
1

Reverse Hashing for Sketch-based Change
Detection on High-speed Networks

Robert Schweller, Yan Chen, Elliot Parsons, Ashish Gupta, Gokhan Memik and Yin Zhang

Abstract—
With the ever-increasing link speeds and traffic volumes

of the Internet, monitoring and analyzing network traffic
usage becomes a challenging but essential service for net-
work administrators of large ISPs or institutions. There
are two popular primitives for efficient analysis over mas-
sive data streams: heavy hitter detection and heavy change
detection. Although numerous approaches have been pro-
posed for efficient heavy hitter detection [1], [2], [3], [4],
[5], the sketch-based scheme [6] is one of the very few that
can detect heavy changes and anomalies over massive data
streams at network traffic speeds. However, sketches do not
preserve keys (e.g., source IP address) of the flows. Thus
even if anomalies are detected, it is difficult to infer the cul-
prit flows.

To address this challenge, we propose efficientreversible
hashing schemes to infer the keys of culprit flows from
sketches with negligible extra memory and few extra mem-
ory accesses for recording streaming data - implementing
on a single FPGA board, we can achieve a throughput of
over 16Gbps for all 40-byte-packet streams (the worst case
traffic). Meanwhile, the heavy change detection daemon
runs in the background with space complexity and com-
putational time sublinear to the key space size. Evaluation
with traces from a large edge router show that we can infer
the keys for even 1,000 heavy changes while achieving over
a 99% real positive percentage and less than a 0.5% false
positive percentage in 22 seconds.

Index Terms—Network measurements, Combinatorics,
and Statistics

I. I NTRODUCTION

Today’s ever-increasing link speeds and traffic volumes
of the Internet make monitoring and analyzing network
traffic usage a challenging but essential service for manag-
ing large ISPs. Such service is important for accounting,
provisioning, traffic engineering, scalable queue manage-
ment and anoamly/intrusion detection [7], [2], [6]. There
are two popular primitives for massive data stream anal-
ysis: heavy hitter detection and heavy change detection.
The former detects any flows which constitute more than
a given threshold fraction of the total traffic stream. The
latter detects flows whose size changes significantly from
one period to another. There are quite a few existing
works for efficient and online heavy hitter detection [2],
[3], [4], [5].

However, efficient online heavy change detection re-
mains a challenging problem. Essentially, heavy change
detection is more generic and more powerful than heavy
hitter detection. It spans from simple absolute or relative

changes, to variational changes and linear transformation
of these changes for various time-series forecasting mod-
els [6], [8], [9], [10], [11]. Our goal is todesign efficient
data structures and algorithms to achieve close to real-
time monitoring and heavy change detection of large mas-
sive data streams, and then push for real-time operations
when assisted with hardware implementation at reason-
able costs. As in [7], [2], the performance constraints for
such a system are two-fold: 1) small amount of memory
usage (to be implemented in SRAM) and 2) small number
of memory accesses per packet.

Sketches, an emerging compact data structure, have
proven to be useful in many data stream computation ap-
plications [12], [13], [5], [14]. Recent work on a vari-
ant of sketch, namely�-ary sketch, showed how to detect
heavy changes in massive data streams with small mem-
ory consumption, constant update/query complexity and
provably accurate estimation guarantees [6]. It is also
flexible and can be applied with various forecast models
to detect anomalies.

As modelled in Section II-A, the streaming data can be
viewed as a series of (key, value) pairs where the key can
be a source IP address, or the pair of IP addresses, and the
value can be the number of bytes or packets, etc. For any
given key, sketch can indicate if it exhibits big change, and
if so, give an accurate estimation of such change.

However, sketch data structures have a major draw-
back: they are notreversible. That is, a sketch cannot
efficiently report the set of all keys that have large change
estimates in the sketch. This means that to compare two
streams, we have to know which items (keys) to query to
find the streams with big changes [6], [7]. This would
require either exhaustively testing all possible keys, or
recording and testing all data stream keys and correspond-
ing sketches. Unfortunately, neither of these are scalable.

Recently, Cormode and Muthukrishnan proposeddel-
toids approach for heavy change detection [7]. Though
developed independently of�-ary sketch, deltoid essen-
tially expands�-ary sketch with multiple counters for
each bucket in the hash tables. The number of counters is
logarithmic to the key space size (e.g., 32 for IP address),
so that for every (key, value) entry, instead of adding the
value to one counter in each hash table, it is added to mul-
tiple counters (32 for IP addresses and 64 for IP address
pairs) in each hash table. This significantly increases the
necessary amount of fast memory and number of mem-
ory accesses per packet, thus violating both of the afore-
mentioned performance constraints. Moreover, this ap-
proach may not be applicable for implementation in hard-
ware (see Section VI-A).

To address these problems, in this paper, we propose
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novel and efficient techniques toreverse sketches, focus-
ing primarily on the�-ary sketch [6]. The observation is
that only streaming data recording needs to done contin-
uously in real-time, while the change/anomaly detection
can run in the background with more memory (DRAM)
and at a frequency only in the order of seconds. Then the
challenge is this: how to keep extremely fast data record-
ing while still being able to detect the heavy change keys
with reasonable speed and high accuracy? Our solution
has two parts as follows.

First, we includeIP mangling andmodular hashing in
the data recording operation with negligible extra mem-
ory consumption (4KB - 8KB) and few (4 to 8) additional
memory accesses per packet for IP mangling. This is in
contrast todeltoid which uses afactor of 32 to 64 increase
in memory and memory accesses from the original�-ary
sketch. When implemented on a single FPGA board, we
can sustain more than 16Gpbs even for all 40-byte-packet
streams (the worst case traffic).

Next, we applybucket potential intersection, itera-
tive detection, andbucket index matrix construction and
matching for heavy change key detection, which has both
space and time complexity sub-linear to the key space
size. We further equip thereversible �-ary sketch with an
original �-ary sketch to statistically bound the false posi-
tive rate.

We implemented and evaluated our system with net-
work traces obtained from a large edge router with an OC-
12 link. For inferring even 1,000 heavy change keys, our
schemes find more than 99% of the heavy change keys
with less than a 0.5% false positive rate within 22 sec-
onds. We further stress test our schemes with aggregated
2-hour traffic and with 64 bit key spaces. For both we
achieve similar results.

The rest of the paper is organized as follows. We give
an overview on the data stream model and�-ary sketch
in Section II. In section Section III we discuss the al-
gorithms for streaming data recording and in Sections IV
and V discuss those for heavy change detection. We eval-
uate our system in Section VI, survey the related work in
Section VII, and finally conclude in Section VIII.

