

Fast Resource Information Dissemination in a P2P Network

Ashish Gupta, Ankit Mohan, Ananth Sundararaj

Northwestern University
Date: 3/20/2003

Under guidance of

Prof. Fabian Bustamante
Course: Advanced Operating Systems

Introduction

We look at the design of a peer-to-peer resource
monitoring system, in which every peer in the
network may be interested in knowing some resource
characteristics about the rest of the peers. Potentially,
availability of such information will provide P2P
applications with better knowledge about the P2P
network and can exploit this information for their
tasks. The goal of this project is to make the various
characteristics of the P2P system readily available to
P2P applications by building an efficient P2P
Monitoring Service, helping them to exploit the P2P
system in an intelligent way.

Layered Model
Our aim is to provide a generic service, which is not
application specific. The resource monitoring service
(RMS) can be running on all hosts and applications
may query it to request useful information for its
purpose. This corresponds to a layered model as
shown below:

P2P Adaptive Monitoring Service

P2P Applications

Gathers information
from all the P2P
Network and mak es it
avail to P2P
applications

Query

Applications
Some applications, which can be conceived over such
a service, are:

1. Peer-to-Peer Load Balancing
Embarrassingly parallel applications may be
distributed by a peer among its fellow peers
efficiently using resource information.
E.g. Peer-to-Peer Ray Tracing application

2. P2P Computing or Network Shared Computing
This is a new application, which we thought could be
built over a resource-monitoring infrastructure.
Conventionally, a master host is responsible for
carrying out a computation task and it may further
distribute the task to others. Our idea is to develop a
network based computing model, where no single
computer is responsible but the entire network is
responsible for the computation. Using readily
available resource information a peer can effectively
partition its tasks and distribute them.

Efficiency

In our resource monitoring system, there are two
points to note:

1. Every peer needs to send information to
everybody else! This separates it from other
information dissemination methods like
single-source multicast. Therefore a major
efficiency concern is that it needs to be
scalable in terms of network resource usage.

2. Since we are disseminating resource
information, the “freshness” of this
information available to peers is also a
concern. Resource information (depending
on the application) can get old with time, and
hence an efficient resource monitoring
system needs to provide some guarantees on
the “freshness” of information for it to be
useful.

These two properties are captured by some metrics
which be define later.

How to tackle both is an interesting problem. There
seem to exist tradeoffs between these two properties.
If we have a scalable system in terms of network
resource usage, its guarantees about freshness may be
quite poor and vice versa.

Communication Model

We consider gossip communication as the
communication model for resource information
dissemination. Since the problem at hand is an all-to-
all broadcast problem, the proper selection of the
communication model is important. For example, a
simple broadcast from each peer to all others
periodically would provide good freshness, but would
heavily overload the network.

In Gossip, each peer periodically talks to some other
peers in the network. Gossip protocols are much
more scalable, since each peer does not communicate
with everyone else but to a few selected peers.
Gossip protocols do not also require as much
synchronization as traditional reliable multicast
protocols. The natural resiliency and graceful
degradation of gossip protocols is also one of their
attractions.

Multiple ways of doing gossip exist. In a static
model, an overlay topology can be constructed over
the underlying network, and each peer can convey its
information to its neighbors according to the overlay
topology, which propagate the information further to
their neighbors. This way, hopefully, information is
disseminated to everyone in the network. Dynamic
Gossip schemes do not restrict the neighbors a peer
can talk to each time, but is decided dynamically. We
consider the dynamic model of gossip in our studies,
as it avails more flexibility in choosing our
neighbors. In the following section we describe the
issues in dynamic gossip and also the various
schemes, which we consider in our experiments.

Dynamic Gossip Schemes
As mentioned above, in Dynamic Gossip, each peer
talks to some other peers periodically and
communicates information to them. In the resource

monitoring system, we consider that each peer
maintains a database of resource information about
all the other peers in the network. Each database
record corresponds to a peer and stores its
information like IP address, latency, the resource
information and some other information (related to
gossip schemes), which we describe later. The idea is
that each peer in the network has a “fairly good” idea
about the current characteristics of all the other peers
in the network. Of course, the value of “goodness”
may vary for different peers in its database.

