requests. In practice the utilized memory bandwidth is usually lower than the above computed value. A rough measure of the utilized memory bandwidth is suggested as

[image: image21.wmf])

1

(

*

]

_

*

*

)

1

(

*

)

[(

sec

/

j

ij

j

ij

ij

ij

ij

ij

Dp

rate

r

PL

h

D

L

S

I

+

-

+

+

=

Where M is the interleaving of memory.

Though in this project we are not considering very much the effects of interleaving, but still it provides an effective way of increasing the memory bandwidth utilization by decreasing the bandwidth utilization among the available.

3.3 Processor Utilization

 The processor utilization indicates how long the processor is busy executing some instruction in a second.

 Let the tasks mapped to this processor be TI , where I varies from 1 to n, the maximum number of tasks that are bound to this processor.

The processor utilization =

 Time the processor busy executing instructions in a unit time

[image: image22.wmf]å

=

i

ij

j

I

I

sec

/

 Total time

But the execution time of a task =

computation time of TI + memory access time + communication time with other tasks. Let’s calculate them.

3.3.1 Calculation of Effective Access Time of Memory System

 In modeling the performance of a hierarchical memory, it is often assumed that the memory management policy is characterized by a success function or hit ratio H, which is the probability of finding the requested information in the given level. In general, H depends very much on the granularity of information that is transferred, the capacity of memory at that level, the management strategy and other information. However for some classes of management policies, it has been found that H depends mostly on the memory size s. Hence the success function may be written as H (s). The miss ratio or probability is then, F(s) = 1-H(s). Since we assume no existence of split cache in this project and the existence inclusive cache, copies of information at level I will exist at levels greater than I, the probability of a hit at level I, and a miss at higher levels is equal to:[1,2]

[image: image23.wmf]]

*

)

1

(

*

)

(

)

*

[(

j

j

ij

ij

j

ij

ij

PL

h

D

L

Mrefw

S

I

-

+

+

=

 The effective access time AT I from the processor to the I th level in the memory hierarchy is given by the sum of the individual access times t of each level from k =1 to i:

[image: image24.wmf]ij

j

j

ij

ij

j

ij

ij

rate

r

PL

h

D

L

Mrefw

S

I

_

*

]

*

)

1

(

*

)

(

)

*

[(

sec

/

-

+

+

=

 In general t includes the wait time due to memory conflicts at level k and the delay in the switching network between level k-1 and the number of processors, the number of memory modules, and the interconnection network between the processors and the memory modules. In most systems, a request for a word to be transferred from level I+1 to level I. When the block transfer to level 1 has been completed, the requested word is accessed in the local memory.

 The effective access time for each of the memory reference in an n level memory hierarchy is

[image: image25.wmf]å

=

j

j

I

A

 [image: image26.wmf]0

0

100

*

)

/

(

M

A

B

w

=

 Substituting hi and ATi in this equation we get,

[image: image27.wmf]M

B

m

/

 Assuming that there is a copy of all requested information in the lowest

level n, H (sn) = 1. It is convenient to define H (so) = 0, hence F (so) = 1. Rewriting the above equation, we get,

[image: image28.wmf])

(

)

(

1

-

-

=

i

i

i

s

H

s

H

h

 The above equation denotes the effective access time in an n level hierarchical memory system.

3.3.2 Calculation of computation and memory delay times

 The calculation of computation and memory delay times depends mainly on the cache policy that is being employed in the processor. Let us formulate separate equations for them.[1,2]

3.3.2.1 WTNWA Cache:
 Computation time of task TI is equal to

 Number of dynamic instructions (including Load-Store instructions)

[image: image29.wmf]j

j

j

i

i

i

i

X

Y

Bandwidth

linesize

h

D

L

linesize

h

S

CM

/

/

}

*

)

1

(

*

)

(

]

1

[

*

))

1

(

*

{(

å

+

-

+

+

+

-

=

 CI =

 Speed of the processor

 And the memory delay time is equal to

[image: image30.wmf])

(

i

i

i

i

CM

D

C

E

+

+

=

 Where, N I is the total number of instructions generated by the task T I, including the store as well as loads and AT is the access time of the memory system. In the calculation of AT here, we should consider the line access time of main memory rather than its memory access time, as each time a miss occurs a line is brought into cache, not a single physical word.

 The communication time of task TI with other tasks can be calculated as follows.

