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Introduction 
 
We look at the design of a peer-to-peer resource 
monitoring system, in which every peer in the 
network may be interested in knowing some resource 
characteristics about the rest of the peers. Potentially, 
availability of such information will provide P2P 
applications with better knowledge about the P2P 
network and can exploit this information for their 
tasks. The goal of this project is to make the various 
characteristics of the P2P system readily available to 
P2P applications by building an efficient P2P 
Monitoring Service, helping them to exploit the P2P 
system in an intelligent way.  

Layered Model 
Our aim is to provide a generic service, which is not 
application specific. The resource monitoring service 
(RMS) can be running on all hosts and applications 
may query it to request useful information for its 
purpose. This corresponds to a layered model as 
shown below: 
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Applications 
Some applications, which can be conceived over such 
a service, are: 

 
1. Peer-to-Peer Load Balancing  
Embarrassingly parallel applications may be 
distributed by a peer among its fellow peers 
efficiently using resource information. 
E.g. Peer-to-Peer Ray Tracing application 
 
2. P2P Computing or Network Shared Computing 
This is a new application, which we thought could be 
built over a resource-monitoring infrastructure. 
Conventionally, a master host is responsible for 
carrying out a computation task and it may further 
distribute the task to others. Our idea is to develop a 
network based computing model, where no single 
computer is responsible but the entire network is 
responsible for the computation. Using readily 
available resource information a peer can effectively 
partition its tasks and distribute them. 

Efficiency 
 
In our resource monitoring system, there are two 
points to note: 

1. Every peer needs to send information to 
everybody else! This separates it from other 
information dissemination methods like 
single-source multicast. Therefore a major 
efficiency concern is that it needs to be 
scalable in terms of network resource usage. 

2. Since we are disseminating resource 
information, the “freshness” of this 
information available to peers is also a 
concern. Resource information (depending 
on the application) can get old with time, and 
hence an efficient resource monitoring 
system needs to provide some guarantees on 
the “freshness” of information for it to be 
useful. 

 



These two properties are captured by some metrics 
which be define later. 
 
How to tackle both is an interesting problem. There 
seem to exist tradeoffs between these two properties. 
If we have a scalable system in terms of network 
resource usage, its guarantees about freshness may be 
quite poor and vice versa.  

Communication Model 
 
We consider gossip communication as the 
communication model for resource information 
dissemination. Since the problem at hand is an all-to-
all broadcast problem, the proper selection of the 
communication model is important. For example, a 
simple broadcast from each peer to all others 
periodically would provide good freshness, but would 
heavily overload the network.  
 
In Gossip, each peer periodically talks to some other 
peers in the network. Gossip protocols are much 
more scalable, since each peer does not communicate 
with everyone else but to a few selected peers. 
Gossip protocols do not also require as much 
synchronization as traditional reliable multicast 
protocols. The natural resiliency and graceful 
degradation of gossip protocols is also one of their 
attractions.  
 
Multiple ways of doing gossip exist. In a static 
model, an overlay topology can be constructed over 
the underlying network, and each peer can convey its 
information to its neighbors according to the overlay 
topology, which propagate the information further to 
their neighbors. This way, hopefully, information is 
disseminated to everyone in the network. Dynamic 
Gossip schemes do not restrict the neighbors a peer 
can talk to each time, but is decided dynamically. We 
consider the dynamic model of gossip in our studies, 
as it avails more flexibility in choosing our 
neighbors. In the following section we describe the 
issues in dynamic gossip and also the various 
schemes, which we consider in our experiments. 
 

Dynamic Gossip Schemes 
As mentioned above, in Dynamic Gossip, each peer 
talks to some other peers periodically and 
communicates information to them. In the resource 

monitoring system, we consider that each peer 
maintains a database of resource information about 
all the other peers in the network. Each database 
record corresponds to a peer and stores its 
information like IP address, latency, the resource 
information and some other information (related to 
gossip schemes), which we describe later. The idea is 
that each peer in the network has a “fairly good” idea 
about the current characteristics of all the other peers 
in the network. Of course, the value of “goodness” 
may vary for different peers in its database.   

The Whom and What model  
Every time a peer decides to gossip, it needs two 
pieces of information, which we term as the whom 
vector and the what vector.  
 