II. OVERVIEW

A. Data Stream Model and the �-ary Sketch

Among the multiple data stream models, one of the
most general is the Turnstile Model [15]. Let� �
��� ��� � � � � be an input stream that arrives sequentially,
item by item. Each item�� � ���� ��� consists of a key
�� � ���, where��� � ��� �� � � � � � � ��, and an update
�� � �. Each key� � ��� is associated with a time vary-
ing signal	 ���. Whenever an item���� ��� arrives, the
signal	 ���� is incremented by��.

-ary sketch is a powerful data structure to efficiently

keep accurate estimates of the signals	 ���. A �-ary
sketch consists of� hash tables of size
 . The hash
functions for each table are chosen independently at ran-
dom from a class of hash functions from��� to �
�. From
here on we will use the variable� � 
 interchange-
ably with 
. We store the data structure as a� � 


table of registers
 ������ �� � ���� � � �
��. Denote the
hash function for the��� table by��. Operations on the
sketch include INSERT(�, �) and ESTIMATE(�). Given
a data key and an update value, INSERT(�,�) increments
the count of bucket����� by � for each hash table��. Let
SUM �

�
����� 
 ������ be the sum of all updates to the

sketch. The operation ESTIMATE(�) for a given key�
returns the following.

����� � median���	������ � (1)

where

���� �

 ����������� 
��

�

�� ��


If the hash functions in the sketch are 4-universal, this
estimate gives an unbiased estimator of the signal	 ���
with variance inversely proportional to�
 � �� [6]. See
[6] for details on the appropriate selection of� and
 to
obtain accurate estimates.

B. Change Detection


-ary sketches can be used in conjunction with various
forcasting models to perform sophisticated change detec-
tion as discussed in [6]. We focus on the simple model
of change detection in which we break up the sequence of
data items into two temporally adjacent chunks. We are
interested in keys whose signals differ dramatically in size
when taken over the first chunk versus the second chunk.
In particular, for a given percentage�, a key is aheavy
change key if the difference in its signal exceeds� percent
of the total change over all keys. That is, for two inputs
sets 1 and 2, if the signal for a key� is is	���� over the
first input and	���� over the second, then the difference
signal for� is defined to be���� � �	����� 	�����. The
total difference is� �

�

��������. A key � is then de-

fined to be a heavy change key if and only if���� � ���.
In our approach, to detect the set of heavy keys we

create two�-ary sketches, one for each time interval, by
updating them for each incoming packet. We then sub-
tract the two sketches. Say�� and�� are the sketches
recorded for the two consecutive time intervals. For de-
tecting significant change in these two time periods, we
obtain the difference sketch�� � �������. The linearity
property of sketches allow us to add or subtract sketches
to find the sum or difference of different sketches. Any
key whose estimate value in�� that exceeds the threshold
� � �	� � � � � is denoted as asuspect heavy key in
sketch�� and offered as a proposed element of the set of
heavy change keys.

C. Problem Formulation

Instead of focusing directly on finding the set of keys
that have heavy change, we instead attempt to find the set
of keys denoted as suspects by a sketch. That is, our goal
is to take a given sketch
 , along with a threshold per-
centage�, and output all the keys whose estimates in

exceed� � �	� . We thus are trying to find the set of
suspect keys for
 .
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More generally, we can think of our input as a sketch

 in which certain buckets in each hash table are marked
as heavy. According to formula (1) the goal is thus to
output any key that hashes to a heavy bucket in more than
		� 
 of the� hash tables. If we let� be the maximum
number of distinct heavy buckets over all hash tables,
and generalize this situation to the case of mapping to
heavy buckets in at least� � � of the hash tables where
� is the number of hash tables a key can miss and still be
considered heavy, we get the following problem.

The Reverse Sketch Problem
Input:

� Integers� � �, � � 	
� ;

� A sketch
 with hash functions����	��
��� from ��� to

���;
� For each hash table� a set of at most� heavy buckets
�� � ���;

Output: All � � ��� such that����� � �� for � � � or
more values� � ���.

In section IV we discuss how we solve this problem
in the case that� � �. In section V we generalize this
method to the case of larger�.

D. Bounding False Positives

Since we are detecting suspect keys for a sketch rather
than directly detecting heavy change keys, we discuss how
accurately the set of suspect keys approximates the set of
heavy change keys. Let�� � ��� � ��� be a difference
sketch over two data streams. For each key� � ��� de-
note the value of the difference of the two signals for� by
	���� � �	���� � 	�����. Denote the total difference by
� �

�

��������. The following theorem relates the size

of the sketch (in terms of
 and�) with the probability
of a key being incorrectly categorized as a heavy change
key or not.

Theorem 1: For a�-ary sketch which uses 2-universal
hash functions, if
 � �

� and� � � 	
� �
Æ , then for all

� � ���

	���� � ��� �� �� � �������
 � � � �	� � � Æ

	���� � ��� �� �� � �������
 � � � �	� � � Æ
Intuitively this theorem states that if a key is an�-

approximate heavy change key, then it will be a suspect
with probability at least��Æ, and if it is an�-approximate
non-heavy key, it will not be a suspect with probability at
least� � Æ. We can thus make the set of suspect keys for
a sketch an appropriately good approximation for the set
of heavy change keys by choosing large enough values for

 and�. We omit the proof of this theorem in the inter-
est of space, but refer the reader to [7] in which a similar
theorem is proven.

As we discuss in IV, our reversible�-ary sketch does
not have 2-universality. However, we use a second orig-
inal �-ary sketch with 2-universal functions to act as a
verifier for any suspect keys reported. This gives our al-
gorithm the analytical limitation on the false positives of

TABLE I
TABLE OF NOTATIONS

	 number of hash tables
� � � number of buckets per hash table

� size of key space
� number of words keys are broken into
�� ��� hash function

����� ����� � � � � ���� � modular hash functions that make up��
���
	 the��� word of a� word integer

� ������ bucket� in hash table�
� percentage of total change required to be heavy

������ an�
�
� � � �

�
	
�
� table of �

�

�� � bit words.

������������ the��� �
�
� bit key in the reverse

mapping of� for ����

��������� the set of all
 � ��
�
� � s.t.�����
	 � �

� maximum number of heavy buckets per hash table
�� number of heavy buckets in hash table�
���	 bucket index of the��� heavy

bucket in hash table�
� number of hash tables a key can miss

and still be considered heavy
�� set of modular keys occurring in heavy buckets

in at least	 � � hash tables for the��� word
���
	 vector denoting for each hash table the set of

heavy buckets modular key
 � �� occurs in

theorem 1. As an optimization we can thus leave the re-
duction of false positives to the verifier and simply try to
output as many suspect keys as is feasible. For example, to
detect the heavy change keys with respect to a given�, we
could detect the set of suspect keys for the initial sketch
with respect to�� � and then verify those suspects with
the second sketch with respect to�. However, we note
that even without this optimization (setting� � �) we ob-
tain very high true positive percentages in our simulations
.