The Whom and What model
Every time a peer decides to gossip, it needs two
pieces of information, which we term as the whom
vector and the what vector.

Whom Vector
This vector contains the list of the peers to which the
gossiping peer will talk to in that particular gossip
instance.

What Vector
In our gossip model, whenever a peer gossips, it can
give information about others also, besides itself. The
what vector constitutes the list of items from its
database which it will communicate to the peers in
the what vector mentioned above.

Basically, the different gossip schemes can be
differentiated in how they decide the contents of the
whom vector and the what vector. Our work in this
project focuses on this aspect, and tries to find out an
effective way of choosing these vectors such that the
resource information dissemination is efficient.

Gossip Schemes

For the following gossip schemes, two parameters
whom_n and what_n are passed on to the schemes,
which do gossip based on these. whom_n is the
number of peers each peer talks to when it gossips.
what_n indicates the number of records in the
database which it sends to others. These factors
decide the network load for the gossip schemes. If we
keep this parameters constant for different schemes,
then we can compare the different schemes keeping
the network load constant. The gossip schemes
basically differ in how they use these parameters to
do the gossip.

Also each peer maintains the database of records
mentioned previously in two sorted lists. First list is
sorted according to the latency of the peers from
itself. Thus the closer peers are in the beginning of
the list. Second list is sorted according to the
“freshness” of the information it has in its database.
This is useful, if the peer wants to discriminate what
to send to others based on the freshness of the
information it has about others. These two ordered
lists are called latency_list and freshness_list
respectively in our further discussions.

Broadcast

What Vector: All the records in the database
are included in the what vector.

Whom Vector: All the peers in the topology , we
know about currently are included in the whom
vector.

This is basically a simple all-to-all broadcast model.

Random
What Vector: A peer selects what_n records
randomly from its database. Its own record is always
included in the what vector.

Whom Vector: A peer selects whom_n peers
randomly from its peer list. It makes sure that it does
not include itself.

Top
What Vector: A peer selects the top what_n item
from its freshness_list. The idea is to propagate only
the freshness information it has from its database.

Whom Vector: A peer selects the top whom_n peers
from its latency_list. It only informs the closer peers
around it about the information it has.

As we shall see, this results in a division of topology
into overlapping zones, where each peer talks to other
peers within the zone centered around itself.

Spatial
This is a more involved scheme, which we consider.
A theoretical model for Spatial gossip was proposed

in [1]. Here the idea is to choose the whom and what
vector in an exponentially decaying manner. The
probability that a peer is chosen for gossip is
exponentially distributed based on how close it is.
Similarly for freshness of data.

This model is slightly complicated because there are
various ways of doing this exponentially distributed
selection of peers and records to communicate. [1]
suggests the model that probability of communicating
with a particular peer is ρ−= dcP x where d is the
distance metric (latency or freshness in our case), ρ

is a constant between 1 and 2 and xc is a
normalization constant. The intuitive idea is to talk to
near ones more frequently than those further away.

This does not keep constant the number of peers we
talk to, each time we gossip. Also, si nce d is the
distance metric, it is not rank based, i.e. if a peer has
a freshness_list with 50 items but their freshness is
low compared to another’s peers freshness_list, its
what_vector will be poorly populated if we use the
above scheme, compared to the other peer. Therefore
various types of spatial schemes can be considered
like metric based or rank based.

Bin-Halving
We have developed another gossip scheme, which is
based on the rank rather than on the distance metric.
This scheme is called Bin-halving.

Consider the selection of the whom_vector. From our
latency_list we need to select whom_n peers, which
follow a spatial distribution. We divide the
latency_list into bins of constant size b. The first b
items are in the first bin, next b items in the second
bin and so on. Then for the whom_vector, we
randomly select peers from each of these bins, such
that the number of peers we select from each bin
decays exponentially. Also the sum of these needs to
be equal to whom_n. All these constraints lends itself
to a mathematical formulation of the problem:

Let the size of the latency_list = n
whom_vector size is fixed = whom_n

We need to decide the number of bins k
(),...,,(21 kbbb of equal size, such that if we choose

ik −2 peers randomly from the bin ib , then the sum

.hom_2...22 110 nwk =+++ −
Solving the above we get

)1hom_(log 2 += nwk

Thus we have k bins of size
k
n

each.