Whom Vector 
This vector contains the list of the peers to which the 
gossiping peer will talk to in that particular gossip 
instance.  
 
What Vector 
In our gossip model, whenever a peer gossips, it can 
give information about others also, besides itself. The 
what vector constitutes the list of items from its 
database which it will communicate to the peers in 
the what vector mentioned above. 
 
Basically, the different gossip schemes can be 
differentiated in how they decide the contents of the 
whom vector and the what vector. Our work in this 
project focuses on this aspect, and tries to find out an 
effective way of choosing these vectors such that the 
resource information dissemination is efficient. 

Gossip Schemes 
 
For the following gossip schemes, two parameters 
whom_n and what_n are passed on to the schemes, 
which do gossip based on these. whom_n is the 
number of peers each peer talks to when it gossips. 
what_n indicates the number of records in the 
database which it sends to others. These factors 
decide the network load for the gossip schemes. If we 
keep this parameters constant for different schemes, 
then we can compare the different schemes keeping 
the network  load constant. The gossip schemes 
basically differ in how they use these parameters to 
do the gossip.  



 
Also each peer maintains the database of records 
mentioned previously in two sorted lists. First list is 
sorted according to the latency of the peers from 
itself. Thus the closer peers are in the beginning of 
the list. Second list is sorted according to the 
“freshness” of the information it has in its database. 
This is useful, if the peer wants to discriminate what 
to send to others based on the freshness of the 
information it has about others. These two ordered 
lists are called latency_list and freshness_list 
respectively in our further discussions. 

Broadcast 
 
What Vector: All the records in the database  
are included in the what vector. 
 
Whom Vector: All the peers in the topology , we 
know about currently are included in the whom 
vector. 
 
This is basically a simple all-to-all broadcast model. 

Random 
What Vector: A peer selects what_n records 
randomly from its database. Its own record is always 
included in the what vector. 
 
Whom Vector: A peer selects whom_n peers 
randomly from its peer list. It makes sure that it does 
not include itself.  

Top 
What Vector: A peer selects the top what_n item 
from its freshness_list. The idea is to propagate only 
the freshness information it has from its database. 
 
Whom Vector: A peer selects the top whom_n  peers 
from its latency_list. It only informs the closer peers 
around it about the information it has.  
 
As we shall see, this results in a division of topology 
into overlapping zones, where each peer talks to other 
peers within the zone centered around itself. 

Spatial 
This is a more involved scheme, which we consider.  
A theoretical model for Spatial gossip was proposed 

in [1]. Here the idea is to choose the whom and what 
vector in an exponentially decaying manner. The 
probability that a peer is chosen for gossip is 
exponentially distributed based on how close it is. 
Similarly for freshness of data. 
 
This model is slightly complicated because there are 
various ways of doing this exponentially distributed 
selection of peers and records to communicate. [1] 
suggests the model that probability of communicating 
with  a particular peer is ρ−= dcP x  where d is the 
distance metric (latency or freshness in our case), ρ  

is a constant between 1 and 2 and xc  is a 
normalization constant. The intuitive idea is to talk to 
near ones more frequently than those further away. 
 
This does not keep constant the number of peers we 
talk to, each time we gossip. Also, si nce d is the 
distance metric, it is not rank based, i.e. if a peer has 
a freshness_list with 50 items but their freshness is 
low compared to another’s peers freshness_list, its 
what_vector will be poorly populated if we use the 
above scheme, compared to the other peer. Therefore 
various types of spatial schemes can be considered 
like metric based or rank based.  

Bin-Halving 
We have developed another gossip scheme, which is 
based on the rank rather than on the distance metric. 
This scheme is called Bin-halving. 
  
Consider the selection of the whom_vector. From our 
latency_list we need to select whom_n peers, which 
follow a spatial distribution. We divide the 
latency_list into bins of constant size b. The first b 
items are in the first bin, next b items in the second 
bin and so on. Then for the whom_vector, we 
randomly select peers from each of these bins, such 
that the number of peers we select from each bin 
decays exponentially. Also the sum of these needs to 
be equal to whom_n. All these constraints lends itself 
to a mathematical formulation of the problem: 
 
Let the size of the latency_list = n 
whom_vector size is fixed = whom_n 
 



We need to decide the number of bins k 
( ),...,,( 21 kbbb  of equal size, such that if we choose 

ik −2  peers randomly from the bin ib , then the sum 

.hom_2...22 110 nwk =+++ −  
Solving the above we get 

)1hom_(log 2 += nwk  

Thus we have k bins of size 
k
n

each. 