E. Architecture
Our change detection system has two parts as in Fig. 1:

streaming data recording and heavy change detection.
Next, we will introduce each part.

III. STREAMING DATA RECORDING

32 bits

IP address 
divided into
q=4 words

8 bits

10010100 10101011 10010101 10100011

h1() h2() h3() h4()

010 110 001 101

Four separate hash
functions applied to 
each word

010 110 001 101

Four hash 
functions 
combined to form 
final hash value

Fig. 2. Modular hashing uses� hash functions to hash each word of
the key , which are are then combined to form the final hash

The first phase of the change detection process is pass-
ing over each data item in the stream and updating the
summary data structure. The update procedure for a�-ary
sketch is very efficient. However, with standard hashing
techniques the detection phase of change detection cannot
be performed efficiently. To overcome this we modify the
update for the�-ary sketch by introducingmodular hash-
ing andIP mangling techniques.
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IP mangling
Modular
hashing

Reversible 
k-ary sketchkey

value value storedStreaming
data 
recording

Heavy 
change 
detection

Reversible 
k-ary sketch

change
threshold

Reverse
hashing

heavy 
change 
keys

Iterative approach

Reverse 
IP mangling

Original
k-ary sketch

4-universal
hashing

key

Verified
w/ original

sketch

Fig. 1. Architecture of the reversible�-ary sketch based heavy change detection system for massive data streams

A. Modular hashing
Modular hashing is illustrated in Figure 2. Instead of

hashing the entire key in��� directly to a bucket in���, we
partition the key into� words, each word of size�� 	
� �
bits. Each word is then hashed separately with different

hash functions which map from space��
�
� � to ��

�
� �. For

example, in Figure 2, a 32-bit IP address is partitioned into
� � � words, each of 8 bits. Four independent hash func-
tions are then chosen which map from space�
�� to �

�.
The results of each of the hash functions are then concate-
nated to form the final hash. In our example, the final hash
value would consist of 12 bits, deriving each of its 3 bits
from the separate hash functions����� ����� ���
� ����. If it
requires constant time to hash a value, modular hashing
increases our update time from ��� to �� ���. On the
other hand, as we will discuss in sections IV and V, modu-
lar hashing allows us to efficiently perform change detec-
tion. However, an important issue with modular hashing is
the quality of the hashing scheme. The probabilistic esti-
mate guarantees for�-ary sketch assume 4-universal hash
functions, which can map the input keys uniformly over
the buckets. Though theoretically we cannot achieve the
4-universal property with modular hashing, we strive to
improve modular hashing so that it works well in practice.
In network traffic streams, we notice strong spatial locali-
ties in the IP addresses,i.e., many simultaneous flows only
vary in the last few bits of their source/destination IP ad-
dresses, and share the same prefixes. With the basic mod-
ular hashing, the collision probability of such addresses
are significantly increased.

For example, consider a set of IP addresses
�
���������
 that share the first 3 octets. Our mod-
ular hashing always maps the first 3 octets to the same
hash values. Thus, assuming our small hash functions are
completely random, all distinct IP addresses with these
octets will be uniformly mapped to

 buckets, resulting
in a lot of collisions. This observation is further con-
firmed when we apply our modular hashing scheme with
the network traces used for evaluation (see Section VI),
the distribution of the number of keys per bucket was
highly skewed, with most of the IP addresses going to
a few buckets (Figure 4). This significantly disrupts the
estimation accuracy of our reversible�-ary sketch. To
overcome this problem, we introduce the technique ofIP
mangling.
B. IP Mangling

In IP mangling we attempt to artificially randomize the
input data in an attempt to destroy any correlation or spa-

Input Set Mangled Set

Bijective function f(xi)

129.105.56.23 10111100110101100000101100011110

00111010111101001010100100011101129.105.56.28

129.105.56.109

216.239.39.99

01011101010100101000001101000010

00011000111010001001110101111111

… …

uncorrelated

Fig. 3. IP-mangling destroys any correlation between the input data
to present completely random keys to the modular hash functions.

tial locality in the input data. The objective is to obtain a
completely random set of keys, and this process should be
still reversible.

The general framework for the technique is to use a
bijective function from key space��� to ��� (Figure 3).
For an input data set consisting of a set of distinct keys
����, we map each�� to !����. We then use our algo-
rithm to compute the set of proposed heavy change keys
" � �#�� #�� � � � � #�� on the input set�!�����. We then
use!�� to output�!���#��� !

���#��� � � � � !
���#���, the

set of proposed heavy change keys under the original set
of input keys. Essentially we transform the input set to
a mangled set and perform all our operations on this set.
The output is then transformed back to the original input
keys.
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Fig. 4. Distribution of number of keys for each bucket under three
hashing methods.

Our choice of the bijective function! is based on sim-
ple arithmetic operations on a Galois Extension Field [16]
� � �
��, where$ � 	
�� �. More specifically, we choose
� and% from ��� 
� � � � � 
�� �� uniformly at random, and
then define!��� � ����%, where ’�’ is the multiplica-
tion operation defined on� � �
�� and ’�’ is the bit-wise
XOR operation. We refer to this as the Galois Field (GF)
transformation. We believe that such a mapping will suf-
ficiently alter the original set of keys such that the locality



5

(in terms of hamming distance or absolute difference) of
streaming keys will be destroyed. By precomputing���

on � � �
��, we can easily reverse a mangled key# using
!���#� � ��� � �# � %�.

The direct computation of��� can be very expensive,
as it would require multiplying two polynomials (of de-
gree$ � �) modulo an irreducible polynomial (of degree
$) on a Galois Field� � �
�. In our implementation, we use
tabulation to speed up the computation of���. The basic
idea is to divide input keys into shorter characters. Then
by precomputing the product of� and each character we
can translate the computation of� � � into a small num-
ber of table lookups. For example, with 8-bit characters,
a given 32-bit key� can be divided into four characters:
� � �
������. According to the finite field arithmetic,
we have�� � � �� �
������ �

�

��� �� ��� � � ���

where ’�’ is the bit-wise XOR operation, and� is the
shift operation. Therefore, by precomputing 4 tables
������
���, where ���#� � � � �# � � �� (�� � ����,
�# � ���
��), we can efficiently compute� � � using
four table lookups:

�� � � �
��
�� ������� ������� �������
We can apply the same approach to compute! and

!�� (with separate lookup tables). Depending on the
amount of resource available, we can use different char-
acter lengths. For our hardware implementation, we use
8-bit characters so that the tables are small enough to fit
into the fast memory (
�����&#�'( � �
& for 32-bit
IP address). Note that only IP mangling needs extra mem-
ory and extra memory lookup, the modular hashing can
be implemented efficiently without table lookup. For our
software implementation, we use 16-bit characters, which
is faster than 8-bit characters due to fewer table lookups.