In the bin-halving scheme, the size of the
what_vector and whom_vector can be kept constant
but its distribution can follow a spatial scheme.

Experimental Results
In this section we describe the experiments, which we
conducted to study how the different gossip schemes
fare with respect to each other.

The Gossip Metrics
First of all, we describe the metrics we use to
compare different schemes. Discussion of these
metrics is important as “freshness” can be defined in
various ways and depending on the application a
particular metric may be more preferable than the
others. Some metrics, which we study in our
experimental results, are:

Network resource Usage related

Messages sent: This measures the total
number of messages sent by the peers in the network.
Each record which is passed on to another peer is
counted as a message.

Bytes Sent: This basically measures the load on
the network in terms of total bytes sent.

Freshness Related

Measuring freshness is slightly more involved and
different schemes could be compared in different
ways according to different metrics.

In our model, each peer updates its resource
information periodically. Whenever it updates its
resource information, it increments its heartbeat by 1.
Therefore, each resource record is associated with a
peer and has a particular heartbeat value.
In our simulations, we define the measure of
freshness of a particular record to be equal to the
number of subsequent updates from the originator of
that record or the heartbeat_difference between the
record we have and the current heartbeat of its
originator. Higher this heartbeat_difference, more
stale the information is.
Note that in actuality, this heartbeat_difference
cannot be measured by a peer to gauge the freshness
of the records it has since it doesn’t have access to
the current heartbeat of every other peer in real time.

However since we have a simulator, we can use this
metric to measure the freshness, since we can directly
compute this difference. There we sometimes also
use the term oracle_freshness to describe this metric.

We have three metrics based on this:

Average Heartbeat Difference:
We average the heartbeat_difference of all the
records a peer holds in its database and then average
this value over all the peers. This gives us an idea of
what is the average freshness of the information peers
are having about each other. We also measure the
standard deviation in this, to see how the average
heartbeat_difference varies across the peers. We see
later, that different schemes have difference values
for this deviation, depending on what is their
what_vector.

Heartbeat difference distribution:
This is a bar chart, which shows what is the
distribution of the heartbeat difference in the database
each peer holds. If the value of
heartbeat_difference=0,1,2 is high then it the
information is more fresh. This gives us an overall
idea of which scheme provides better freshness.

Fresh Item count:
This is an important metric as it measures the useful
information a peer has in its database. Information is
useful if it fresh. We can set various boundary lines
for this freshness. In our simulations, we count an
item as fresh, if its heartbeat_difference is <=k where
k is a bound on freshness which may be decided
according to the application. In our simulations we
fix this value to 2.
A peer may have information about lots of peers, but
only some of that information may be actually
useful.A P2P application may just refer to the useful
records for particular tasks.

Simulation Description
In this section, we describe our simulation approach
to evaluate the different gossip schemes according to
the metrics described above.

Simulator Design
We developed a discrete event Peer to Peer simulator
in C++. A peer is modeled as an object which can
receive and set simulation events. We have 3 kinds of
events in our simulator:

1. SEND: On arrival of this event, a peers
initiates a gossip instance in which it
populates the what_vector and whom_vector
according to the gossip scheme. Then for
each peer in the whom_vector, it sets
RECEIVE events at current_time + latency
between itself and the other peer. It also sets
a new SEND event for itself.

2. RECEIVE: This event indicates arrival of a
message from another peer. The peer which
receives this event, updates its database with
the new information in an ordered fashion (in
the order of both latency and freshness, as
discussed previously)

3. PROBE: This event initiates metric
collection. Periodic PROBE events are
inserted into the event queue, which calculate

and output the metrics for the entire P2P
system.

Maintaining Freshness_list

We previously said that a peer cannot actually know
the heartbeat difference of the records it has in its
database from their originating peers. Then how does
it decide which information in its database is fresh
and how does it maintain the ordered freshness_list ?
It uses another internal metric for this which we call
decay_freshness. It measures how old the information
is according to time , not the number of heartbeats.
At time of origin, the decay_freshness of the message
is 100. Each time a message is sent from one peer to
another. the decay_freshness decreases by a function
of the latency of the link. The peer which receives the
message, is responsible for this. This at each
RECEIVE event, the receiving peer recalculates the
decay_freshness of the message by:

peer). sending theand itselfbetween f(latency
 - hnessdecay_fres freshnessnew_decay_ =

This is a heuristic of freshness of resource
information, which each peer can use to estimate the
freshness and give preferential treatment to its
database records in terms of freshness. We see that
this heuristic indeed works in practice, and schemes,
which exploit this internal metric, result in a lower
heartbeat difference for the resource information.