 

 
 
In the bin-halving scheme, the size of the 
what_vector and whom_vector can be kept constant 
but its distribution can follow a spatial scheme. 

Experimental Results 
In this section we describe the experiments, which we 
conducted to study how the different gossip schemes 
fare with respect to each other. 

The Gossip Metrics 
First of all, we describe the metrics we use to 
compare different schemes. Discussion of these 
metrics is important as “freshness” can be defined in 
various ways and depending on the application a 
particular metric may be more preferable than the 
others. Some metrics, which we study in our 
experimental results, are: 

Network resource Usage related 
 

Messages sent: This measures the total 
number of messages sent by the peers in the network. 
Each record which is passed on to another peer is 
counted as a message. 
 
Bytes Sent: This basically measures the load on 
the network in terms of total bytes sent. 

Freshness Related 
 
Measuring freshness is slightly more involved and 
different schemes could be compared in different 
ways according to different metrics. 
 
In our model, each peer updates its resource 
information periodically. Whenever it updates its 
resource information, it increments its heartbeat by 1. 
Therefore, each resource record is associated with a 
peer and has a particular heartbeat value. 
In our simulations, we define the measure of 
freshness of a particular record to be equal to the 
number of subsequent updates from the originator of 
that record or the heartbeat_difference between the 
record we have and the current heartbeat of its 
originator. Higher this heartbeat_difference, more 
stale the information is.  
Note that in actuality, this heartbeat_difference 
cannot be measured by a peer to gauge the freshness 
of the records it has since it doesn’t have access to 
the current heartbeat of every other peer in real time. 
 
However since we have a simulator, we can use this 
metric to measure the freshness, since we can directly 
compute this difference. There we sometimes also 
use the term oracle_freshness to describe this metric. 
 
We have three metrics based on this: 

Average Heartbeat Difference: 
We average the heartbeat_difference of all the 
records a peer holds in its database and then average 
this value over all the peers. This gives us an idea of 
what is the average freshness of the information peers 
are having about each other.  We also measure the 
standard deviation in this, to see how the average 
heartbeat_difference varies across the peers. We see 
later, that different schemes have difference values 
for this deviation, depending on what is their 
what_vector. 



Heartbeat difference distribution: 
This is a bar chart, which shows what is the 
distribution of the heartbeat difference in the database 
each peer holds. If the value of 
heartbeat_difference=0,1,2 is high then it the 
information is more fresh. This gives us an overall 
idea of which scheme provides better freshness. 

Fresh Item count: 
This is an important metric as it measures the useful 
information a peer has in its database. Information is 
useful if it fresh. We can set various boundary lines 
for this freshness. In our simulations, we count an 
item as fresh, if its heartbeat_difference is <=k where 
k is a bound on freshness which may be decided 
according to the application. In our simulations we 
fix this value to 2. 
A peer may have information about lots of peers, but 
only some of that information may be actually 
useful.A P2P application may just refer to the useful 
records for particular tasks. 

Simulation Description 
In this section, we describe our simulation approach 
to evaluate the different gossip schemes according to 
the metrics described above. 

Simulator Design 
We developed a discrete event Peer to Peer simulator 
in C++.  A peer is modeled as an object which can 
receive and set simulation events. We have 3 kinds of 
events in our simulator: 

1. SEND: On arrival of this event, a peers 
initiates a gossip instance in which it 
populates the what_vector and whom_vector 
according to the gossip scheme. Then for 
each peer in the whom_vector, it sets 
RECEIVE events at current_time + latency 
between itself and the other peer. It also sets 
a new SEND event for itself. 

2. RECEIVE: This event indicates arrival of a 
message from another peer. The peer which 
receives this event, updates its database with 
the new information in an ordered fashion (in 
the order of both latency and freshness, as 
discussed previously) 

3. PROBE: This event initiates metric 
collection. Periodic PROBE events are 
inserted into the event queue, which calculate 

and output the metrics for  the entire P2P 
system. 

