Reverse Hashing for Sketch-based Change
Detection on High-speed Networks

Robert Schweller, Yan Chen, Elliot Parsons, Ashish Gupta, Gokhan Memik and Yin Zhang

Abstract— changes, to variational changes and linear transformation
With the ever-increasing link speeds and traffic volumes of these changes for various time-series forecasting mod-
of the Internet, monitoring and analyzing network traffic els [6], [8], [9], [10], [11]. Our goal is talesign efficient
usage becomes a challenging but essential service for netdata structures and algorithms to achieve close to real-
work administrators of large ISPs or institutions. There time monitoring and heavy change detection of large mas-
are two popular primitives for efficient analysis over mas- Sive data streams, and then push for real-time operations
sive data streams: heavy hitter detection and heavy change when assisted with hardware implementation at reason-
detection. Although numerous approaches have been pro- able costs. As in [7], [2], the performance constraints for
posed for efficient heavy hitter detection [1], [2], [3], [4], such a system are two-fold: 1) small amount of memory
[5], the sketch-based scheme [6] is one of the very few that usage (to be implemented in SRAM) and 2) small number
can detect heavy changes and anomalies over massive dat®df memory accesses per packet.
streams at network traffic speeds. However, sketches do not Sketches, an emerging compact data structure, have
preserve keys €.g., source IP address) of the flows. Thus proven to be useful in many data stream computation ap-
even if anomalies are detected, it is difficult to infer the cul- plications [12], [13], [5], [14]. Recent work on a vari-
prit flows. ant of sketch, nameli-ary sketch, showed how to detect
To address this challenge, we propose efficieneversible heavy changes in massive data streams with small mem-
hashing schemes to infer the keys of culprit flows from ory consumption, constant update/query complexity and
sketches with negligible extra memory and few extra mem- provably accurate estimation guarantees [6]. It is also
ory accesses for recording streaming data - implementing flexible and can be applied with various forecast models
on a single FPGA board, we can achieve a throughput of to detect anomalies.
over 16Gbps for all 40-byte-packet streams (the worst case As modelled in Section II-A, the streaming data can be
traffic). Meanwhile, the heavy change detection daemon viewed as a series okéy, value) pairs where the key can
runs in the background with space complexity and com- be a source IP address, or the pair of IP addresses, and the
putational time sublinear to the key space size. Evaluation value can be the number of bytes or packets, etc. For any
with traces from a large edge router show that we can infer given key, sketch can indicate if it exhibits big change, and
the keys for even 1,000 heavy changes while achieving overif so, give an accurate estimation of such change.
a 99% real positive percentage and less than a 0.5% false However, sketch data structures have a major draw-

positive percentage in 22 seconds. back: they are noteversible. That is, a sketch cannot
Index Terms—Network measurements, Combinatorics, efficiently report the set of all keys that have large change
and Statistics estimates in the sketch. This means that to compare two

streams, we have to know which items (keys) to query to
find the streams with big changes [6], [7]. This would
require either exhaustively testing all possible keys, or
Today'’s ever-increasing link speeds and traffic volumeacording and testing all data stream keys and correspond-
of the Internet make monitoring and analyzing networkg sketches. Unfortunately, neither of these are scalable.
traffic usage a challenging but essential service for managRecently, Cormode and Muthukrishnan proposetd
ing large ISPs. Such service is important for accountingjds approach for heavy change detection [7]. Though
provisioning, traffic engineering, scalable queue manageveloped independently éfary sketch, deltoid essen-
ment and anoamly/intrusion detection [7], [2], [6]. Therially expandsk-ary sketch with multiple counters for
are two popular primitives for massive data stream anehch bucket in the hash tables. The number of counters is
ysis: heavy hitter detection and heavy change detectitngarithmic to the key space sized., 32 for IP address),
The former detects any flows which constitute more than that for every (key, value) entry, instead of adding the
a given threshold fraction of the total traffic stream. Thealue to one counter in each hash table, it is added to mul-
latter detects flows whose size changes significantly frdiple counters (32 for IP addresses and 64 for IP address
one period to another. There are quite a few existipgirs) in each hash table. This significantly increases the
works for efficient and online heavy hitter detection [2hecessary amount of fast memory and number of mem-
[3], [4], [5]- ory accesses per packet, thus violating both of the afore-
However, efficient online heavy change detection resentioned performance constraints. Moreover, this ap-
mains a challenging problem. Essentially, heavy chang®ach may not be applicable for implementation in hard-
detection is more generic and more powerful than heawgre (see Section VI-A).
hitter detection. It spans from simple absolute or relativeTo address these problems, in this paper, we propose