Topology Generation

To compute the latencies between the different peers,
we need to construct a latency matrix which can give
us the latency between any pair of peers. We needed
a realistic topology to construct this latency_matrix.
We used the BRITE topology generator to generate a
“Router Topology” with the following parameters:

Parameter Value
Powerlaw Model Waxman
alpha 0.15
beta 0.2
HS 1000
LS 100
m (Number of links added per new
node)

2

After generating the topology, the latencies were
computed using Dijktra’s algorithm for all pairs and
the latency matrix was constructed.

We generated topologies of sizes 256, 512 and 1024.
In our simulation, we currently use a topology of 512
nodes and 1024 edges.

Strategy

We described various dynamic gossip schemes
earlier. We have two different vectors which
determine our gossip: whom_vector and what_vector.
The different schemes can be applied to the two
vectors independently. That is, we may choose the
Random scheme for the whom_vector and Top
scheme for populating the what_vector. So various
combinations can be considered each having its own
properties. In our simulation studies, we try to study
these combinations and try to come up with a good
way of deciding which scheme is good for each
vector.

We keep the whom_n and what_n parameters
constant and then try different combinations and then
see which scheme performs better under the same
conditions of network load.

We also vary the whom_n and what_n parameters to
see how these affect the schemes. All schemes would
show improvement, but some schemes may benefit
much more from increasing these parameters and
hence may be better in terms of scalability.

Results
All the discussion here is for experiments performed
on a 512-node graph.

We define a tuple as follows:
(whom_algorithm whom_n, what_algorithm what_n)

what_n – size of what_vector
what_n – size of whom_vector

Comparing the various what strategies

1) Comparing the simulation results for (random
10, random 10) and (random 10, top 10)

Convergence of the database size [Graph 1] is slower
for the top scheme than for the random scheme
because every node is only giving out information of
their close neighbors. Fresh item count [Graph 2] for
the top scheme is about 50% better than the random
scheme (13). So, in using top instead of random, we
have improved the quality of information transferred
for the same bandwidth consumption. Also, the
heartbeat difference distribution [Graph 3] is shifted
to the left for the top scheme when compared to the
random scheme.

2) Comparing the simulation results for (random
10, random 20) and (random 10, top 20)

In this case, we have increased the number of items
sent in each data transfer from 10 to 20. As a result,
we get much faster convergence [Graph 6]. The Fresh
Item count [Graph 7] with the top scheme is really
high! This is around 45. The corresponding increase
in the random scheme is 8%. So we find that
doubling the number of node's information sent in
case of top increases the fresh item count by almost
100%!

3) Comparing the simulation results for (bin-
halving 10, top 10) vs. (bin-halving 10, random 10)

Here we are comparing the different what strategies
with bin-halving as the whom strategy. Just like in
random whom strategy, the binning whom strategy
showed similar increase in the fresh item count
[Graph 12] when we switched from a random what to
a top what strategy. The increase was from 15 to 26
(over 70%). This increase is much more than the
improvement we saw when using random whom
strategy (was 50%). The average heartbeat difference
[Graph 13] is quite similar in both the cases. The
deviation of the average heartbeat difference has a lot
more variance in the case of the top scheme. This
requires further analysis.

We clearly see that deciding what to send based only
on the basis of our estimated freshness improves the
results drastically. We also see that as the size
number of items sent is increased, we see a huge
increase in the case of our top scheme, while the
random scheme showed only marginal benefits. The
only thing where the top scheme "lags" behind is the
time needed for convergence. But this is not a very
good metric for most purposes. As we have

demonstrated, the quality of information is improved
(the freshness count etc) by using the top scheme. So
we effectively get a somewhat narrower, but highly
improved (in the sense of freshness) view of the
world using the top scheme. As seen from the
example of increasing the number of items to send,
the top scheme scales much better than random. This
needs to be further examined using some other
metrics (future work).

