Chapter 0

Introduction
0.1 Background and Motivation

 The standard, flexible platforms implementing a variety of applications like high-speed video applications or compute intensive number crunching applications need to be analyzed using standard applications and thus benchmarked rapidly. Thus the idea of “building block” approach is used very much in designing such platforms. System development using such flexible platforms involves making a number of decisions regarding configuration based on specific options, busses, connectivity etc followed by design of custom modules like the memory interface unit, interrupt handler etc.

 The building block approach, which is being taken up rapidly by the computer architecture designers helps in making products less time. This approach is heavily based on the concept of block re-use. In order to achieve such reusability some predefined rules have to be followed. They might introduce a loss in area (VLSI) or performance but will provide a very fast product to market. This project helps in benchmarking such platforms easily.

0.2 Objective

 The objective of my project would be to develop models and associated tools, which would be capable of doing the following.

1. Analyzing the present configuration.

2. Checking the consistency and/or the feasibility of the present configuration.

3. Making suggestions for decisions based on options.

4. Providing visualization to the designer.

 One aspect of this project is also to provide the user with a better interface so as to reduce the errors in describing the configuration. This project does not assume that the input should be in some standard language designed for template architecture analysis etc. One of the key feature is to make everything user friendly and the entire project remotely invocable.

0.3 Basic Approach

 The idea is to take the configuration from the user in the form of GUI forms and analyze for any potential conflicts in the given platform like connecting the same processor to more than two memories, mapping the same port of an IP to two different busses at the same time etc. So the first step in the project outputs constitutes the reporting phase of all conflicts in the entered platform and suggesting any possible solutions for that, if there are any. The second phase of the project involves the calculation of different parameters like CPU, memory utilization, etc., taking into consideration carefully one by one the different input parameters, user entered. At the end of second phase with the required results, suggestions based on the results for improvement of efficiency of the platform are proposed. In third and the last phase of the project the graphical view of the platform according to some Pre determined floor plan is presented to the user. The flexibility of choosing the given position for a given component in the floor plan of the platform is disabled for complexity reasons. Though it is said that the visualization is the last phase, the user has always the option of viewing the configuration being built in one of the frames on the screen as he goes on adding the components one by one.

Chapter 1

System Overview and Modeling

1.0 System Overview

 The system chosen for analyzing consists of the following basic components (Figure 1.1).

· CPUs : The processors Tri Media Core and MIPS Core are chosen as example processors. These processors may have 2 level caches. The cache set is described in I/O model of hardware section in detail.

· DMA devices : These devices are used for memory read or writes. They remain slaves for PIO transactions, i.e., they read and write transactions of control and status registers from CPUs. These devices are classified into two sub categories.

1. Fast for devices that require intensive interaction with the CPUs.

2. Slow for devices that require very few interactions with the CPUs or where latency (i.e., response time of CPU) is not an issue.

· Internal Busses: They can be expressed as :

1. DMA Only Busses: These busses will carry only main memory traffic. This category is intern divided into two flavors.

I) High bandwidth DMA bus which probably is unique in the system and allows to drain all the memory traffic towards/from external memory. It is usually expensive and should not have a lot of devices connected to.

II) The second order memory traffic busses. These busses gather DMA traffic for slow DMA devices.

2. PIO Only Busses: These busses will carry only PIO traffic. This category is divided into 2 flavors.

I) High speed busses for fast PIO devices.

II) Low speed busses for slow PIO devices.

· Mixed Busses: These are the busses that carry both PIO and DMA traffic. They are labeled in the diagram as PIO+DMA busses. They are essentially connected to IPs or peripherals and one of the Fast DMA devices to deliver the data required by the IP/peripheral through the high bandwidth DMA bus.

· Gates: Gates are useful to cross the busses. They are masters in one of the busses it is connected to and slave on the other. Though this feature of the platform is not used in my project they can still be useful in future work in this area. These are also divided into 2 flavors.

I) PIO Gates: These transfer the CPU PIO requests to the devices.

II) DMA Gates: These are used provide access to slow DMA devices to the main memory.

· Off Chip Connections: Like Peripheral Component Interconnect (PCI), or EBIU.

· External Memory Connections: Shown in the diagram as the memory interface block that connects the system to external main memory, may be SDRAM.