We find that in practice, a bijective function with this
property effectively resolves the highly skewed distribu-
tion caused by the modular hash functions. Using the
source IP address of each flow as the key, we compare the
hashing distribution of the following three hashing meth-
ods with the real network flow traces: 1) modular hashing
with no IP mangling, 2) modular hashing with MM trans-
formation for IP mangling, and 3) direct hashing (a com-
pletely random hash function). Figure 4 shows the distri-
bution of the number of keys per bucket for each hashing
scheme. We observe that the key distribution of modu-
lar hashing with MM transformation is almost the same
as that of direct hashing. The distribution for modular
hashing without IP mangling is highly skewed. Thus IP
mangling is very effective in randomizing the input keys
and removing hierarchical correlations among the keys.

IV. REVERSEHASHING: � � �

Now we discuss how to perform the detection phase
of the change detection process. As discussed in the
overview, our approach is to take a�-ary sketch that has
been updated with all data items in the input data stream
and output all suspect keys with respect to the sketch. That
is, we solve the reverse sketch problem with respect to the
given sketch. The reverse sketch problem can always be

solved in �� � �� run time by simply testing all possi-
ble keys in the space���. However, the key space� is
typically prohibitively large. We thus wish to solve the
problem in time sub-linear in�. We show how this can be
done when the hash functions for the sketch are modular.
In this section we discuss how to solve the problem with
input � equal to 1 using our basic approach of taking mod-
ular bucket intersections. We then generalize our method
to larger� in section V.

A. Modular Bucket Intersections

b1

b2

b3

b4

b5

1

2

3

4

5

A1 A2 A3

A4 A5

Fig. 5. Each heavy change bucket reverse maps to a set of IP ad-
dresses,e.g., � ��� for our example k-ary sketch

At � � � we have that there is at most one heavy bucket
in each hash table. For a given heavy bucket in hash table
�, suppose we can obtain the set)� consisting of all keys
that hash to the heavy bucket in the��� hash table (Figure
5). We call this set the bucket’sbucket potentials. For
� � � we can determine the suspect keys by taking the
intersection

�	��
��� )� of the bucket potentials. For� � �

we can do a modified intersection that is still quite simple.
However, each set)� is expected to contain�� elements.
The key space� is assumed to be prohibitively large. It
is thus difficult to efficiently obtain the sets)�, and more
difficult to take the�-wise intersection of such large sets
efficiently. For the example of 32 bit IP address keys with
� � 
�� we are dealing with�� � 
��. To determine
which 
�� elements are in each set)�, and to intersect�
sets of size
�� is too taxing on memory and speed.

Modular hashing solves this efficiency problem. First,
to determine the sets)� we can store a many-to-one re-
verse lookup table for each hash function��. Without
modular hashing this would require��� � 	
��� storage
space for each hash function. But with modular hash-
ing we can implicitly store a reverse lookup table for��
by storing the smaller reverse lookup tables of each of
its � modular hash functions����. That is, we store a
many-to-one reverse lookup table���

������ that maps each

key � � ��
�
� � to a list of � �� �

�
� distinct values from

the set��
�
� �. We can store such reverse lookup tables in

 ��� �	
����
�
� � space. This gives a total space complex-

ity of  ���	
����
�
� � for the� � � hash functions. De-

pending on the choice of�, this offers various levels of im-
provement in space usage over the original��� � 	
���.

Modular hashing also allows for more efficient inter-
section of sets of bucket potentials)�. For each given
bucket the reverse lookup table gives us� sets of size
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� �� �
�
� corresponding to what we call themodular bucket

potentials of each word. Denote the modular bucket po-
tential set for hash table� and word* as)���. These
sets give a compact representation of the set of bucket po-
tentials because a key� is in )� if and only if the*��

word of � is in )��� for each* from 1 to �. In addi-

tion, these modular potential sets are only of size����
�
� ,

compared to the size�� potential sets. For� � 

�,
� � 
��, and � � �, the modular potential sets are
of size only ��

��
� �
 each. This reduces the time for

taking the� intersections of the bucket potential sets
)� by allowing � separate�-wise intersections of the
smaller sets)���. For example, suppose a heavy bucket
has the modular potentials sets)����	� )����	� )���
	� )����	

for � � �. In the case of� � � and� � � the in-
tersection involves four separate intersection operations:
+� � )����	

�
)����	

�
)�
��	

�
)����	

�
)����	 for � �

�� 
� �� �, corresponding to four partitions of the IP ad-
dress. The resultant intersections from the four partitions
can then be combined to form the final set of suspect
keys, i.e, any�������
��� such that each�� � +� . Since

each set being intersected has size����
�
� we can deter-

mine these� different sets of� set intersections in time

 �� ��� ���
�
� �. In section V-D we discuss how to choose

the value for� with respect to� to make our algorithms
run as efficiently as possible.

V. REVERSEHASHING: GENERAL CASE

b1

b2

b3

b4

b5

1

2

3

4

5

b1

b3
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b2
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Intersection without union

Fig. 6. For the case of� � �, various possibilities exist for taking the
intersection of each bucket’s potential keys

We now generalize our method of reverse hashing to
the case where there are multiple heavy buckets in each
hash table.

We use techniques similar to the modular bucket inter-
sections for� � �. However, for� � 
, the technique
must be extended. To understand the problem, consider
the simple case of� � 
, as shown in Figure 6. There are
now �	 � 
	 possible ways to take the�-wise intersec-
tions discussed for the� � � case. One possible heuris-
tic is to take the union of the possible keys of all heavy
change buckets for each hash table and then take the inter-
sections of these unions. However, this can lead to a huge
number of keys output that do not fulfill the requirement
of our problem. The case for� � 
 is thus much more dif-
ficult than for� � �. In fact, we have shown (proof omit-
ted) that for arbitrary modular hash functions that evenly
distribute �

� keys to each bucket in each hash table, there
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Fig. 7. Given the � sets �� and bucket index matri-
ces �� we can compute the sets�� incrementally. The set
�� containing ���� 	�� ��� �� �� �� ���, ���� 	�� ��� �� �� �� ���, and
��
� ��� ��� �� �� �� ��� is depicted in (a). From this we determine the
set�� containing���� 	� ��� ��� �� �� �� ���, ���� 	� 
�� ��� �� �� �� ���,
and ��
� �� ��� ��� �� �� �� ��� shown in (b). Finally we compute��

containing���� 	� �� ��� ��� �� �� �� ��� shown in (c).

exist extreme cases such that the Reverse Sketch Problem
cannot be solved for� � 
 in polynomial time in both�
and� in general, even when the size of the output is ���
unless� � ,� .