. INTRODUCTION

novel and efficient techniques teverse sketches, focus-table of registerd[i][j] (i € [H],j € [K]). Denote the
ing primarily on thek-ary sketch [6]. The observation ishash function for the’” table byh;. Operations on the
that only streaming data recording needs to done contiRetch include INSERT ») and ESTIMATE). Given
uously in real-time, while the change/anomaly detectiandata key and an update value, INSERZ] increments
can run in the background with more memory (DRAMphe count of bucket; (a) by u for each hash tablg;. Let
and at a frequency only in the order of seconds. Then thigmMm = Zje[K] T[0][4] be the sum of all updates to the
challenge is this: how to keep extremely fast data recOlgkatch. The operation ESTIMATEY for a given keya
ing while still being able to detect the heavy change kexs s the following.

with reasonable speed and high accuracy? Our solution

has two parts as follows. est _ Can hi
First, we includel P mangling andmodular hashing in Vo' = Medi anie(s{v,'} (1)
the data recording operation with negligible extra me here
ory consumption (4KB - 8KB) and few (4 to 8) additiona T[i][hi(a)] — SUM
memory accesses per packet for IP mangling. This is in Ugi = k K
contrast tadeltoid which uses dactor of 32 to 64 increase 1-1/K

in memory and memory accesses from the origiaty If the hash functions in the sketch are 4-universal, this
can sustain more than 16Gpbs even for all 40-byte-pacii@h variance inversely proportional {d< — 1) [6]. See

streams (the worst case traffic). o [6] for details on the appropriate selection&fand K to
Next, we applybucket potential intersection, itera- gptain accurate estimates.

tive detection, andbucket index matrix construction and
matching for heavy change key detection, which has bot) Change Detection

space and time complexity sub-linear to the key spacey . sketches can be used in conjunction with various

size. We further equip theeversible k-ary sketch with an ¢, .o qting models to perform sophisticated change detec-
original k-ary sketch to statistically bound the false POSion as discussed in [6]. We focus on the simple model
tlvsvra'ge. I red and evaluated . +h nQf change detection in which we break up the sequence of
ket imp embetn_e da:‘n eva uate dour Syf em't\;]v' g jta items into two temporally adjacent chunks. We are
V1V§r| kratl::es 0 falne rom? Sg%ehe ge roﬁ erW|k an Ukterested in keys whose signals differ dramatically in size
INK. TOr INTerring even =, 720 Neavy change Xeys, oghen taken over the first chunk versus the second chunk.
schemes find more than 99% of the heavy change KgY$ awicylar, for a given percentagk a key is aheavy
with less than a 0.5% false positive rate within 22 se Hange key if the difference in its signal exceedspercent
onds. We further stress test our schemes with aggregaielq toral change over all keys. That is, for two inputs
2-hour traffic and with 64 bit key spaces. For both We,io 1 ang 2, if the signal for a kayis is U; [] over the

ac?fgeressfzngfa{hﬁlg;se} s organized as follows. We gifirst input andl, [z] over the second, then the difference

. : nal forz is defined to beD[z] = |Ui[z] — Uz[z]|. The

an overview on the data stream model dndry sketch .5 gitference isD = . D[z]. Akey z is then de-

in Section 1l. In section Section Il we discuss the ai.— w€[n] L :

gorithms for streaming data recording and in Sections [{€d to be a heavy change key if and onlyifz] > ¢-D.