 The analysis and visualization is based on a set of underlying tools and models. Some of the key models/analysis modules that are evolved and/or designed are discussed in the following sections of this chapter.

 1.1 Application Modeling

 A comprehensive model of the application as a graph with nodes representing “program modules” with edges representing the complex communication requirements is developed. Each node or “program module” corresponds to the granularity of the software for implementation on any one of the processor. The edges will represent not only the rates but also the nature (periodic or bursty or some random distribution) of IO requirements. The proposed models would be specifically suitable for Digital Video Platform as one needs to distinguish between DMA and PIO communications.

 Each node as specified above, in the graph consists of the following specific information about the module.

· Module Identifier : This field identifies uniquely the given module. This must be different and unique for all entered modules. Though the term module, in general refers to a set of tasks, we assume in this project that a module refers to some high level task with its Inter Task Communications requirements. As it can be easily seen, the idea of single task in a module can be extended quickly to multiple tasks by simply grouping the tasks according to some well-defined feature in to a module (a set of tasks).

· The Repetition Rate : This gives information about how often the task gets repeated. This is an essential parameter required in calculating the Bus bandwidth utilization etc. We shall see how it is used in computing different parameters in later sections of this chapter.

· The Source Code Pointer : This locates the executable file of the task on the disk. It is included for the facility of extracting characteristic features of the task on a specific processor or IP by inputting it to the profiler.

· The Precedence : Though this information about the task is not useful presently, it is included for facilitating the future work.

· The Inter Task Communication (ITC) : This forms the core of communication of the task with the other tasks. In the graph it is represented by the edges. If a task has an edge connecting the node of another task, that means it communicates with that task. The specific details as how much data is being communicated and in what direction (i.e., whether this task is sender or a recipient of data) should be a part of Inter Task Communication.

· Size : The task size is required in calculating the CPU utilization. This consists of 3 sizes.

1. Stack size: The stack maintained in the main memory is used in storing temporary information like function arguments, data and return address etc. while the processor switches from one task to another task. This is specific to a task, in the sense that each task requires its own stack space in the memory and will be dependent upon different characteristics that define the task.

2. Data Size: This represents the amount of data the task requires to complete its execution once. It is important to note that this is different from the amount of data it sends or receives from other tasks. It is important to note that this is dynamic size of the data not the static size. For example the dynamic size of some code which executes for 10 times and takes 100 integers each time is 10 X 100 =1000 integers. This data can be generated by the profiler.

3. Code size: The number of dynamic instructions the task is constituted of. It should not be static as a sequence of instructions might have been executed many times if there is a loop. So this is dynamic code size.

These parameters uniquely represent a particular node in the task graph the user enters. The way the task graph data is entered is largely dependent on the implementation issues, but irrespective of implementation the comprehensive task graph has to be maintained by the implementation of this project.

1.2 Architecture Modeling

 A comprehensive model to represent I/O requirements of hardware modules is developed in this section. The communication model also contains response constraints if any apart from specifying DMA and PIO bandwidths separately.

 The following key characteristic features of different hardware components are identified to be of importance in calculating the required parameters and thus to benchmark the given standard platform.

 1.2.1 Characterizing the CPUs

 The following information about the CPUs uniquely characterize them.

· Processor ID :

 This filed identifies uniquely a particular node in the comprehensive graph representing different components as well as their dependencies like masters/slaves etc. This can be the name of the processor followed by some instance number of the same kind of processors already existing in the platform.

· Speed :

This is the speed of the processor in MIPS or some other units like MHz. There are two ways of measuring the speed of processors. Generally the speed of a scalar processor is measured by the number of instructions executed per unit time, such as the use of a million instructions (MIPS) per second as a measure. For a vector processor it is universally accepted to measure the number of arithmetic operations performed per unit time , such as the use of mega floating point operations per second. It is important to note that the conversion depends on the machine type. Even though we make use of MIPS in this project to measure the performance of a processor, it can be easily extended to using the mega flops also, if at all the user wants to incorporate a vector processor into the platform. In general there is no standard relationship between the MIPS speed and the MFLOPS of a processor, but the conversion can be done by noting the number of instructions a scalar processor takes to perform a floating point operation. So , if a scalar processor takes 5 instructions to perform a floating point operation, then its MFLOPS speed is equal to 5 X MIPS speed. In the project we will not be using the peek performance rate of the processor, but the average speed / execution rate of the processor. It is important to note the difference between the peak performance rate and the average performance rate of the processor when benchmark programs or test computations are executed on each machine. The peak speed corresponds to the maximum theoretical speed of the processor, where as the average speed is determined by the processing times of a large number of mixed jobs including both CPU and IO operations.