However, if we choose random modular hash functions
as described in IV we can solve the problem efficiently
with high probability as discussed later. Next, we present
an algorithm to solve the reverse sketch problem for any�
that is assured to obtain the correct solution with a poly-
nomial run time in� and� with very high probability.

A. Notation
To describe the algorithm we use, we define the fol-

lowing notation. Let the��� hash table contain�� heavy
buckets. Let� be the value of the largest��. For each of
the� hash tables��, assign an arbitrary indexing of the��
heavy buckets and let���� � ��� be the index in hash table
� of heavy bucket number�. Also define-���� to be the
*�� word of a� word integer�. For example, if the���

heavy bucket in hash table� is ���� � ������
 for � � �,
then-������� � �.

For each� � ��� and word*, denote the reverse
mapping set of each modular hash function���� by the

�
�
� � � �� �

�
� table���

��� of �
� 	
� � bit words. That is, let

���
��������� denote the��� �

�
� bit key in the reverse mapping
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of � for ����. Further, let���
������ � �� � ��

�
� � � ������� �

��.
Let �� � �� � � � �����

��� �
��
����-�������� for at least

��� values� � ����. That is,�� is the set of all� � ��
�
� �

such that� is in the reverse mapping for���� for some
heavy bucket in at least� � � of the� hash tables. We
occasionally refer to this set as theintersected modular
potentials for word *. For instance, in Figure 7,�� has
three elements and�� has two.

For each word we also define the mapping&� which
specifies for any� � �� exactly which heavy buckets
� occurs in for each hash table. In detail,&���� �
�.�������� .�������� � � � � .���������� where.������� �
�� � ��� � � � ���

����-���������
��
�. That is,

.������� denotes the collection of indices in��� such that
� is in the modular bucket potential set for the heavy
bucket corresponding to the given index. The special
character * is included so that no intersection of sets
.� yields an empty set. For example,&���
�� �
���� �� ��� ���� �
� ��� ���� ��� 
�� means that the reverse
mapping of the���, ���, and��� heavy bucket under����
all contain the modular key 129.

We can think of each vector&���� as a set
of all � dimensional vectors such that the���

entry is an element of.�������. For example,
&
�
�� � ���� ��� ����� �
�� ���� �
�� is indeed a
set of two vectors: ����� ����� �
�� ���� �
�� and
����� ����� �
�� ���� �
��. We refer to&���� as the
bucket index matrix for �, and a decomposed vector in a
set&���� as abucket index vector for �. We note that al-
though the size of the bucket index vector set is exponen-
tial in �, the bucket index matrix representation is only
polynomial in size and permits the operation of intersec-
tion to be performed in polynomial time. Such a set like
&���� can be viewed as anode in Figure 7.

Define the � intersection of two such sets to be
&
�� " � �� � &�" � � has at most � of its � entries

equal to * �. For example,&����
�� &����#� represents

all of the different ways to choose a single heavy bucket
from each of at least� � � of the hash tables such that
each chosen bucket contains� in it’s reverse mapping for
the*�� word and# for the* � ��� word. For instance,
in Figure 7,&����

�� &��/� � ��
�� ���� ���� �
�� ����,
which is denoted as alink in the figure. Note there is no
such link between&���� and&��'�. Intuitively, the��/
sequence can be part of a heavy change key because these
keys share common heavy buckets for at least� � � hash
tables. In addition, it is clear that a key� � ��� is a suspect
key for the sketch if and only if

��
������� &����� �� �.

Finally, we define the sets)� which we compute in our
algorithm to find the suspect keys. Let)� � ������� �� �
�� � �� and� � &������. Recursively define)��� �
������ ��� � � � � ������ �� � ����� ��� � � � � ���� �� � )�
and � � &����������. Take Figure 7 for example,
)� � ��� /� !� ��� �
� �� �� 
� �� is the suspect key. Each
element of)� can be denoted as apath in Figure 7. The
following lemma tells us that it is sufficient to compute
)� to solve the reverse sketch problem.

Lemma 1: A key � � ������ � � � ��� � ��� is a suspect
key if and only if ����� ��� � � � � ���� �� � )� for some
vector�.

B. Algorithm

To solve the reverse sketch problem we first compute
the � sets�� and bucket index matrices&�. From these
we iteratively create each)� starting from some base)�
up until we have)�. We then output the set of heavy
change keys via lemma (1). Intuitively, we start with
nodes as in Figure 7,�� is essentially)�. The links be-
tween�� and�� give)�, then the link pairs between (��
��) and (�� �
) give)
, etc.

The choice of the base case)� affects the performance
of the algorithm. The size of the set)� is likely to be ex-
ponentially large in�. However, with good random hash-
ing, the size of)� for * � 
 will be only polynomial in
�, �, and� with high probability with the detailed algo-
rithm and analysis below. Note we must choose a fairly
small value0 to start with because the complexity of com-
puting the base case grows exponentially in0.

REVERSE HASH���
1) For each* � � to �, set

���� &�� � MODULAR POTENTIALS�*� ��.
2) Initialize)� � �. For each� � ��, # � ��, and cor-

responding� � &����
�� &��#�, insert���� #�� ��

into)�.
3) For any given )� set )��� �

Extend�)�� ����� &����.
4) Output all ������ � � � ��� � ��� s.t.

����� � � � � ���� �� � )� for some�.

MODULAR POTENTIALS�*� ��

1) Create an� � ��
� table of sets. initialized to all

contain the special character *. Create a size��
�
� �

array of countershits initialized to all zeros.

2) For each� � ���, � � ���, and� � �� �� �
�
� � insert

���
����-����������� into .������. If .������ was empty,

increment���(���.

3) For each� � ��
�
� � s.t.���(��� � ���, insert� into

�� and set&���� � �.������� .������� � � � � .�� �
������.

4) Output���� &��.

EXTEND�)�� ����� &����
1) Initialize)��� � �.
2) For each# � ����, ����� � � � � ���� �� � )�, de-

termine if �
�� &����#� �� null. If so, Insert

����� � � � � ��� #�� �
�� &����#�� into)���.

3) Output)���.

C. Complexity Analysis

Lemma 2: The number of elements in each set�� is at

most 	
	�� � � � � �� �

�
� .

Proof: Each element� in �� must occur in the mod-
ular potential set for some bucket in at least� � � of the
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� hash tables. Thus at least���� � �� � �� of the ele-
ments in the multiset of modular potentials must be in��.
Since the number of elements in the multiset of modular
potentials is at most� � � � � ���

�
� we get the following

inequality.

���� ������ � � �� �� �
�
�
�
� �� ���� � �

� � � �� ��
�

�
�
�
�

Next, we will show that the size of)� will be only
polynomial in�� � and�.