 Let the bandwidth of task TJ with which this task communicates be xJ MBPS, and the amount of data transferred be yJ KBs. Then the communication time is given by

[image: image31.wmf]L

P

E

L

PU

i

i

i

å

=

\

/

*

*

100

 The last term accounts for the communication delay encountered due to inter task communication and the first term to data and store instruction fetching delay from the main memory.

3.3.2.2 CBWA Cache:
The memory delay in time in copyback write allocate is different from that of WTNWA as in this cache write policy, each time a store occurs it is not stored in main memory, but if it is a miss, a line is written in main memory. So, the memory delay time is equal to

[image: image32.wmf]0

0

 The dpratio denotes the dirty page probability and the Tlineaccess denotes the time to access one line from main memory, pa is the primary memory access time.

The communication time is

[image: image33.wmf]ij

i

j

I

I

sec

/

å

=

3.3.2.3 No Cache:

 In the case of no cache, the equations are simple.

[image: image34.wmf]0

0

*

)

/

100

(

X

M

SU

=

 And the communication time is

 [image: image35.wmf]/Bandwidth

 per

s accessed

Total Byte

B

w

sec

=

And in all the above equations the last term is the delay due ti transfer on the bus to/from memory.

3.3.3 Calculation of processor utilization

 If EI is the execution time of TI , it is given by the equation

[image: image36.wmf]]

_

*

*

)

[(

j

j

ij

ij

ij

ij

rate

r

Mrefw

D

S

L

A

+

+

=

å

Now, let the LCM of execution times of all tasks be L and periodicity of each task bound to this processor be PI ,

Then the processor utilization is given by the formula,

[image: image37.wmf]100

*

)

/

(

M

A

B

w

=

[image: image38.wmf]å

=

j

j

Bp

Bp

3.4 Bus bandwidth Utilization

 The bus bandwidth calculation includes the inter task communication plus the data movement between the processors and the memory. The amount of data the tasks communicate with each other, the bus bandwidth utilized is more. Similarly the amount of exchange among memories and processors also increases the utilized bandwidth of the bus very much. Sometimes the IP or peripheral will have its own bandwidth requirements; e.g., MPEG decoder may have its output frame buffer rate as 0.4 MBPS. In that situation, it is the bandwidth of the device that should be counted in computing the bandwidth utilization of bus, rather than the task’s communication requirements which is bound to that IP.

 In brief the bus bandwidth is computed as below.

 Let the IPs connected to the bus be denoted by IPJ where I denotes the J th IP connected to the bus.

Let the given bandwidth of the bus be X MBPS.

 If Dij represents the amount of data transferred on the bus in one invocation of a task bound to j th IP, and there are Pij such invocations of the task, then the total amount of data transferred by this task on the bus in one second is equal to

[image: image39.wmf]ij

j

j

j

ij

ij

ij

j

j

rate

r

Dp

linesize

h

S

D

L

Bp

_

*

)]

1

(

*

*

)

1

(

*

)

[(

+

-

+

+

=

å

 where Tj denotes the bandwidth utilized by one task bound to j th IP.

It is important to note that this bandwidth utilization of task also includes any data or instruction fetch from the main memory, if the bus whose bandwidth utilization is to be carried connects the main memory and the processor also.

Therefore if the bus connects a processor and main memory, the additional incurred is equal to

3.4.1 WTNWA Cache

 In the presence of WTNWA Cache, the each time a store is referenced by the processor, a word is written to the main memory and this takes additional bytes to be transferred over the bus, and, each time a read miss occurs a line is read from the main memory. So, if a processor is connected to this bus, whose utilization we are presently calculating, the following extra burden will be imposed on the bus.[2]

[image: image40.wmf]å

=

j

j

Bp

Bp

[image: image41.wmf]å

+

+

=

ij

j

ij

ij

ij

Mrefw

S

D

L

Bp

]

*

)

[(

Where the symbols keep their meaning same as in the calculation of memory bandwidth utilization section. Now, due to all processors connected to this bus, the bandwidth used is

3.4.2 CBWA Cache

 In the case of Copy Back cache, the formulae are
[image: image42.wmf]AT

i

N

i

D

*

=

The line size is given in bytes.