 

Maintaining Freshness_list 
 
We previously said that a peer cannot actually know 
the heartbeat difference of the records it has in its 
database from their originating peers. Then how does 
it decide which information in its database is fresh 
and how does it maintain the ordered freshness_list ? 
It uses another internal metric for this which we call 
decay_freshness. It measures how old the information 
is according to time , not the number of heartbeats. 
At time of origin, the decay_freshness of the message 
is 100. Each time a message is sent from one peer to 
another. the decay_freshness decreases by a function 
of the latency of the link. The peer which receives the 
message, is responsible for this. This at each 
RECEIVE event, the receiving peer recalculates the 
decay_freshness of the message by: 
 

peer). sending  theand itselfbetween f(latency 
 - hnessdecay_fres  freshnessnew_decay_ =

 

This is a heuristic of freshness of resource 
information, which each peer can use to estimate the 
freshness and give preferential treatment to its 
database records in terms of freshness. We see that 
this heuristic indeed works in practice, and schemes, 
which exploit this internal metric, result in a lower 
heartbeat difference for the resource information. 

Topology Generation 
 
To compute the latencies between the different peers, 
we need to construct a latency matrix which can give 
us the latency between any pair of peers. We needed 
a realistic topology to construct this latency_matrix. 
We used the BRITE topology generator to generate a 
“Router Topology” with the following parameters: 
 
Parameter Value 
Powerlaw Model Waxman 
alpha 0.15 
beta 0.2 
HS 1000 
LS 100 
m (Number of links added per new 
node) 

2 



 
After generating the topology, the latencies were 
computed using Dijktra’s algorithm for all pairs and 
the latency matrix was constructed. 
 
We generated topologies of sizes 256, 512 and 1024. 
In our simulation, we currently use a topology of 512 
nodes and 1024 edges. 

Strategy 
 
We described various dynamic gossip schemes 
earlier. We have two different vectors which 
determine our gossip: whom_vector and what_vector.  
The different schemes can be applied to the two 
vectors independently. That is, we may choose the 
Random scheme for the whom_vector and Top 
scheme for populating the what_vector. So various 
combinations can be considered each having its own 
properties. In our simulation studies, we try to study 
these combinations and try to come up with a good 
way of deciding which scheme is good for each 
vector. 
 
We keep the whom_n and what_n parameters 
constant and then try different combinations and then 
see which scheme performs better under the same 
conditions of network load.  
 
We also vary the whom_n and what_n parameters to 
see how these affect the schemes. All schemes would 
show improvement, but some schemes may benefit 
much more from increasing these parameters and 
hence may be better in terms of scalability. 

Results 
All the discussion here is for experiments performed 
on a 512-node graph. 
 
We define a tuple as follows: 
(whom_algorithm whom_n, what_algorithm what_n) 
 
what_n – size of what_vector 
what_n – size of whom_vector 

Comparing the various what strategies 
 
1) Comparing the simulation results for (random 
10, random 10) and (random 10, top 10) 
 

Convergence of the database size [Graph 1] is slower 
for the top scheme than for the random scheme 
because every node is only giving out information of 
their close neighbors. Fresh item count [Graph 2] for 
the top scheme is about 50% better than the random 
scheme (13). So, in using top instead of random, we 
have improved the quality of information transferred 
for the same bandwidth consumption. Also, the 
heartbeat difference distribution [Graph 3] is shifted 
to the left for the top scheme when compared to the 
random scheme. 

 
2) Comparing the simulation results for (random 
10, random 20) and (random 10, top 20) 
 
In this case, we have increased the number of items 
sent in each data transfer from 10 to 20. As a result, 
we get much faster convergence [Graph 6]. The Fresh 
Item count [Graph 7] with the top scheme is really 
high! This is around 45. The corresponding increase 
in the random scheme is 8%. So we find that 
doubling the number of node's information sent in 
case of top increases the fresh item count by almost 
100%!  
 