· Number Of Memory References per Instruction :

This is the average number of memory references the processor makes for one instruction. Again, this is important in computing the memory access delay and memory bandwidths. Its use in computing the above menti9ned parameters is discussed in later chapters.

· Memory Reference Width in Bytes :

This is the number of bytes accessed when one memory reference is made by the processor. This depends mainly on the bus width and the interleaving of memory. Interleaving of memory to which this processor is connected. This is useful in computing the processor utilization, and memory bandwidth utilization.

· Cache properties:

Caches operate on the principle of spatial and temporal locality. Regions and words of memory that have been recently accessed will probably be accessed again the near future. The effect of a cache is to provide the processor with a memory access time equivalent to that of a high speed buffer, and significantly faster than the memory access time would be without the cache. There can be a hierarchy of caches staring from the primary cache. In this project only two level caches are permitted to be possessed by a processor, but it can easily be extended to more than two levels. I calculating the required efficiency of the given platform in carrying put the assigned task, caches play an important role in improving the overall access time of the memory and thus by reducing the memory bandwidtth considerably. In the mathematical formulation chapter, we shall see how the cache size and their hit ratio’s are going to be useful in computing the performance of a processor and the memory bandwidth. We assume a simple model of cache hierarchy in this project, leaving the complexities delays due to TLB misses etc. Further we assume that there are no split caches, that is there are no separate instruction (I-Cache) and Data caches (D-Cache). We assume that the processsor possesses(If at all) an integrated cache having global miss rate. While developing equations in the mathematical formulation chapter, we shall discuss briefly how these are going to simplify the overall complexity of calculating the performance of the standard platform.

1.2.2 Characterizing the Main Memory

 The following parameters of main memory uniquely characterize them in any platform.

· Memory ID:

As every component is uniquely identified by its name in the system, each memory component has also some name which identifies that particular memory uniquely in the architecture. This can be again the name of the memory like DRAM or SDRAM etc., followed by its instance number in the architecture.

· Memory Cycle Time :

In general a state is defined as a particular configuration of storage (i.e., registers or memory), and a state transition is a change in that configuration. Therefore a cycle is defined as the time between state transitions. If the storage being reconfigured is registers, we have an internal or machine cycle. If the storage is memory, we have memory cycle. Therefore the time to change the state of a particular storage in the memory is referred to as the memory cycle time. It can also be defined as the minimum time between requests directed at the same module. This is generally expressed in nano seconds. This is useful in computing the memory bandwidth utilization.

· Memory Access Time:

It is simply the amount of time required to retrieve a word into the output memory buffer register of a particular memory module, given a valid address in its address register. We shall see how the memory cycle and access times are going to be useful in the next chapter of mathematical formulation. Various technologists present a significant range of relationships between the access time and the cycle time. The access time is the total time for the processor to access a word in memory. Ina a small, simple memory system(equivalent to a single module), this may be little more than the chip access time plus some multiplexing and transit delays. The cycle time is approximately same as the chip cycle time. In a large interleaved memory system the access time may be greatly increased, as it now includes the module access time plus transit time on the bus(two directions), bus access overhead, error detection and correction delay etc. The cycle time (for the module) remains the same. I general, one should not be surprised to find system access times that are less than, equal to, or greater than the cycle time of a particular module, depending on the complexity of the system. For now, we can easily see that these two play an important role in computing the processor utilization by giving us the time the memory takes in producing the data CPU has requested for. Thus it takes an integral amount of time in the computation of CPU Utilization.