The overall bandwidth usage is equal to

[image: image43.wmf]å

+

+

-

+

+

=

j

j

j

i

i

i

j

X

Y

dpratio

linesize

h

D

S

L

CM

/

)

1

(

*

*

)

1

(

*

)

(

3.4.3. No Cache
If no cache were present the additional burden will be equal to

[image: image44.wmf]ess time

)*mem. acc

D

L

(S

D

i

i

i

i

+

+

=

[image: image45.wmf]å

+

+

+

=

j

j

j

i

i

i

i

X

Y

ess width

)*mem. acc

D

L

(S

CM

/

Therefore the total bandwidth utilized by all IPs connected to the bus equals

Hence the total bytes/sec utilized on the bus is equal to

[image: image46.wmf]å

=

=

n

i

i

S

X

1

Now the bandwidth utilization of the bus equals

[image: image47.wmf]

 Chapter 4

 Implementation

 4.1 Data Structures

 The data structures implemented for application modeling and hardware modeling are discussed in this section.

4.1.1 Data structure for high-level task graph

 A graph in the form of a linked list is maintained to hold the information about all the tasks. Each task node contains the following data and pointers. (figure 3.1).

 The ITC pointer points to a list of information about the tasks with which this task communicates. The binding pointer points a node, which contains information about the current binding of the task. As a task can only be bound to one task a time, this points to only one node, unlike the ITC pointer, which points to a list of nodes.

[image: image48.png]01 Analysis and Visualization of Standard Platforms

[image: image49.wmf]AT

i

N

i

D

*

=

[image: image50.png]Processor Form

Processor Sun Ultra 1]
Performance Rate in MIPS 4

Memory Conmection DRAM

Menm ref width in bytes q

Cache, if there is any Primary Cache —

Clear | Submit

[image: image51.wmf]j

j

j

i

i

i

i

X

Y

Bandwidth

linesize

h

D

L

linesize

h

S

CM

/

/

}

*

)

1

(

*

)

(

]

1

[

*

))

1

(

*

{(

å

+

-

+

+

+

-

=

[image: image52.wmf]å

=

=

i

k

k

i

t

AT

1

[image: image53.wmf]i

n

i

i

AT

h

AT

å

=

=

1

[image: image54.wmf]i

i

n

i

n

t

s

H

s

H

AT

)]

(

)

(

[

1

1

-

=

-

=

å

[image: image55.wmf]å

=

-

-

=

n

i

i

i

t

s

H

AT

1

1

)]

(

1

[

[image: image56.wmf]Bip

Bp

Bw

+

=

e

[image: image57.wmf]sec

/

*

Bytes

P

D

T

ij

ij

j

=

[image: image58.wmf]0

0

*

)

/

100

(

Bw

X

[image: image59.wmf]ess time

)*mem. acc

D

L

(S

D

i

i

i

i

+

+

=

[image: image60.wmf])]

1

(

*

*

)

(

*

)

1

(

*

)

(

*

[

dpratio

T

D

S

L

h

Pa

D

S

L

h

D

lineaccess

i

i

i

i

i

i

i

+

+

+

-

+

+

+

=

[image: image61.wmf]MBPS

T

Bip

n

j

j

å

=

=

1

[image: image62.wmf]å

+

+

-

+

+

=

j

j

j

i

i

i

j

X

Y

dpratio

linesize

h

D

S

L

CM

/

)

1

(

*

*

)

1

(

*

)

(

 Figure 3.1 List of high level tasks

 The task information in each node contains essentially the following entries.

 Task repetition rate and the number of channels, including other information like task ID, source code pointer etc, which were discussed in detail chapter 1. Channel of a task is a logical “port” through which it communicates with other tasks. For example a task may be having 4 channels and it may be communicating with 4 other tasks using one channel per each task. Channel 1 of each task is reserved to be bound to the memory port of the processor (if at the entire task is bound to a processor), for exchanging its data and instructions from the memory to the processor, to which it is mapped. Hence, essentially by binding a task’s channel to a port of a component, we mean the transfer of data takes place through that port of the component. The amount of data to be transferred etc will be in the ITC list entries.

 The Inter task Communication list node essentially contains information about the task ID with which this task is communicating, as well as transfer attributes like amount of data, the channel number through which it is communicating and the directions of transfer (Figure 3.2).