3) Comparing the simulation results for (bin-
halving 10, top 10) vs. (bin-halving 10, random 10) 
 
Here we are comparing the different what strategies 
with bin-halving as the whom strategy. Just like in 
random whom strategy, the binning whom strategy 
showed similar increase in the fresh item count 
[Graph 12] when we switched from a random what to 
a top what strategy. The increase was from 15 to 26 
(over 70%). This increase is much more than the 
improvement we saw when using random whom 
strategy (was 50%). The average heartbeat difference 
[Graph 13] is quite similar in both the cases. The 
deviation of the average heartbeat difference has a lot 
more variance in the case of the top scheme. This 
requires further analysis. 
 
We clearly see that deciding what to send based only 
on the basis of our estimated freshness improves the 
results drastically. We also see that as the size 
number of items sent is increased, we see a huge 
increase in the case of our top scheme, while the 
random scheme showed only marginal benefits. The 
only thing where the top scheme "lags" behind is the 
time needed for convergence. But this is not a very 
good metric for most purposes. As we have 



demonstrated, the quality of information is improved 
(the freshness count etc) by using the top scheme. So 
we effectively get a somewhat narrower, but highly 
improved (in the sense of freshness) view of the 
world using the top scheme. As seen from the 
example of increasing the number of items to send, 
the top scheme scales much better than random. This 
needs to be further examined using some other 
metrics (future work). 

Comparing the various whom strategies 
 
Since we have established that the top scheme for 
what is much better than the random scheme, we fix 
what to top in this section, and try the different whom 
schemes. 
 
1) Comparing the simulation results for (random 
15, top10) and (bin-halving 15, top 10) 
 
Convergence [Graph 16] is better in the random 
scheme (600 vs 1300). Again this is expected, and 
not necessarily bad for the bin-halving scheme for 
most applications. The fresh item count [Graph 17] 
was about 30% better with the bin-halving scheme 
than with the random scheme. This is because of the 
exponential priority that binning assigns. It prefers 
nodes that are closer to ones that are at a distance. 
This improves the quality of information, since nodes 
learn more often about nodes close to them. This is a 
very elegant distribution where every node has fresh 
information (the top what scheme), and information 
about its neighboring nodes (the bin-halving whom 
scheme). 
 
Initially it was expected that the average heartbeat 
difference [Graph 18] case of bin-halving would be 
lower (better) than random. This was not found to be 
so, and can be explained in the following way. Since 
each node talks primarily to its neighbors, and rarely 
to nodes that are far, nodes at a distance generally 
rarely hear about nodes that are far. And since there 
are more nodes that are far than the number of nodes 
that are close (and talk more often), the heartbeat 
difference increases. Another interesting thing to note 
is that the variance of the data is much greater in the 
case of bin-halving. This is again because the 
information about close nodes is generally very fresh, 
while that of distant nodes is quite stale. This is both 
desireable and expected (scales well!) 

 
The heartbeat distribution graph [Graph 19, 20] is 
also quite interesting. Here we see that in the case of 
bin-halving, the number of nodes with low heartbeat 
difference (0-5) is consistently larger than in the 
random scheme. However, the bin-halving curve falls 
off steeply thereafter, but has a long tail. The long tail 
is because of the large number of nodes about whom 
information is not very fresh. 
 
 
2) Comparing the simulation results for (random 
31, top10) and (bin-halving 31, top 10) 
 
We now increase the number of nodes to whom 
information is sent to 31. Compared to when 
information was sent to 15 nodes, the convergence 
[Graph 21]  time is about halved for both bin-halving 
and random schemes. The fresh item count [Graph 
22] increased to about 118 in the case of random 
from 45 (160% increase). Similarly, the bin-halving 
scheme also increases the number of fresh items from 
60 to 150 (150%). The order of increase is quite 
similar, and this leads us to believe that both bin-
halving and random scale equally well when the 
number of nodes to which we are talking is increased. 
But bin-halving still has a significantly higher fresh 
item count. We feel that this difference can actually 
be improved much more, and trying to improve the 
bin-halving algorithm is left as future work. 
 
The average heartbeat difference[Graph 23]  
decreases just as expected by about the same mount 
in both the cases. Random is still better for the same 
reasons we gave in the previous case.  
 