· Memory Size :

Memory size is the number of basic storage elements in the memory. This is generally expressed in Mega Bytes. For example a memory can have 8 MB of DRAM. This is useful in computing the space utilization of memory. We can know how much memory is taken by what task executing on which processor. Memory size may become an important bottleneck in the speed of executing a task, as if memory size is more then less number of task switches are required ot less is the total number of swaps form main memory to hard disk. So by reducing the swap time, and thus reducing the swap space, the speed up of execution of task increases considerably. In this project we are not bothered about the task switches or swap times.

· Interleaving :

Interleaving refers to the standard technique of using multiple memory modules to provide sufficient memory bandwidth to the processor. In this organization of memory, the module address field is partitioned in to two sections S m-r and S r so that section S r is the least significant r bits of the memory address section S m-r is the high order m-r bits of the memory address. In this scheme the addresses are interleaved among groups of 2 r memory modules. This tends to reduce the memory interference to a segment of shared data. The memory system is expandable in blocks of 2r modules; however a single module failure disables an entire

2 r block of modules. An advantage of high order memory system is that it leads to better system reliability, since a failed module affects only some local area of the address space and therefore provides graceful degradation in performance. We shall see in the next chapter how the memory bandwidth increases by interleaving the memory system.

1.2.3 Characterizing the Bus

 Traditionally busses have been a means to transfer data between multiple ICs within a PCB based system. As chips have grown in capacity all the functions that previously resided on multiple chips can now be integrated into a single chip, hence the data transfer between these chips is also integrated. Nonetheless busses and their bandwidths play an important role in improving the overall performance of the system. We characterize the buses with the following information.

· Bus ID :

This, as for the other devices, identifies uniquely in the system a particular bus. In case of the Digital Video Platform, this can be high bandwidth DMA bus or PIO bus or a mixed bus like DMA+PIO bus which carries both the low bandwidth PIO data and low bandwidth DMA data.

· Bus Bandwidth:

This is the number of Mega Bytes the bus can transfer in a second, expressed in terms of Mega Bytes per Second (MBPS). This is the rate at which the bus carries the signals, and therefore is an important bottleneck in limiting the bus processor performance. In a raw sense, the total bandwidth that a bus must support should not be less than the sum of the bandwidths of the devices that are connected to that bus. For example, if two IP devices are connected to a bus having the bandwidths of 20 MBPS and 35 MBPS respectively, then the bandwidth of the bus must not be less than 55 MBPS. It should be more than the sum, as there are conflicts on the bus which make the bus unavailable for any device connected to the bus.

1.2.4 Characterizing the IP/Peripheral Devices

 Much in the similar way a bus is characterized, an IP (pre-designed modules) or peripherals can be characterized.

· IP ID :

This is the identifier of IP.

· Number of Ports :

This is the number of ports the IP has. For example an MPEG decoder may be having two ports, which are connected to two different busses. Then the bus bandwidth is dominated by that channel of the task which is bound to the port of MPEG decoder connected to this bus. So ports form an important information in computing different busses’ bandwidths.

 In the next section we shall formulate the necessary mathematical equations to calculate the performance of various devices in the architecture.

Chapter 2

Mathematical Formulation

2.0 Memory Space Utilization

 Memory space utilization refers to the amount of memory occupied by different tasks that are mapped to this memory. This can be computed as follows.

Let the total memory size be M, and the number of tasks mapped to this memory be n.

Then the total memory space occupied by this memory is given by

[image: image1.wmf]

where the summation is through i =1 to i= n and S I refers to the amount of space occupied by the task I.

Therefore the memory space utilization is given by

[image: image2.wmf]
2.1 Memory Bandwidth Utilization
 The bandwidth of a system is defined as the number of operations performed per unit time. In the case of main memory system , the memory bandwidth is measured by the number of words that can be accessed (that can be fetched or stored) per unit time. The bandwidth utilization can be calculated as follows.

 Let the number of processors connected to this memory be n, and the tasks which are mapped to J th processor be designated as SIJ. Then the memory utilization is given by

[image: image3.wmf]å

=

=

i

k

k

i

t

AT

1

[image: image4.wmf]i

i

n

i

n

t

s

H

s

H

AT

)]

(

)

(

[

1

1

-

=

-

=

å

 Where, AJ denotes the number of accesses made by each processor

associated with this memory.