[image: image63.wmf]å

+

+

+

=

j

j

j

i

i

i

i

X

Y

ess width

)*mem. acc

D

L

(S

CM

/

[image: image64.wmf]0

0

100

*

)

/

(

M

A

B

w

=

[image: image65.wmf])

(

)

(

1

-

-

=

i

i

i

s

H

s

H

h

[image: image66.wmf])

(

i

i

i

i

CM

D

C

E

+

+

=

[image: image67.wmf]L

P

E

L

PU

i

i

i

å

=

\

/

*

*

100

[image: image68.wmf]0

0

[image: image69.wmf]0

0

*

)

/

100

(

X

M

SU

=

Bus A Bus B

[image: image70.wmf]ij

ij

ij

D

S

L

,

,

[image: image71.wmf]M

B

m

/

[image: image72.wmf]ij

j

j

ij

ij

j

ij

ij

rate

r

PL

h

D

L

Mrefw

S

I

_

*

]

*

)

1

(

*

)

(

)

*

[(

sec

/

-

+

+

=

 Bus C

[image: image73.wmf]å

=

i

ij

j

I

I

sec

/

[image: image74.wmf]/Bandwidth

 per

s accessed

Total Byte

B

w

sec

=

[image: image75.wmf]å

=

j

j

I

A

[image: image76.wmf]]

*

)

1

(

*

)

(

)

*

[(

j

j

ij

ij

j

ij

ij

PL

h

D

L

Mrefw

S

I

-

+

+

=

 Figure 3.2 Biding channels to ports

 In the above diagram the channel 1 of task A is bound to port 1 of MPEG decoder and channel 2 of task B is bound to the TM Core CPU. Since the direction is both ways, we conclude that task A and Task B communicate with each other some amount of data. The question of which bus is used in transferring data is found by observing that, bus A and bus C are connected to the channels and hence the data transfer is through mainly bus A. Even though this adds to the bandwidth utilization of bus C, we consider the traffic mainly for computing the utilization of bus A.

4.1.2 Data structure for storing IO information

 There are broadly 4 types components used in any architecture. They are

· Processors

· Memories

· Busses

· IP/Peripheral devices

All processors must be connected to some memory and all busses should be connected to some bus. Each IP/Peripheral has some ports, which should be bound to some bus. If an IP has 3 ports, then they should both be connected to, not necessarily unique bus. Thus this idea gives rise to the following diagram.

[image: image77.wmf])

1

(

*

]

_

*

*

)

1

(

*

)

[(

sec

/

j

ij

j

ij

ij

ij

ij

ij

Dp

rate

r

PL

h

D

L

S

I

+

-

+

+

=

[image: image78.wmf]å

=

j

j

w

M

I

B

0

0

100

*

)

/

(

[image: image79.wmf]ij

i

j

I

I

sec

/

å

=

[image: image80.wmf]]

_

*

*

)

[(

j

j

ij

ij

ij

ij

rate

r

Mrefw

D

S

L

A

+

+

=

å

 Figure 3.3 Specific instance of architecture
 As discussed in the above section(Figure 3.1), the current binding information node contains essentially the following information.

[image: image81.wmf]ij

j

ij

j

j

ij

ij

i

j

rate

r

Mrefw

S

linesize

h

D

L

Bp

_

*

]

*

*

)

1

(

*

)

[(

+

-

+

=

å

 [image: image82.wmf]100

*

)

/

(

M

A

B

w

=

[image: image83.wmf]ij

j

j

j

ij

ij

ij

j

j

rate

r

Dp

linesize

h

S

D

L

Bp

_

*

)]

1

(

*

*

)

1

(

*

)

[(

+

-

+

+

=

å

[image: image84.wmf]å

=

j

j

Bp

Bp

 Figure 3.4 Data Structure for storing binding information

 At any time there a task can have only one binding node, as it can be bound to only one component at a time. Ports, logical channels and binding ports to logical channels provide a useful way of modeling the specific instance of architecture.

4.2 Software Implementation/Environment

 The software chosen to implement the entire project is Java. The following paragraph summarizes the reason for using the language.

4.2.1 Why Java?

· The first reason for using Java is due to its strong GUI supporting features like the AWT (Abstract Windowing Toolkit) package.

· The second reason is to provide the facility of remote invocation. This allows the designer to run the project from any part of the world through the Internet. Thus it allows platform independence. Even though the project is developed in Linux environment, nevertheless MS,SUN,MAC,HP etc., virtually any platform can be used to run this application.

· Since my project involves developing libraries of components and high level tasks, Java Servlets provide good way of communicating with the project server. Though this can be done by using CGI programming, Java Servlets provide a powerful, as well as easy way to this exchange of information. (This feature has not been yet incorporated into my project).

· And lastly because of its strong OOP support, which makes the whole paradigm of programming, and debugging easy.

4.2.2 User-friendly GUI

 The project provides the user with a user friendly GUI, containing standard format menus, frames and other GUI components. It allows to choose a hardware component or a high level task from a library of components as well as set of high level tasks which may include bench mark programs for TM, MIPS CPUs etc, You can deposit your own new components in the library, delete and modify the components/tasks after loading them from the library.