and V discuss those for heavy change detection. We evalll Our approach, to detect the set of heavy keys we

uate our system in Section V1, survey the related work Gieate twok-ary sketches, one for each time interval, by

Section VII, and finally conclude in Section VIII. updating them for each incoming packet. We then sub-
tract the two sketches. Sa&§ and S, are the sketches

recorded for the two consecutive time intervals. For de-

Il. OVERVIEW X L . . .
tecting significant change in these two time periods, we

A. Data Sream Model and the k-ary Sketch obtain the difference sketc$y = | S, — S;|. The linearity

Among the multiple data stream models, one of thiRoperty of sketches allow us to add or subtract sketches
most general is the Turnstile Model [15]. Lét = to find the sum or difference of different sketches. Any
a1, a0, ..., be an input stream that arrives sequentialligey whose estimate value By that exceeds the threshold
item by item. Each itemay; = (a;, ;) consists of a key ¢ - SUM = ¢ - D is denoted as auspect heavy key in
a; € [n], where[n] = {0,1,...,n — 1}, and an update sketchS; and offered as a proposed element of the set of

u; € R. Each keya € [n] is associated with a time vary-heavy change keys.
ing signalU[a]. Whenever an itenta;, u;) arrives, the .
signalU|[a;] is incremented bys;. C. Problem Formulation

K-ary sketch is a powerful data structure to efficiently Instead of focusing directly on finding the set of keys
keep accurate estimates of the signélg]. A k-ary that have heavy change, we instead attempt to find the set
sketch consists off hash tables of sizé&(. The hash of keys denoted as suspects by a sketch. That is, our goal
functions for each table are chosen independently at remto take a given sketct’, along with a threshold per-
dom from a class of hash functions frdaj to [K]. From centagep, and output all the keys whose estimatedin
here on we will use the variables = K interchange- exceed¢ - SUM. We thus are trying to find the set of
ably with K. We store the data structure asHax K suspect keys for'.

More generally, we can think of our input as a sketch TABLE
T in which certain buckets in each hash table are marked TABLE OF NOTATIONS
as heavy. According to formula (1) the goal is thus t

output any key that hashes to a heavy bucket in more than—2__ numb”el‘rrg?ELgfkggsgetfﬁfssh —
L%J of the H h_ash tables. If we let be the maximum m Size of key space
number of distinct heavy buckets over all hash tabl¢s, q number of words Keys are broken into
and generalize this situation to the case of mapping| to hi i hash function
heavy buckets in at lea#f — r of the hash tables where "i.L.hi2. - hig g modular hash functions that make bp
r is the number of hash tables a key can miss and stilltbe ;’E;](E;)} thewbu‘évferfj?;i‘églo[ggl’gege“
considered heavy, we get the following problem.) percentage of total change required to be heayy
1 1
hol anma x ()7 table ofL log n bit words.
The Reverse Sketch Problem = PR S
Input; hy , [71[k] thekt® na bit key in the reverse
) I mapping ofj for h; .,
e Integerst > 1,r < 5 hi L] the setof alle € [n7] .t hiw(2) = j
o A sketchT with hash fuﬂCtiOI’Ldthi}fiBI from [n] to 1 maximum number of heavy buckets per hash table
[m] t; number of heavy buckets in hash table
1] . . H ‘th
. For each hash tablea set of at most heavy buckets bisj bucket index of thg™ heavy
C i bucket in hash tablé
R; C [m], r number of hash tables a key can miss
Output: All z € [n] such thath;(z) € R; for H — r or and still be considered heavy
more values € [H] Iy set of modular keys occurring in heavy buckets
in at leastH — r hash tables for thet" word
In section IV we discuss how we solve this problem Bu(z) vector denoting for each hash table the set o
in the case that = 1. In section V we generalize thi heavy buckets modular key € 1, oceurs in
method to the case of larger theorem 1. As an optimization we can thus leave the re-
duction of false positives to the verifier and simply try to
. Boundin se Positives [ible. ,
D. Bounding False Posit output as many suspect keys as is feasible. For example, to