Lemma 3: With proper� and�, the number of bucket
index vectors in)� is ������ with high probability.

Proof: For simplicity, below we assume� � �. (The
proof for � � � is similar but slightly more involved.)

For any vector� � ��
�
� ��, % � ��

�
� ��, � � ���	 , define

1  
��! �

�
� Æ����� ���� � �������*�� � %�*�

for �� � �����* � �
��
� otherwise

Clearly,)� has1 �
�

��!� 1
 
��! bucket index vectors.

We have Prob��������*�� � %�*�� � �����. With
mangling, we have Prob�Æ����� ���� � %�*�� � �����.
Therefore,2�1  

��!� � �������	��. This implies

2�1 � �
�
��!� 

2�1  
��!� � �

��� � �� �������	

We now estimate3 ���1 �. For any�� 0 � ��
�
� ��, �� � �

���	 , define'��� 0� � ��*�* � �
� � ��*� � 0�*���, and
'��� �� � ����� � ��� � ���� � ������.

We have

2�1  
��! � 1 "

���� �������	
�����


�
% �� / � �'��� �� �� � � '��� 0� �� ��

��������	��

% �� / � '��� �� � � � '��� 0� � �
��������	������

% � / � '��� �� � � � '��� 0� � �
Therefore,

3 ���1 � � 2�1 ���2�1 ��
�

�
��!� �����"

2�1  
��! � 1 "

�����2�1 ��

� �2�1 �� �
�


�����
����
���
������	�����
��	��

��������	�� �

�

�����
�����	��

� ��
������	�	���
��	��

��������	������

� �2�1 �� � 
� � 
�

We can prove


� �
�

��!����� �"

��������	�� � 2�1 ��


� � ���� � � �

����
�	 � �� � �

����
�	

With �
���� �

�
���
� , we have2�1 � � ���� and

3 ���1 � � 
� � ����. By Chebyshev Inequality, we
can then show that the number of bucket index vectors in
)� is ������ with high probability.

Given Lemma 3, the more heavy buckets we have to
consider, the bigger� must be, and the more memory is
needed. Take the 32-bit IP address key as an example. In
practice,� � ���� works well. When� � � and� � ��,
we need� � 
��. For the same�, when� � 
��, we
need� � 
��, and when� � ��
�, we need� � 
��.
This may look prohibitive. However, with the iterative ap-
proach in Section V-E, we are able to detect many more
changes with small�. For example, we are able to de-
tect more than 1000 changes accurately with� � 
��

(1.5MB memory needed) as evidenced in the evaluations
(Section VI). Since we normally only consider at most
the top 50 to a few hundred heavy changes, we can have
� � 
�� with memory less than 100KB.

Lemma 4: With proper choices of�, �, and�, the ex-
pected number of bucket index vectors in)��� is less
than that of)� for * � 
.
That is, the expected number of link sequences with length
��� is less than the number of link sequences with length
� when� � 
.

Proof: For any bucket index vector� � )�, for any
word � � ������ for word * � �, the probability for�
to be in the same�th (� � ���) bucket is �

���� . Thus the

probability for&���
�� � to be not null is at most"		���

�
�����	�� . Given there are���� possible words for word
* � �, the probability for any� to be extensible to)���

is"	
	�� � �

�����	�� � ����. With proper�, � and� for
any�, we can easily have such probability to be smaller
than 1. Then the number of bucket index vectors in)���
is less than that of)�.

Given the lemmas above, the running times for
MODULAR POTENTIALS and step 2 ofREVERSE HASH
is ������. The running time ofEXTEND is ��
���. So
the total running time is ��� � 
�� �
���.
D. Parameter Choices

To make our scheme run efficiently and maintain accu-
racy for large values of�, we need to carefully choose the
parameters�,�, and� as functions of�. Our data struc-
tures and algorithms for the streaming update phase use
space and time polynomial in�, �, and�, while for the
change detection phase they use space and time polyno-

mial in�, �,�, and�
�
� . Thus, to maintain scalability, we

must choose our parameters such that all of these values
are sufficiently smaller than�.
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However, we must also assure that our�-ary sketch
maintains a large degree of accuracy. In particular, there
are two constraints we must adhere to. First, we need it
to be very unlikely that two given keys hash to the same
bucket in all� hash tables. Thus, for a given choice of
one bucket from each hash table, we want the expected
number of keys that hash to the buckets,�

�� for com-
pletely random hashing, to be sufficiently small. Second,
we cannot allow the the size of the space that the modular

keys map to,�
�
� , to drop below 2. To handle larger values

for �, we need to keep�
�
� even larger than 2 (Subsection

V-C). For given constants� and0 we summarize our two
constraints as follows.

1) �
�� � � , equivalent to��� �

�
� � �.

2) �
�
� � 0 , equivalent to� � 0�

First note that for� � 	
� �, constraint one is fulfilled
for � � �� 
�� �


�� 
�� ��. Both of these values are sufficiently
small in �, so constraint (1) is easy to fulfill. We thus
focus on constraint (2), which boils down to choosing a
value for� and making the other parameters as small as
that choice allows. We consider two strategies.

Solution 1: Our first solution attempts to minimize
the size of the largest of the four terms. This is
accomplished by setting� �

�
	
��. This yields:

� �
�
	
�� � � 0

�

�� �

�
�
� � 


�

�� � � �  �

�
	
� ��

For 0 � 
, � and�
�
� are of the same complexity and

dominate the four values we are interested in. Any alter-

nate choice of� would raise the value of either� or �
�
� .

This choice of� thus minimizes the largest of the four
values. This gives the optimal solution when streaming
update and change detection occur at similar frequencies.

Solution 2: One issue with solution one is that the size
of the hash table is more than poly-logarithmic in�. Since
only the update procedure for the sketch executes at net-
work traffic speeds, we need to have a smaller� to have

the entire sketch fit into fast memory while keeping�
�
�

reasonably small. Our solution is to set� � 	
� 	
� �.
This yields:

� � 	
� 	
� � � � �	
� �����	

�
�
� � �

�

�� 
�� � � �  � 
�� �


�� 
�� ��
Having decreased the value of� from solution 1, we

have made the size of the hash table� � � only poly-
logarithmic in�. This should allow the update phase of
the problem to be scalable to large�. The drawback is that

the value of�
�
� is increased. However, this term does not

come into play until the second phase of change detection
when we perform the actual detection. Since this is not
performed for every packet, we can withstand larger terms
for this phase. For� � 

�� 
��, the two arguably most

important cases,�
�


�� 
��� is 

��� � �� and
���� � ��
�,
respectively. This is clearly quite manageable.
E. Iterative Detection

From our discussion in section V-C we have that our de-
tection algorithm can only effectively handle� of size at

most�
�
� . With our discussion in section V-D this is only

a constant. To handle larger�, we propose the following
heuristic. Suppose we can comfortably handle at most��

heavy buckets per hash table. If a given� percentage re-
sults in� � �� buckets in one or more tables, sort all heavy
buckets in each hash table according to size. Next solve
the reverse sketch problem with respect to only the largest
�� heavy buckets from each table. For each key output, ob-
tain an estimate from a second�-ary sketch independent
of the first. Update each key in the output by the negative
of the estimate provided by the second sketch. Having
done this, once again choose the largest�� buckets from
each hash table and repeat. Continue until there are no
heavy buckets left that haven’t been considered.