 One of the comfortable things the implementation provides to the designer is that, by separating the application and architecture specifications from binding them with each other. This feature facilitates the user from freely choosing the components and tasks as he wishes first, and then binding each of the tasks with the components and binding

IP’s and other peripheral devices can be taken up in the next stage. At each and every step in running the user can invoke a checking process, which virtually points out all the mistakes the user has done during the process of binding. Typical mistakes include, binding the same port, channel twice to two different busses, ports respectively, and binding the same task to two different components at the same time. In each of such cases the checking process reports the errors and asks you to take the necessary action.

 As the user goes on building the circuit, by adding 4 types of components either by choosing them from library or by adding them manually, he has always the choice to look at the circuit he is building up, and thus take decisions dynamically in defining the architecture. This is circuit will be built according to some pre determined (figure 1.1) architecture and floor plan. Though the choice to choose the position in the floor plan is not given to the user now, it can always be done as a small extension to this project.

 After the user binds all the components with all the tasks and components to busses, the results are drawn in the form of pie charts. The user can view all the information like which task on which component is taking up how much space, everything in the result charts. They provide random color view facility.

 Suggestions based on the results are proposed finally. These suggestions can include to improve the bandwidth of a component by some amount or to provide for a cache to a processor like TM to decrease the memory bandwidth utilization etc. Appendix gives a graphic detail of the environment.

Chapter 5

Examples and Case Study

 This chapter gives the analysis results of 2 architecture specifications using the tool developed. First one is an example, taken to illustrate different results and the second one is a case study using a real application.

5.1 Example 1

5.1.1 Application specification.

 The task graph of the application is shown below (figure 5.1).

Figure 5.1 Example Task graph

[image: image85.wmf]å

+

+

=

ij

j

ij

ij

ij

Mrefw

S

D

L

Bp

]

*

)

[(

15K

10K

10K

 20K

50K

5K

 The figure on the edges shows the amount of data getting exchanged among the tasks as a result of inter-task-communication.

 The following tables summarize the task characteristics.

 Name of the task
 Periodicity of the task (in ms)

1. Task 1

2. Task 2

3. Task 3

4. Task 4

5. Task 5

6. Task 6

 200

 200

 200

 200

 200

 200

 Table 5.1 Task characteristics

Sending

Task Name
Receiving

Task Name
Amount in

 KB
Channel Number

1. Task 1

2. Task 1

3. Task 1

4. Task 2

5. Task 3

6. Task 4

Task 4

Task 5

Task 6

Task 3

Task 5

Task 6
10

10

15

20

50

5
1

2

3

1

1

1

 Table 5.2 Inter-task-communication among tasks

 The inter-task-communication table includes only entries for those tasks, which are sending some data to other tasks. In other words, it includes only “sender” tasks. Thus we see from the task graph that Task 5 and Task 6 are not included in the above table, as they are not recipients of data from any other task. This convention is employed in order to avoid the danger of double counting the transferred data while analysis for various parameters. The periodicity of tasks chosen need not be the same for all. Just for the sake of analyzing the results manually for correctness it has been chosen some constant value.

5.1.2 Architecture Specification.

 The architecture specification includes the processors, memories, busses as well as IPs. The following tables give information about the hardware characteristics.

Name of the Processor
Speed in MIPS
Memory Connection
Mref width

Cache presence

1 MIPS Core 1

2 TM Core 1

100

133
DRAM 1

DRAM 1
4

4
Yes

No

 Table 5.3 Architecture specification for example task graph

 Since the MIPS Core possesses the primary cache, its characteristics are given below. The dirty page ratio is not entered, as Write Through No Write Allocate (WTNWA) Cache does not need it.

Cache Size in KB
Hit ratio
Access time in ns
T-line read in ns
Policy
Line size
T_line

Writein ns
Dirty page ratio

 256
98.90
80
120

WTNWA
64
200

-

 Table 5.4 Cache characteristics of MIPS Core I

The memory, busses and the IP characteristics are given below.

Memory Name
Memory Size

in MB
Memory Bandwidth (MBPS)
Access time

(ns)

DRAM 1
32
128

250

 Table 5.5 Example memory characteristics

Bus Name
Bus Bandwidth in MBPS

1. High Bandwidth DMA bus

2. High Speed PIO bus

1092

456

 Table 5.6 Example bus characteristics

 IP Name
Number of ports

1. MPEG 1

2. Audio In

2

2

 Table 5.7 Example IP characteristics

Finally the following table gives the binding characteristics of the tasks on specific IP/processors.