 Let the periodicity of I th task mapped to J th processor connected to this memory be PIJ . Then ,

[image: image5.wmf]i

n

i

i

AT

h

AT

å

=

=

1

[image: image6.wmf]å

=

-

-

=

n

i

i

i

t

s

H

AT

1

1

)]

(

1

[

 [image: image7.wmf]sec

/

/

Bytes

P

D

T

ij

ij

j

=

 (

[image: image8.wmf]MBPS

T

Bip

n

j

j

å

=

=

1

 Therefore, if

 HPJ is the primary cache hit ratio of processor J,

 HSJ is the secondary cache hit ratio of processor J,

 DIJ is the number of dynamic number of instructions of task tI per each

 invocation, and

 IIJ is the number of invocations of task SIJ

 Then

 [image: image9.wmf]0

0

*

)

/

100

(

Bw

X

 Therefore , finally substituting this in the first equation, we get

 Memory bandwidth utilization =

[image: image10.wmf]ij

i

j

i

P

N

n

Intsructio

Bytes

Bp

*

*

/

,

å

=

 Memory access conflicts may cause delayed access of some of the requests. In practice the utilized memory bandwidth is usually lower than the above computed value. A rough measure of the utilized memory bandwidth is suggested as

[image: image11.wmf]Bip

Bp

Bw

+

=

Where M is the interleaving of memory.

Though in this project we are not considering very much the effects of interleaving , but still it provides an effective way of increasing the memory bandwidth utilization by decreasing the bandwidth utilization among the available.

2.2 Processor Utilization

 The processor utilization indicates how long the processor is busy executing some instruction in a second.

 Let the tasks mapped to this processor be TI , where I varies from 1 to n, the maximum number of tasks that are bound to this processor.

The processor utilization =

 Time the processor busy executing instructions in a unit time

[image: image12.wmf]AT

R

N

D

i

i

*

*

=

 Time the processor is idle in a unit time

But the execution time of a task =

computation time of TI + memory access time + communication time with other tasks. Let’s calculate them.
2.2.1 Calculation of Effective Access Time of Memory System
 In modeling the performance of a hierarchical memory, it is often assumed that the memory management policy is characterized by a success function or hit ratio H, which is the probability of finding the requested information in the given level. In general, H depends very much on the granularity of information that is transferred, the capacity of memory at that level, the management strategy and other information. However for some classes of management policies , it has been found that H depends mostly on the memory size s. Hence the success function may be written as H (s) . The miss ratio or probability is then, F(s) = 1-H(s). Since we assume no existence of split cache in this project and the existence inclusive cache, copies of information at level I will exist at levels greater than I, the probability of a hit at level I , and a miss at higher levels is equal to :

[image: image13.wmf]å

=

=

n

i

i

S

X

1

 The effective access time AT I from the processor to the I th level in the memory hierarchy is given by the sum of the individual access times t of each level from k =1 to i:

[image: image14.wmf]0

0

*

)

/

100

(

X

S

 In general t includes the wait time due to memory conflicts at level k and the delay in the switching network between level k-1 and k. The degree of conflicts is usually a function of the number of processors, the number of memory modules, and the interconnection network between the processors and the memory modules. In most systems, a request for a word to be transferred from level I+1 to level I. When the block transfer to level 1 has been completed, the requested word is accessed in the local memory.

 The effective access time for each of the memory reference in an n level memory hierarchy is

[image: image15.wmf]Sec

Bytes

T

A

j

j

j

/

/

å

 [image: image16.wmf]),

(

ij

i

j

P

LCM

T

=

 s

 Substituting hi and ATi in this equation we get,

[image: image17.wmf]tasks

i

max

1

£

£

 Assuming that there is a copy of all requested information in the lowest

level n, H(sn) = 1. It is convenient to define H(so) = 0, hence F(so) = 1. Rewriting the above equation, we get,

[image: image18.wmf])

1

(

*

)

Pr

1

(

*

)

(

.

.

.

*

/

.

.

.

*

/

io

acheHitRat

SecondaryC

HitRatio

imaryCache

Dynamic

ns

instrcutio

machine

of

No

ns

instructio

ref

mem

of

No

P

T

ij

j

-

-

 The above equation denotes the effective access time in an n level hierarchical memory system.