3) Comparing the simulation results for (top15, 
top10) and (bin-halving 15, top 10) 
 
Using the top scheme for deciding whom to send 
information to gives quite interesting results as well. 
For starters, the top scheme database size never 
converges [Graph 26]. It stabilizes around the 200 
mark, but never really goes beyond that. This is 
because the top scheme leads to the formation of 
overlapping islands, with nodes in an island only 
talking to others on its own island. So the number of 
nodes that can have their information transferred to a 
particular node is limited. This is not desirable for 
most monitoring applications. Our bin-halving 
approach is simply a heuristic to improve this. 



 
The fresh item [Graph 27] count is 50. This is less 
than the fresh item count for the bin-halving scheme, 
where it was 60. Also, this is more than the count for 
the random scheme. Interestingly, the count was 
around 100 when the number of nodes to send 
information was increased to 31, which is less than 
the corresponding values for both bin-halving (150), 
and random (118). The reason for this is that in the 
case of top scheme, each node talks to a more or less 
fixed set of nodes in the steady state. This limits the 
number of nodes whose information would reach a 
node. In the case of the random scheme, a node talks 
to all nodes over a period of time, and even in bin-
halving, it talks to distant nodes based on a priority 
model. 
 
The average heartbeat difference [Graph 28] is a 
linearly increasing function. At time 5000, it was as 
high as 250. In Bin-halving has this had stabilized at 
around 8. The reason for this linear increase is again 
because of the island formation, with people not 
talking to far off people at all. 

Intuitive Notion of Top and Spatial 
Gossip schemes 
 

 
 

Top Gossip Scheme 
 
In the top gossip scheme, the graph is divided into 
many overlapping zones, with each peer gossiping to 
the peers in the zone centered at itself. So within a 
zone, all peers will have fresh information about the 
peer at the center. This results in high freshness of 

information to the peers inside the zone, but only to a 
select few (those inside the zone). Each peer may 
know only about a fraction of the total peers in the 
system, as shown in the results above.  Therefore its 
fresh item count is not very high, though the 
heartbeat_difference distribution is very good, with 
peak on the extreme left. 
 
Spatial Gossip is like a combination of Random and 
Top schemes. It combines the advantages of both to 
provide a higher fresh item count than the both, 
though faring somewhat poorly in the average 
freshness of the system. We take advantage of 
sending information only to people close to us, 
resulting in higher freshness of information being 
sent to them. However, a peer doesn’t know only a 
select few peers. Since we also send to distant peers, 
this results in more popularity of a peer’s information 
in the network, and a higher fresh item count, as it 
combines both random and top properties into one.  
 

 
 

Spatial Gossip Scheme 
 

Conclusions 
 
With the goal of designing an efficient P2P resource 
information dissemination system, we have focused 
on finding an efficient communication model for 
propagation of this information with network 
resource scalability and freshness of information as 
two primary concerns.  We studied various 
combinations of dynamic gossip schemes using 
simulation (including a rank based spatial gossip 
scheme called bin-halving) and found that depending 
on the metric, different schemes may be preferred. 



One of the main parts of our work was design of 
meaningful metrics for representing “freshness” and 
then evaluating various schemes with respect to 
these.  
 
For choosing the what_vector, we found that the TOP 
gossip strategy comes out to be the best, which seems 
intuitive. Sending only fresh items to others results in 
better freshness of the entire system. 
 
If Fresh Item Count is the primary metric, bin-
halving along with top (for what_vector), proves to 
be the best strategy.  
For Average Heartbeat Difference as the metric, 
Random Gossip scheme for the whom_vector works 
the best. Bin-Halving results in a larger average, with 
a much larger standard deviation. 

Future Work 
 
The scalability of these schemes needs to be studied. 
We mainly compared the schemes to see their 
relative performance. But network load may be a 
major bottleneck in limiting freshness of data and it 
needs to be studied more extensively. 
 
We studied just one formulation of the Spatial Gossip 
strategy. Spatial Gossip can lend itself to various 
types of formulations and many others exist. Bin-
halving may not be the best and better schemes may 
exist like metric based schemes instead of rank based. 
 
A theoretical analysis of some of these schemes 
would help further validate our conclusions.  
 
Also, more realistic topology needs to be generated 
which more closely resemble the current end-to-end 
topologies in the Internet. Router model may not be 
the best, as it doesn’t have any hierarchical structure. 
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