Comparing the various whom strategies

Since we have established that the top scheme for
what is much better than the random scheme, we fix
what to top in this section, and try the different whom
schemes.

1) Comparing the simulation results for (random
15, top10) and (bin-halving 15, top 10)

Convergence [Graph 16] is better in the random
scheme (600 vs 1300). Again this is expected, and
not necessarily bad for the bin-halving scheme for
most applications. The fresh item count [Graph 17]
was about 30% better with the bin-halving scheme
than with the random scheme. This is because of the
exponential priority that binning assigns. It prefers
nodes that are closer to ones that are at a distance.
This improves the quality of information, since nodes
learn more often about nodes close to them. This is a
very elegant distribution where every node has fresh
information (the top what scheme), and information
about its neighboring nodes (the bin-halving whom
scheme).

Initially it was expected that the average heartbeat
difference [Graph 18] case of bin-halving would be
lower (better) than random. This was not found to be
so, and can be explained in the following way. Since
each node talks primarily to its neighbors, and rarely
to nodes that are far, nodes at a distance generally
rarely hear about nodes that are far. And since there
are more nodes that are far than the number of nodes
that are close (and talk more often), the heartbeat
difference increases. Another interesting thing to note
is that the variance of the data is much greater in the
case of bin-halving. This is again because the
information about close nodes is generally very fresh,
while that of distant nodes is quite stale. This is both
desireable and expected (scales well!)

The heartbeat distribution graph [Graph 19, 20] is
also quite interesting. Here we see that in the case of
bin-halving, the number of nodes with low heartbeat
difference (0-5) is consistently larger than in the
random scheme. However, the bin-halving curve falls
off steeply thereafter, but has a long tail. The long tail
is because of the large number of nodes about whom
information is not very fresh.

2) Comparing the simulation results for (random
31, top10) and (bin-halving 31, top 10)

We now increase the number of nodes to whom
information is sent to 31. Compared to when
information was sent to 15 nodes, the convergence
[Graph 21] time is about halved for both bin-halving
and random schemes. The fresh item count [Graph
22] increased to about 118 in the case of random
from 45 (160% increase). Similarly, the bin-halving
scheme also increases the number of fresh items from
60 to 150 (150%). The order of increase is quite
similar, and this leads us to believe that both bin-
halving and random scale equally well when the
number of nodes to which we are talking is increased.
But bin-halving still has a significantly higher fresh
item count. We feel that this difference can actually
be improved much more, and trying to improve the
bin-halving algorithm is left as future work.

The average heartbeat difference[Graph 23]
decreases just as expected by about the same mount
in both the cases. Random is still better for the same
reasons we gave in the previous case.

3) Comparing the simulation results for (top15,
top10) and (bin-halving 15, top 10)

Using the top scheme for deciding whom to send
information to gives quite interesting results as well.
For starters, the top scheme database size never
converges [Graph 26]. It stabilizes around the 200
mark, but never really goes beyond that. This is
because the top scheme leads to the formation of
overlapping islands, with nodes in an island only
talking to others on its own island. So the number of
nodes that can have their information transferred to a
particular node is limited. This is not desirable for
most monitoring applications. Our bin-halving
approach is simply a heuristic to improve this.

The fresh item [Graph 27] count is 50. This is less
than the fresh item count for the bin-halving scheme,
where it was 60. Also, this is more than the count for
the random scheme. Interestingly, the count was
around 100 when the number of nodes to send
information was increased to 31, which is less than
the corresponding values for both bin-halving (150),
and random (118). The reason for this is that in the
case of top scheme, each node talks to a more or less
fixed set of nodes in the steady state. This limits the
number of nodes whose information would reach a
node. In the case of the random scheme, a node talks
to all nodes over a period of time, and even in bin-
halving, it talks to distant nodes based on a priority
model.

The average heartbeat difference [Graph 28] is a
linearly increasing function. At time 5000, it was as
high as 250. In Bin-halving has this had stabilized at
around 8. The reason for this linear increase is again
because of the island formation, with people not
talking to far off people at all.