2.2.2 Calculation of computation and memory delay times

 Computation time of task TI is equal to

 CI =

 Number of dynamic instructions (including Load-Store instructions)

[image: image19.wmf]s

invocation

Number of

*

S

s of task

invocation

Number of

T

 in time

ade by S

accesses m

Number of

ij

j

ij

=

 Speed of the processor

 And the memory delay time is equal to

[image: image20.wmf]å

-

-

=

i

sj

pj

ij

ij

j

j

H

H

D

Inst

Mref

P

T

A

)

1

(

*

)

1

(

*

*

/

*

/

Where, N I is the total number of instructions generated by the task T I , and number of memory reference per instrcution of processor P is R.

The communication time of task TI with other tasks can be calculated as follows.

 Let the bandwidth of task TJ with which this task communicates be xJ MBPS, and the amount of data transferred be yJ KBs. Then the communication time is given by

[image: image21.wmf]å

å

-

-

=

j

i

j

sj

pj

ij

ij

j

m

T

H

H

D

Inst

Mref

P

T

B

/

)

1

(

*

)

1

(

*

*

/

*

/

2.2.3 Calculation of processor utilization
 If EI is the execution time of TI , it is given by the equation

[image: image22.wmf]M

B

m

/

Now, let the LCM of execution times of all tasks be L and periodicity of each task bound to this processor be PI ,

Then the processor utilization is given by the formula,

[image: image23.wmf])

(

)

(

1

-

-

=

i

i

i

s

H

s

H

h

[image: image24.wmf]å

=

j

j

j

i

x

y

CM

sec

/

*

1024

2.3 Bus bandwidth Utilization

 The bus bandwidth calculation includes the inter task communication plus the data movement between the processors and the memory. The amount of data the tasks communicate with each other, the bus bandwidth utilized is more. Similarly the amount of exchange among memories and processors also increases the utilized bandwidth of the bus very much. Sometimes the IP or peripheral will have its own bandwidth requirements, like and MPEG decoder may have its output frame buffer rate as 0.4 MBPS. In that situation, it is the bandwidth of the device that should be counted in computing the bandwidth utilization of bus, rather than the task’s communication requirements which is bound to that IP.

 In short the bus bandwidth is computed as below.

 Let the IPs connected to the bus be denoted by IP J where I denotes the J th IP connected to the bus.

Let the given bandwidth of the bus be X MBPS.

 If Dij represents the amount of data transferred on the bus in one invocation of a task bound to j th IP, and there are Pij such invocations of the task, then the total amount of data transferred by this task on the bus in one second is equal to

[image: image25.wmf])

(

i

i

i

i

CM

D

C

E

+

+

=

 where Tj denotes the bandwidth utilized by one task bound to j th IP.

It is important to note that this bandwidth utilization of task also includes any data or instruction fetch from the main memory, if the bus whose bandwidth utilization is to be carried connects the main memory and the processor also.

Therefore if the bus connects a processor and main memory, the additional incurred is equal to

[image: image26.wmf]L

P

E

L

PU

i

i

i

å

=

\

/

*

*

100

Where NI denotes the total number of instructions per invocation of task I on processor j.

The calculation of bytes/instruction is discussed in the sub section of calculation of processor utilization.

[image: image27.wmf]0

0

Therefore the total bandwidth utilized by all IPs connected to the bus equals

Hence the total bytes/sec utilized on the bus is equal to

[image: image28.wmf]å

=

=

n

i

i

S

X

1

Now the bandwidth utilization of the bus equals

[image: image29.wmf]

 Chapter 3

 Implementation

 3.0 Data Structures

 The data structures implemented for application modeling and hardware modeling are discussed in this section.

3.0.1 Data structure for high level task graph
 A graph in the form of a linked list is maintained to hold the information about all the tasks. Each task node contains the following data and pointers. (figure 3.1).

 The ITC pointer points to a list of information about the tasks with which this task communicates. The binding pointer points a lnode which contains information about the current binding of the task. As a task can only be bound to one task a time, this points to only one node, unlike the ITC pointer, which points to a list of nodes.