: : ct the heavy change keys with respect to a giveve
Since we are detecting suspect keys for a sketch ratﬂ%??d detect the set of suspect keys for the initial sketch

than directly detecting heavy change keys, we discuss . X
accurately the set of suspect keys approximates the se{/ 5 'éSPect tap — a and then verify those suspects with
e second sketch with respect¢o However, we note

heavy change keys. L& = |5 — 5| be a difference 7 "0 000 it ol this optimization (settimg= 0) we ob-

sketch over two data streams. For each keg [n] de- tai high 1 ” i . imulati
note the value of the difference of the two signals#dy '@'n VEry nigh trué positive percentages in our simuiations

Uglz] = |Uz[z] — Up[z]|. Denote the total difference by
D=3 DIz]. The following theorem relates the siz€&. Architecture

z€([n]
of the sketch (in terms oK™ and H) with the probability Our change detection system has two parts as in Fig. 1:
of a key being incorrectly categorized as a heavy changgaming data recording and heavy change detection.
key or not. Next, we will introduce each part.
Theorem 1. For ak-ary sketch which uses 2-universal

hash functions, ik = & andH = 4log }, then for all Ill. STREAMING DATA RECORDING

T € [n] 32 bits
| 10010100 | 10101011 [10010101 | 10100011 | g 2eres
Udl:x] > (¢ + 6) . D = PT[U;St < ¢ . SUM] < 6 T q=4 words
t
Udlz] < (¢ —€)- D = Prlv;” > ¢-SUM] <5 ‘mo ‘hz() lhg() ‘mo Four separte hesh
Intuitively this theorem states that if a key is an eachword

approximate heavy change key, then it will be a suspect 010 110
with probability at least — 4§, and if it is ane-approximate ~__ /S funcions

non-heavy key, it will not be a suspect with probability at fna hach valge.
leastl — 6. We can thus make the set of suspect keys for

a sketch an appropriately good approximation for the $6f 2 Modular hashing useshash functions to hash each word of
of heavy change keys by choosing large enough valuesgf@rkey , which are are then combined to form the final hash
K and H. We omit the proof of this theorem in the inter- The first phase of the change detection process is pass-
est of space, but refer the reader to [7] in which a similawg over each data item in the stream and updating the
theorem is proven. summary data structure. The update procedure koagy

As we discuss in IV, our reversible-ary sketch does sketch is very efficient. However, with standard hashing
not have 2-universality. However, we use a second ortgehniques the detection phase of change detection cannot
inal k-ary sketch with 2-universal functions to act as fze performed efficiently. To overcome this we modify the
verifier for any suspect keys reported. This gives our alpdate for thek-ary sketch by introducinghodular hash-
gorithm the analytical limitation on the false positives ahg andIP mangling techniques.

Streaming value | value stored

data 1P manaling—s! Modular | | Reversible { Original |
recording key giing hashing ik-ary sketch; ik-ary sketch!

4-universal | key
hashing

Heavy h S S : Verified h

change ‘Reversible | | Reverse Reverse | | wi oriinal eavy
change threshold'k-ary sketchi | hashing IP mangling 9 change

i sketch
detection T) keys
Iterative approach

Fig. 1. Architecture of the reversibleary sketch based heavy change detection system for massive data streams

A. Modular hashing Bijective function f(x)
_—
Modular hashing is illustrated in Figure 2. Instead of Input Set Mangled Set
hashing the entire key im] directly to a bucket irtm/], we 129,105 56.23 onnmomomon |
partition the key inta; words, each word of siqulogn 112299-110055-&_)566-12089 il Uncorrelated
bits. Each word is then hashed separately with different 216.239.39.99 | soonmormemeonmmoniin
: : 1 1
hash functions which map from spape | to [m«]. For