One issue with this approach is that an early false pos-
itive (a key output that is not a heavy change key) will
cause large numbers of false negatives since the (incor-
rect) decrement of the buckets for the false positive will
potentially cause many false negatives in successive itera-
tions. To help reduce this we can use the second sketch as
a verifier for any output keys to reduce the possibility of a
false positive in each iteration.

VI. I MPLEMENTATION AND EVALUATION

In this section, we will first discuss the implementation
and evaluation of streaming data recording in hardware.
Then introduce the methodology and simulation results
for heavy change detection accuracy and speed.

A. Hardware Implementation for Traffic Recording

The Annapolis WILDSTAR Board is used to imple-
ment the original and reversible�-ary sketch. This
platform consists of three Xilinx Virtex 2000E FPGA
chips [17], each with 2.5M system gates contained within
9600 Configurable Logic Blocks (CLBs) interconnected
via a cross-bar along with memory modules. This de-
velopment board is hosted by a Solaris Ultra-10 worksta-
tion. The unit is implemented using the Synplify Pro 7.2.
tool [18]. Such FPGA board only costs about $1000.

The �-ary sketch hardware consists of� hash units
each of which addresses a single
-element array. For
almost all configurations, delay is the bottleneck. There-
fore, we have optimized it using excessive pipelining.
The resulting maximum throughput for 40-byte-packet
streams are presented in Table II. For the original�-ary
sketch, we achieve a high bandwidth of over 22 Gbps.
Even for reversible hashing with IP mangling and mod-
ular hashing, we achieve 16.2 Gbps. Note that cur-
rently, although the largest Xilinx FPGA contains a total
of 10Mbits of block SRAM, due to its architecture only
up to 600KBytes of this space can be efficiently utilized.
Since the deltoid approach requires more than 1MB to de-
tect 100 or more changes, it cannot even fit into the latest
FPGAs.

B. Software Simulation Methodology

In this section we evaluate our schemes withnetflow
traffic traces collected from a large edge router. The traces
are divided into five-minute intervals with the traffic size
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TABLE II
MAXIMUM SUPPORTED BANDWIDTH (GBPS) FOR ALL

40-BYTE-PACKET STREAMS(� � �	�
)

� � � � � �

Original �-ary sketch 28.800 22.656
With modular hashing 23.360 19.264

Modular hashing+ IP mangling 17.088 16.160

for each interval averaging about 7.5GB. Our metrics in-
cludespeed, real positive, and false positive percentage.
To verify our results, we also implemented a naive algo-
rithm to record per-flow volumes, and then find the heavy
changes as the ground truth. The real positive percent-
age refers to the number of true positives reported by the
detection algorithm divided by the number of real heavy
change keys. The false positive percentage is the number
of false positives output by the algorithm divided by the
number of keys output by the algorithm.

We use a�-ary sketch with a variety of configurations
with different��
 and�. We also run our simulations
both with and without the iterative approach as described
in section V-E. Finally, we stress test our schemes sepa-
rately with 1) two two-hour traffic files with 240 GB av-
erage volume, and 2) with 64-bit keys.

The total memory consumption for update recording
is only 
 � ����%'�4!��%5'(� � ����%'�4!%��(� �
�%#�'(�%�0�'�. It includes areversible �-ary sketch and
a original �-ary sketch. In our largest configuration, with
6 tables and 64K bins, our memory usage is 3MB. The
smallest with 5 tables and 4K buckets only takes 160KB
memory. When using 32-bit keys, we use the source IP
address of each flow as the key, and set� � �. For our 64
bit-key trials, we concatenate the source and destination
IP addresses of a flow, and set� � �.

C. Software Simulation Results
1) Accuracy performance analysis: First, we test the

performance with varying��� and �. We consider all
possible combinations from:� � �
 or ��
, � � �
or �, and� � � or 
. We vary the number of true heavy
keys from 1 to 140 for� � �
, and from 1 to 1000 for
� � ��
 by adjusting�. Both of these limits are much
larger than the���� bound and thus are achieved using
the iterative approach of Section V-E.

As shown in Figure 8, all configurations produce very
accurate results: over a 95% true positive rate and less
than a 1.1% false postive rate for� � ��
, and over
a 90% true positive rate and less than a 4% false positive
rate for� � �
. Among these configurations, the� � �
and� � 
 configuration gives the best result: over a 99%
true positive percentage and less than a 0.5% false positive
percentage for� � ��
, and over a 95% true positive
percentage and less than a 2% false positive percentage
for � � �
. Such trends remain for the stress tests and
large key space size test discussed later. In each figure,
the�-axis is the number of heavy change keys and their
corresponding change threshold percentage�.

Note that increase of�, while being less than	� , im-
proves the true positive rate quite a bit. It also increase
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Fig. 10. Results for 64 bit keys: SrcIP and DestIP address, resulting
in multi-dimensional analysis

the false positive rate, but the extra original�-ary sketch
bounds the false positive percentage by eliminating false
positive during verification. The running time also in-
creases for bigger�, but only marginally.

2) Effectiveness of iterative approach: As analyzed
in Section V-B, the running complexity will go exponen-
tially high when� � ����. Otherwise, it only grows lin-
early with �. This is indeed confirmed with our experi-
ment results as shown in Figure 9. For the experiments,
we use the best configuration from previous experiments:
� � �, � � ��
, and� � 
. Note that the point of
deviation for the running time of the two approaches is at
about
�� � �����
���, and thus matches very well with
the theoretic analysis.

We implement the iterative approach by finding the
threshold that produces the desired number of changes
for the current iteration, detecting the offending keys us-
ing that threshold, removing those keys from the sketch,
and repeating the process until the threshold equals the
original threshold. Both the iterative and non-iterative ap-
proach have similarly high accuracy as in Figure 8.

3) Stress tests with larger dataset: We further did
stress tests on our scheme with two 2-hour netflow traces
and detected the heavy changes between them. Each
trace has about 240 GB of traffic. Again, we have very
high accuracy for all configurations, especially with� �
��
�� � � and� � 
, which has over a 99% real posi-
tive percentage and less than a 1% false positive percent-
age as in Figure 8.