Task Name
Stack size in KB
Code Size in KB
Data Size in KB
Dynamic instruction count
Load instruction count
Store instruction count
Binding

1. Task 1

2. Task 2

3. Task 3

4. Task 4

5. Task 5

6. Task 6

100

1000

100

1000

125

1000

200

287

200

1000

300

10

150

1000

21000

2100

10000

10000

1000

1007

21000

10000

10000

9811

MIPS Core 1

 -do-

TM Core 1

TM Core 1

MPEG 1

Audio In

 Table 5.8 Binding characteristics of tasks to components (example)

 Finally the results are computed, shown below in the form of pie charts. One can draw many conclusions from the result charts, how T1 is utilizing the processor more than that of T2 and similarly how T3 is utilizing more than that of T4. It is interesting to note that the zero contribution of MPEG and Audio-In towards the bus utilization of HBDMA and HSPIO busses comes from the fact that they are only recipients of data, not the senders. If we include the 10KB data transfer in the communication requirements of Task 6 towards Task 1, then the HBDMA utilization due to T6 rises from zero to 0.0065 %(approx.).

 Another thing to note is the cache effect of MIPS processor on its utilization as well as on the bandwidth utilization of DRAM 1 due to Task 1and Task2, which are bound to this processor. If we introduce a cache in TM processor, similar decrease in bandwidth utilization is observed. (Results are not included.)

 It has been observed that the HBDMA bus is quite expensive and should not be connected too many devices to it. A slight decrease in the bandwidth of HSPIO bus results in overflow and thus the platform won’t be able to support the application specified in the task graph above. The trade-off between HBDMA bus bandwidth and having IPs added to other busses is something that can be experimented using this tool conveniently.

5.2 Case study using a real application

 In this section we shall take up a real application and study how this tool can be applied to it. The application taken is “ Real Time Vision System for Collision Detection and Avoidance “ [3,4].

 It has the following main tasks.

5.2.1 Application Specification using task graph

 The algorithm of the procedure is shown in figure 5.2[3]

 The entire algorithm can be divided into 4 procedures,

1. Grab

2. Gradflow

3. Update Sums

4. Compute time to collision

 The grabbing procedure requires around 40 ms per frame. So, the periodicity of this procedure is 40 ms. The gradflow has to be computed for each pixel and there are 16K such pixels in each grabbed frame. Obviously, this is the most expensive operation and takes much of the CPU time as we shall see from results. The gradflow procedure selects some pixels whose intensity is more than some pre determined threshold value and sends them to the procedure Update Sums. Thus, in the worst case, it sends all 16K pixels per frame, but in general it sends among one third to one second of the total number of pixels[3]. So, we will do it for worst case number of pixels. The overall task graph obtained would be

 16K

 16K

0.048
 Figure 5.2 Case study task graph

 Therefore the following table summarizes the characteristics of tasks.

 Name of the task
 Periodicity of the task (in ms)

1. Grab

2. Gradflow

3. Update Sums

4. Compute time

 40

 40

 40

 40

 Table 5.9 Task characteristics of case study application

Sending

Task Name
Receiving

Task Name
Amount in

 KB
Channel Number

1. Grab

2. Gradflow

3. Update Sums

4. Compute time
 Gradflow

 Update Sums

 Compute time

-
 16

 16

0.008

-
1

1

1

1

-

 Table 5.10 Inter task communication among tasks

Update sums sends 0.048K of data as it needs to transfer only the vector X (6x1) to compute sums and this takes around 48 bytes. All communicate through their channel number one.

5.2.2 Hardware Specifications

 The hardware chosen has the following configuration.(figure 5.3)

Frame Grabber

 Figure 5.3 Hardware for case study application
 The characteristics of hardware components are shown in the following diagram.

Name of the Processor
Speed in MIPS
Memory Connection
Mref width

Cache presence

1SUN ULTRA

2 PENTIUM

100

133
SDRAM

SDRAM
4

4
Yes

No

 Table 5.11 Architecture specification for case study application

Cache Size in KB
Hit ratio
Access time in ns
T-line read in ns
Policy
Line size
T_line

Writein ns
Dirty page ratio

 256
98.90
80
120

WTNWA
64
200

-

 Table 5.12 Cache characteristics of SUN ULTRA I 1
The memory, busses and the IP characteristics are given below.