Intuitive Notion of Top and Spatial
Gossip schemes

Top Gossip Scheme

In the top gossip scheme, the graph is divided into
many overlapping zones, with each peer gossiping to
the peers in the zone centered at itself. So within a
zone, all peers will have fresh information about the
peer at the center. This results in high freshness of

information to the peers inside the zone, but only to a
select few (those inside the zone). Each peer may
know only about a fraction of the total peers in the
system, as shown in the results above. Therefore its
fresh item count is not very high, though the
heartbeat_difference distribution is very good, with
peak on the extreme left.

Spatial Gossip is like a combination of Random and
Top schemes. It combines the advantages of both to
provide a higher fresh item count than the both,
though faring somewhat poorly in the average
freshness of the system. We take advantage of
sending information only to people close to us,
resulting in higher freshness of information being
sent to them. However, a peer doesn’t know only a
select few peers. Since we also send to distant peers,
this results in more popularity of a peer’s information
in the network, and a higher fresh item count, as it
combines both random and top properties into one.

Spatial Gossip Scheme

Conclusions

With the goal of designing an efficient P2P resource
information dissemination system, we have focused
on finding an efficient communication model for
propagation of this information with network
resource scalability and freshness of information as
two primary concerns. We studied various
combinations of dynamic gossip schemes using
simulation (including a rank based spatial gossip
scheme called bin-halving) and found that depending
on the metric, different schemes may be preferred.

One of the main parts of our work was design of
meaningful metrics for representing “freshness” and
then evaluating various schemes with respect to
these.

For choosing the what_vector, we found that the TOP
gossip strategy comes out to be the best, which seems
intuitive. Sending only fresh items to others results in
better freshness of the entire system.

If Fresh Item Count is the primary metric, bin-
halving along with top (for what_vector), proves to
be the best strategy.
For Average Heartbeat Difference as the metric,
Random Gossip scheme for the whom_vector works
the best. Bin-Halving results in a larger average, with
a much larger standard deviation.

Future Work

The scalability of these schemes needs to be studied.
We mainly compared the schemes to see their
relative performance. But network load may be a
major bottleneck in limiting freshness of data and it
needs to be studied more extensively.

We studied just one formulation of the Spatial Gossip
strategy. Spatial Gossip can lend itself to various
types of formulations and many others exist. Bin-
halving may not be the best and better schemes may
exist like metric based schemes instead of rank based.

A theoretical analysis of some of these schemes
would help further validate our conclusions.

Also, more realistic topology needs to be generated
which more closely resemble the current end-to-end
topologies in the Internet. Router model may not be
the best, as it doesn’t have any hierarchical structure.

References

[1] David Kempe, Jon Kleinberg, Alan Demers:
Spatial Gossip and Resource Location Protocols.
Proceedings of STOC 2001, Crete, Greece.

[2] Luisa Gargano, Adele A. Rescigno, Ugo Vaccaro,
"Communication Complexity of Gossiping by

Packets", Journal of Parallel and Distributed
Computing, vol. 45, pp. 73-81, 1997.

[3] J-C. Bermond, L. Gargano and U. Vaccaro, "Fast
Gossiping by Short Messages", SIAM J. on
Computing, 27, 1998, pp. 917 - 941.

[4] A. Czumaj, L. Gasieniec, and A. Pelc
Time and Cost Trade-Offs in Gossiping, SIAM
Journal on Discrete Mathematics, Vol. 11, No. 3,
pages 400-413, August 1998.

[5] M.Chrobak, L.Gasieniec, W.Rytter, Fast
algorithms for broadcasting and gossiping in radio
networks, 41st Annual IEEE Conference on
Foundations of Computer Scienc, FOCS'00, Redondo
Beach, 2000, pp. 575--581.

[6] S. Hedetniemi, S. Hedetniemi, and A. Liestman.
A survey of gossiping and broadcasting in
communication networks. Networks, 18:319--349,
1988.

[7] Robbert van Renesse, Kenneth Birman and
Werner Vogels. Astrolabe: A Robust and Scalable
Technology for Distributed System Monitoring,
Management, and Data Mining. ACM Transactions
on Computer Systems (TOCS), November 2001

[8] PlanetP: Using Gossiping and Random
Replication to Support Reliable Peer-to-Peer Content
Search and Retrieval". F. M. Cuenca-Acuna, R. P.
Martin, and T. D. Nguyen. DCS-TR-494, Department
of Computer Science, Rutgers University.