4) Results on larger key space size: Figure 10 shows
the effectiveness of our algorithms for 64-bit keys con-
sisting of source IP and destination IP addresses. The true
positive percentage is over 97%. The false positive rate is
zero for all the configurations.
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Fig. 8. True positive percentage and false positive percentage results for 12 bit buckets, 16 bit buckets, and a large dataset for stress tests.

5) Speed results: In section VI-A, we show that our
reversible�-ary sketch in hardware can sustain 16.2Gbps
throughput for recording all-40-byte packet streams. In
this section, we show the running time for both recording
and detection in software.

With a Pentium IV 2.4 GHz machine with normal
DRAM memory, we record 2,827,318 items in 1.72 sec-
onds,i.e., 1,643,789 insertions/second. For the worst case
scenario with all 40-byte packets, this translates to around
526 Mbps. These results are obtained from code that is
not fully optimized and from a machine that is not dedi-
cated to this process. Our change detection is also very
efficient. As shown in Figure 9, for
 � �����, it only
takes 0.078 second for 50 changes, 0.42 second for 100
changes, and 2.92 seconds for 200 changes which already
covers about 0.2% of the total changes. To the extreme
case of 1000 changes, it takes about 22 seconds.

In short, our evaluation results show that we were able
to infer the heavy change keys solely from the�-ary
sketch accurately and efficiently, without explicitly stor-
ing any keys or taking a second pass over the data.

VII. R ELATED WORK

Given today’s traffic volume and link speeds, it is ei-
ther too slow or too expensive to directly apply existing
techniques on a per-flow basis [2], [6]. Therefore, most
existing high-speed network monitoring systems estimate
the flow-level traffic through packet sampling [19], [20],
but this has two shortcomings. First , sampling is still not
scalable; there are up to
�� simultaneous flows, even de-
fined only by source and destination IP addresses. Second,
long-lived traffic flows, increasingly prevalent for peer-to-
peer applications [19], will be split up if the time between
sampled packets exceeds the flow timeout.

Applications of sketches in the data streaming commu-
nity have been researched quite extensively in the past.

Usually the work has focused on extracting certain data
aggregation functions with the use of sketches, like quan-
tiles and frequent items [12], distinct items [13] etc. In
the context of networking, sketches have been applied to
detect IP stream metrics like heavy hitters [4] and quan-
tiles [5], [14] at networking streaming speeds.

As mentioned before, the closest work to ours is the
deltoids approach [7]. Next, we will fully compare it with
our reversible�-ary sketch.

A. Comparison with the deltoidsapproach
Table III lists the efficiency for both approaches for

both of the two phases of change detection, the update
phase and the detection phase. The complexities for the
reverse sketch approach are derived using strategy 2 de-
scribe in section (V-D).

The advantage of our approach is in the update phase
of the algorithm. The speed of updating the data structure
per item in the stream needs to be as fast as the incoming
network traffic to be applied online. The actual number
of operations performed by our update versus the the del-
toids approach is asymptotically the same. However, in a
high speed online setting, the number of arithmetic oper-
ations performed is rarely the bottleneck for performance.
A more accurate measure is the number of memory ac-
cesses and the size of the memory used. In both of these
categories the reverse sketch has an advantage over the
deltoids approach.

In the case of memory accesses our approach can be
implemented to make only a single memory access per
hash table. These accesses correspond to the insertion of
the 	
�� bit hashed key for each of the� hash tables.
This is all that we need because our modular hash func-
tions can be represented with compact, randomly seeded
equations. The hashing of the	
� 	
� � modular keys per
hash table thus only requires arithmetic operations, but not
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TABLE III
A COMPARISON BETWEEN THEREVERSESKETCH METHOD AND THE DELTOIDS APPROACH. HERE� DENOTES THE NUMBER OF HEAVY

CHANGE KEYS IN THE INPUT STREAM.

Update Detection
memory memory accesses operations memory operations

Reverse Sketch ��
�
�� �	����


�� 
�� �
	 �� 
��


�� 
�� �
	 ��
�� �	 ���

�
��� ���� � 
�� 
�� �	 #��

�
��� ���� � 
�� 
�� � � �	

Deltoids ��
�� � � �	 ��
�� �	 ��
�� �	 ��
�� � � �	 #�
��� � �	

memory access. On the other hand, the deltoids approach
must actually update��	
� �� counters in its data struc-
ture per update. It thus cannot achieve our smaller number
of memory accesses.

In the case of memory usage, our approach uses mem-
ory that is constant in the number of heavy change keys
�. The reason for this is because we can perform the it-
erative detection described in section V-E. That is, us-

ing�� �
�� �	

��	


�� 
�� � � memory we can only efficiently detect a
constant�� number of heavy changes. However, we can
repeatedly find the approximately top�� heavy changes
keys until we have efficiently obtained our finished list.
Thus, while our detection run time grows linearly in�, our
memory usage does not.

The deltoids approach, on the other hand, cannot use
iterative detection and thus must increase the size of its
data structure to detect larger numbers of heavy changes.
In the case were the size of� is set to	
� �, we get that
for � � 6� 
��


�� 
�� �� our scheme is asymptotically superior
to the deltoids method as far as memory used. We feel
that such values for� are reasonable.

As a practical comparison of speed and memory usage,
we consider the software implementation of our algorithm
with � � � and� � 
��. For these settings, we use
about 200 KB memory, and can insert 1,643,789 items per
second. We also achieved more than a��� true positive
percentage for up to 140 heavy changes. The deltoids ap-
proach only achieves an insertion rate of about 1,200,000
items per second and uses between 1 and 3 MB to detect
between 100 and 200 heavy changes with accuracy above
���. Note that a system with such size of memory cannot
be implemented in a single FPGA board.

The advantage of the deltoids approach is that it is more
efficient in the detection phase, with run time and space
usage only logarithmic in the key space�. While our
method does not achieve this, its run time and space usage
is significantly smaller than the key space�. And since
this phase of change detection only needs to be done pe-
riodically in the order of at most seconds, our detection
works well for key sizes of practical interest.

VIII. C ONCLUSION

Online heavy change detection is a powerful building
block for network anomaly detection, but has received lit-
tle attention in research except the recent�-ary sketch-
based scheme proposed in [6]. However, this scheme
is not reversible. Thus we propose efficientreversible
hashing schemes to infer the keys of culprit flows from
sketches with negligible extra memory and small extra
memory access for recording streaming data - we obtain

16Gpbs throughput on a single FPGA board even for all
40-byte-packet streams. Evaluations with real network
traffic traces show that we can infer the keys for even 1000
heavy changes with high accuracy in less than 22 seconds.
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