Memory Name
Memory Size

in MB
Memory Bandwidth (MBPS)
Access time

(ns)

SDRAM
16
128

250

 Table 5.13 SDRAM characteristics

Bus Name
Bus Bandwidth in MBPS

1. High Bandwidth DMA bus

2. High Speed PIO bus

1092

456

 Table 5.14 Case study bus characteristics

Finally the following table gives the binding characteristics of the tasks on specific IPs.

 IP Name
Number of ports

1. Video In

2

 Table 5.15 Case study IP characteristics

5.2.3 Binding and Computation of results

Task Name
Stack size in KB
Code Size in KB
Data Size in KB
Dynamic instruction count
Load instruction count
Store instruction count
Binding

1. Grab

2. Grad

Flow

3. Update

Sums

Compute

Time

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

 16

 16

 5

0.048
 64x1024

 256x1024

5x58x

1024

10
0

16x1024

5x1024

0
16x1024

0

0

0
 SUN

 SUN

PENTIUM

PENTIUM

Table 5.16 Binding characteristics of case study tasks to components

 The procedure grab is bound to SUN ULTRA and it just takes the data from the frame grabber and puts each frame in memory and signals the Gradflow procedure to access it. Therefore the dynamic instruction count will be 4*16K as 4 instructions are assumed to be enough to do this per pixel. Similarly, Gradflow takes 16 instructions per pixel and there are 16K such pixels. Update sums takes 58 instructions per pixel and 5K are assumed to be passed to it. (~1/3 rd of 16K). As 2, 3, 4 tasks are not assumed to store anything substantial, their store instructions are assumed to be zero. As Grab and compute time are not loading anything their load instruction size is zero. It is important to note that dynamic instruction count is other than load/store instruction count.

 Video In IP, which is connected to HBDMA bus through its port1.The two processors

are connected to SDRAM. SUN ULTRA is connected through HB DMA bus and PENTIUM is connected through HSPIO bus. The Grab is bound to Video In, which is

connected to digital camera mounted on a robot.

 The results of the study are shown below.

Chapter 6

Conclusions and Future Work

6.1 Summary and conclusions

 In this project we have developed a design of user friendly tool for analyzing and visualizing a standard platform. It has the advantage of not taking the input system configuration in some standard intermediate format. The user can start the tool without any previous knowledge about template architecture analysis tools and can analyze his/her configuration in a variety of ways by changing the different parameters at run time. A complete facility for loading/storing, modifying components as well as high level task graphs from a component/task library is provided.

 A case study of collision detection project [3] is taken up and analyzed successfully. Our final tool involves some limitations like not being able to be invoked through the World Wide Web, but it is not a serious limitation, as it can always be done with little effort. Finally, all possible measures have been taken for reporting potential conflicts in the entered/entering configuration. Anyhow, the designer is advised to check for them manually wherever he can.

6.2 Future Work.

 This project will form the guideline and provide the scratch needed for developing

more sophisticated template architecture analysis tools using this design philosophy.

Annexure I

Algorithms

[image: image1.png]Memory Space Utilizatian

ESPACE VT (Suetng W)

Got. e Lst o processers commoctad to B
tle’ (procssserald (= WIL)
i
Got_Ltat ot tasba(procamscralin] T 9
1-o
Seps e (i3 =wiL)
€

- e ST}
o nanes D
3

Compute Bus Utilization

Conputa_Bua U1 urtng B

ERp———
o (Lo 03 1 < C.lagea; 1+
€
Gt _taara_nouna(c,)3
oap_porta_te_chazh (T, C A
e snoist D2 Bybes U)o/
Conpito_ti1a1_cost (Fianl_cost);
Append (B el cost)
Ao ens s, Task_1anen)
Bl - (Fiaal_cost/B0 + 100F

[image: image2.png]Memory Band Width Utilization

BLBOD VT UTIL(Sueiag
H
Got. e st of processors consacted to B tato procassorsl]

Got_Taaer GBI T 51,005
tle (processenald] (- wiL)
i

Got_Process Crara(Pli] 3 1tneatze,ammatioh;

i-o
Seps e (T =wi)

€
o Cacnepertey — vowe)

e b S0 - metutae) +
CCLLLI4DIET oCim) + Lineatan + rapatisicn ratad

alue 11 Coacropottey —)

ek G004 L $ D0 -
)+ Tinosizal thipaLio) + v xate;

alae 11 Coacropotrey — w0 cacms)
e b G004 LI % DI + erer_vised + x_vate;
ENNPRILRI o