[image: image30.wmf]0

0

*

)

/

100

(

X

S

[image: image31.wmf]Sec

Bytes

T

A

j

j

j

/

/

å

[image: image32.wmf]),

(

ij

i

j

P

LCM

T

=

[image: image33.wmf]tasks

i

max

1

£

£

[image: image34.wmf]s

invocation

Number of

*

S

s of task

invocation

Number of

T

 in time

ade by S

accesses m

Number of

ij

j

ij

=

[image: image35.wmf]å

=

=

i

k

k

i

t

AT

1

[image: image36.wmf]i

n

i

i

AT

h

AT

å

=

=

1

[image: image37.wmf]i

i

n

i

n

t

s

H

s

H

AT

)]

(

)

(

[

1

1

-

=

-

=

å

[image: image38.wmf]å

=

-

-

=

n

i

i

i

t

s

H

AT

1

1

)]

(

1

[

[image: image39.wmf]Bip

Bp

Bw

+

=

e

[image: image40.wmf]sec

/

/

Bytes

P

D

T

ij

ij

j

=

[image: image41.wmf]0

0

*

)

/

100

(

Bw

X

[image: image42.wmf]AT

R

N

D

i

i

*

*

=

[image: image43.wmf]ij

i

j

i

P

N

n

Intsructio

Bytes

Bp

*

*

/

,

å

=

[image: image44.wmf]MBPS

T

Bip

n

j

j

å

=

=

1

[image: image45.wmf])

1

(

*

)

Pr

1

(

*

)

(

.

.

.

*

/

.

.

.

*

/

io

acheHitRat

SecondaryC

HitRatio

imaryCache

Dynamic

ns

instrcutio

machine

of

No

ns

instructio

ref

mem

of

No

P

T

ij

j

-

-

[image: image46.wmf]å

-

-

=

i

sj

pj

ij

ij

j

j

H

H

D

Inst

Mref

P

T

A

)

1

(

*

)

1

(

*

*

/

*

/

[image: image47.wmf]å

å

-

-

=

j

i

j

sj

pj

ij

ij

j

m

T

H

H

D

Inst

Mref

P

T

B

/

)

1

(

*

)

1

(

*

*

/

*

/

[image: image48.wmf]M

B

m

/

 Figure 3.1 List of high level tasks

 The task information in each node contains essentially the following entries.

 Task repetition rate and the number of channels, including other information like task ID, source code pointer etc, which were discussed in detail chapter 1. Channel of a task is a logical “port” through which it communicates with other tasks. For example a task may be having 4 channels and it may be communicating with 4 other tasks using one channel per each task. Channel 1 of each task is reserved to be bound to the memory port of the processor (if at all the task is bound to a processor), for exchanging its data and instructions from the memory to the processor, to which it is mapped. Hence, essentially by binding a task’s channel to a port of a component, we mean the transfer of data takes place through that port of the component. The amount of data to be transferred etc will be in the ITC list entries.

 The Inter task Communication list node essentially contains information about the task ID with which this task is communicating, as well as transfer attributes like amount of data, the channel number through which it is communicating and the directions of transfer (Figure 3.2).

[image: image49.wmf])

(

)

(

1

-

-

=

i

i

i

s

H

s

H

h

[image: image50.wmf]å

=

j

j

j

i

x

y

CM

sec

/

*

1024

[image: image51.wmf])

(

i

i

i

i

CM

D

C

E

+

+

=

[image: image52.wmf]L

P

E

L

PU

i

i

i

å

=

\

/

*

*

100

[image: image53.wmf]0

0

Bus A Bus B

 Bus C

 B

 Figure 3.2 Biding channels to ports
 In the above diagram the channel 1 of task A is bound to port 1 of MPEG decoder and channel 2 of task B is bound to the TM Core CPU. Since the direction is both ways , we conclude that task A and Task B communicate with each other some amount of data. The question of which bus is used in transferring data is found by observing that, bus A and bus C are connected to the channels and hence the data transfer is through mainly bus A. Even though this adds to the bandwidth utilization of bus C, we consider the traffic mainly for computing the utilization of bus A.

3.0.2 Data structure for storing IO information
 There are broadly 4 types components used in any architecture. They are

· Processors

· Memories

· Busses

· IP/Peripheral devices

All processors must be connected to some memory and all busses should be connected to some bus. Each IP/Peripheral has some ports, which should be bound to some bus. If an IP has 3 ports, then they should both be connected to, not necessarily unique bus. Thus this idea gives rise to the follwoing diagram.