3

[image: image3.png]Compute Time

Conputa_tina (surizg 7Y

Got Lse_ot sana®hT);
e (L] = WL)
i

Gor_mmateCeL, TS 11,00

- T + CT/apsss(p) » rataltl;

[image: image4.png]Memory Delay

hen aauayConring 7)

<
Gor_ st 2,7 5,105
Gotow e,y
e (T0A - wi)
i

o Cacnepertey — vowe)

DL - DL+ ¢ (519 + Twordacomsa) +
QLD i n) + Taine meomsa + xxatels

alue 11 Coacropottey —)
DL - DL+ CSI4 # LI + DL +
1) - CTItne send) +
L0 + LI + L) + G0 -
depration » Tiina vatt;

alae 11 Coacropotrey — w0 cacms)

DL DL+ CSIA] # LI + DILD) + avesvisen +

e sanoalied] - T3}

[image: image5.png]Comnnmieation Time

Comntcation Tina(string 7)

<
Got_ st a,7 5,105
Gotow e, 33
e (T0A - wi)
i

o Cacnepertey — vowe)

UL -+ ¢ (S1 » et vt +
LD w1 + Linesccesa 13

alue 11 Coacropottey —)
L - i+ CSI4] % L1 + DL +
G0 - G0+ dpmasio) + Lineatze
L0 + LI #DLA) + G+
dpratio + e wite;
alae 11 Coacropotrey — w0 cacms)
UL - UL+ CSIAT # LI + DLLI) + mret_viaen;
- 4 MWL + v rasald;

Annexure II

Run time Environment

 The following figures give graphical forms for inputting different characteristics of processor specifications and the main menu of the project.

Bibliography

1. Hwang &Briggs: Computer architecture and parallel processing

2. Flynn: Computer System architecture

3. Aditya & Alok : Real Time Collision Detection and Avoidance,

 B.Tech ‘94 thesis, IIT Delhi.

4. Sandeep & Shashank : Design Exploration and Implementation of Real

 Time Collision Detection and Avoidance, B.Tech ’97 thesis, IIT Delhi

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

		 Task

		 Information.

			

Current binding information of the Task.

Next Node in the list of high level tasks.

 ITC Information

 of this task.

Next node in the

The list

Of ITC information

 Task A

 Channel 1

 Task B

Channel 2

Port 1 MPEG Decoder. P2

 Port X

 Tri Media Core

 CPU

 Set Of Tasks

 Four types of

 Components

Component name, i.e., current binding of the task		

Channel Number of task

Port of the component to which this channel is bound

The bandwidth of the bus to which the Component is connected.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

 Grab

 Gradflow

Update Sums

Compute

 time

 ROBOT

 PENTIUM

 SUN ULTRA 1

SDRAM

PAGE
47

_1006629823.unknown

_1007507526.unknown

_1007509674.unknown

_1007750610.unknown

_1007753451.unknown

_1008601922.doc
[image: image1.png]Memory Band Width Utilization

BLBOD VT UTIL(Sueiag
H
Got. e st of processors consacted to B tato procassorsl]

Got_Taaer GBI T 51,005
tle (processenald] (- wiL)
i

Got_Process Crara(Pli] 3 1tneatze,ammatioh;

i-o
Seps e (T =wi)

€
o Cacnepertey — vowe)

e b S0 - metutae) +
CCLLLI4DIET oCim) + Lineatan + rapatisicn ratad

alue 11 Coacropottey —)

ek G004 L $ D0 -
)+ Tinosizal thipaLio) + v xate;

alae 11 Coacropotrey — w0 cacms)
e b G004 LI % DI + erer_vised + x_vate;
ENNPRILRI o

3

_1007753479.unknown

_1007753370.unknown

_1007753326.unknown

_1007509936.unknown

_1007749706.unknown

_1007509720.unknown

_1007507873.unknown

_1007509044.unknown

_1007508973.unknown

_1007507819.unknown

_1007505045.unknown

_1007506175.unknown

_1007506446.unknown

_1007507227.unknown

_1007507406.unknown

_1007506273.unknown

_1007506423.unknown

_1007505866.unknown

_1007505931.unknown

_1007505676.unknown

_1006671827.unknown

_1006672559.unknown

_1006672673.unknown

_1007503353.unknown

_1006672219.unknown

_1006670049.unknown

_1006625525.unknown

_1006628100.unknown

_1006629547.unknown

_1006629540.unknown

_1006625658.unknown

_1006622395.unknown

_1006625250.unknown

_1006622317.unknown