 Figure 3.3 Specific instance of architecture

 As discussed in the above section(Figure 3.1), the current binding information node contains essentially the following information.

 Figure 3.4 Data Structure for storing binding information

 At any time there a task can have only one binding node, as it can be bound to only one component at a time. Ports, logical channels and binding ports to logical channels povides a useful way of modeling the specific instance of architecture.

3.1 Software Implementation/Environment
 The software chosen to implement the entire porjct is Java. The following paragraph summaizes the reason for using the language.

3.1.1 Why Java ?

· The first reason for using Java is due to its strong GUI supporting features like the AWT (Abstract Windowing Toolkit) package.

· The second reason is to provide the facility of remote invocation. This allows the designer to run the project from any part of the world through the Internet. Thus it allows platform independence. Even though the project is developed in Linux environment, nevertheless MS,SUN,MAC,HP etc., virtually any platform can be used to run this application.

· Since my project involves developing libraries of components and high level tasks, Java Servlets provide good way of communicating with the project server. Though this can be done by using CGI programming, Java Servlets provide a powerful, as well as easy way to this exchange of information. (This feature has not been yet incorporated into my project).

· And lastly because of its strong OOP support, which makes the whole paradigm of programming, and debugging easy.

3.1.2 Userfriendly GUI

 The project provieds the user with a userfriendly GUI, containing standard format menus, frames and other GUI components. It allows to choose a hardware component or a high level task from a library of components as well as set of high level tasks which may include bench mark programs for TM, MIPS CPUS etc,. You can deposit your own new components in the library, delete and modify the components/tasks after loading them from the library.

 One of the comfortable things the implementation provides to the designer is that, by separating the application and architecture specifications from binding them with each other. This feature facilitates the user from freely choosing the components and tasks as he wishes frist, and then binding each of the tasks with the components and binding

Ips and other peripheral devices can be taken up in the next stage. At each and evert step in running the user can invoke a checking process , which virtually points out all the mistakes the user has done during the process of binding. Typical mistakes include, binding the same port,channel twice to two different busses,ports respectively, and binding the same task to two different components at the same time. In each of such cases the checking process reports the errors and asks you to take the necessary action.

 As the user goes on building the circuit, by adding 4 types of componenst either by choosing them from library or by adding them manually, he has always the choice to look at the circuit he is building up, and thus take decisions dynamically in defining the archiecture. This is circuit will be built according to some pre determined (figure 1.1) architecture and floor plan. Though the choice to choose the position in the floor plan is not given to the user now, it can always be done as a small extension to this project.

 After the user binds all the components with all the tasks and components to busses, the results are drawn in the form of pie charts. The user can view all the information like which task on which component is taking up how much space, everything in the result charts. They provide random color view facility.

 Suggestions based on the results are proposed finally. These suggestions can include to improve the bandwidth of a component by some amount or to provide for a cache to a processor like TM to decrease the memory bandwidth utilization etc. Appendix gives a graphic detail of the environment.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

		 Task

		 Information.

			

Current binding information of the Task.

Next Node in the list of high level tasks.

 ITC Information

 of this task.

Next node in the

The list

Of ITC information

 Task A

 Channel 1

 Task B

Channel 2

Port 1 MPEG Decoder. P2

 Port X

 Tri Media Core

 CPU

 Set Of Tasks

 Four types of

 Components

Component name, i.e., current binding of the task		

Channel Number of task

Port of the component to which this channel is bound

The bandwidth of the bus to which the Component is connected.

_1006629547.unknown

_1006670965.unknown

_1006671705.unknown

_1006672069.unknown

_1006672559.unknown

_1006672673.unknown

_1006672219.unknown

_1006671827.unknown

_1006671496.unknown

_1006671657.unknown

_1006671316.unknown

_1006670128.unknown

_1006670514.unknown

_1006670552.unknown

_1006670204.unknown

_1006629899.unknown

_1006670049.unknown

_1006629823.unknown

_1006625525.unknown

_1006627845.unknown

_1006629384.unknown

_1006629540.unknown

_1006628100.unknown

_1006625658.unknown

_1006622395.unknown

_1006625250.unknown

_1006622317.unknown