example, in Figure 2, a 32-bit IP address is partitioned into
q = 4 words, each of 8 bits. Four independent hash fungg. 3. IP-mangling destroys any correlation between the input data
tions are then chosen which map from sp@8gto [2%]. to present completely random keys to the modular hash functions.
The results of each of the hash functions are then concate- o) o]
nated to form the final hash. In our example, the final hals#l locality in the input data. The objective is to obtain a
value would consist of 12 bits, deriving each of its 3 big@mpletely random set of keys, and this process should be
from the separate hash functiohs,, hi s, his, hi4. If it~ Still reversible. o

requires constant time to hash a value, modular hashind he general framework for the technique is to use a
increases our update time fraf(H) to O(q- H). On the bijective function from key spacgn] to [n] (Figure 3).
other hand, as we will discuss in sections IV and V, modfOr an input data set consisting of a set of distinct keys
lar hashing allows us to efficiently perform change detegti}, We map eachr; to f(z;). We then use our algo-
tion. However, an important issue with modular hashing/ihm to compute the set of proposed heavy change keys
the quality of the hashing scheme. The probabilistic esti-= {¥1,¥2,--.,¥c} on the input se{ f(z;)}. We then
mate guarantees farary sketch assume 4-universal hagise f " to output{/~"(y1), f ="' (y2), ..., /™ (yc)}, the
functions, which can map the input keys uniformly oveet of proposed heavy change keys under the original set
the buckets. Though theoretically we cannot achieve ®feinput keys. Essentially we transform the input set to
4-universal property with modular hashing, we strive ®@mangled set and perform all our operations on this set.
improve modular hashing so that it works well in practicdhe output is then transformed back to the original input
In network traffic streams, we notice strong spatial locakeys.

ties in the IP addressdse., many simultaneous flows only

vary in the last few bits of their source/destination IP ad- T T T T ging —— |
dresses, and share the same prefixes. With the basic mod- 300 | Rl —
ular hashing, the collision probability of such addresses

are significantly increased.

For example, consider a set of IP addresses
129.105.56.% that share the first 3 octets. Our mod-
ular hashing always maps the first 3 octets to the same
hash values. Thus, assuming our small hash functions are ol J
completely random, all distinct IP addresses with these i T
octets will be uniformly mapped t2* buckets, resulting ®0 500 1000 150 2000 2500 3000 3500 4000
in a lot of collisions. This observation is further con- Buckets (sorted by number of keys)
firmed when we apply our modular hashing scheme wity. 4. Distribution of number of keys for each bucket under three
the network traces used for evaluation (see Section \Hashing methods.
the distribution of the number of keys per bucket was Our choice of the bijective functiofi is based on sim-
highly skewed, with most of the IP addresses going jpde arithmetic operations on a Galois Extension Field [16]
a few buckets (Figure 4). This significantly disrupts th@F (2¢), where/ = log, n. More specifically, we choose
estimation accuracy of our reversibleary sketch. To , andb from {1,2,---,2¢ — 1} uniformly at random, and
overcome this problem, we introduce the techniquéRof then definef (z) = a®@z @b, where &’ is the multiplica-
mangling. tion operation defined ofiF (2) and '@’ is the bit-wise
B. IP Mangling XOR operation. We refer to this as the Galois Field (GF)

In IP mangling we attempt to artificially randomize th&ransformation. We believe that such a mapping will suf-
input data in an attempt to destroy any correlation or sgigiently alter the original set of keys such that the locality

250 q

200 B

150 b

100 b

Number of keys for each bucket

(in terms of hamming distance or absolute difference) sdblved inO(n - H) run time by simply testing all possi-
streaming keys will be destroyed. By precomputind ble keys in the spacp:]. However, the key space is
on GF(2¢), we can easily reverse a mangled keysing typically prohibitively large. We thus wish to solve the
Fly)=a' @ (y®b). problem in time sub-linear in. We show how this can be
The direct computation af ® = can be very expensive,done when the hash functions for the sketch are modular.
as it would require mu|t|p|y|ng two p0|yn0mia|s (of deJ-n this section we d.ISCLISS hOW to solve the prob_lem with
gree/ — 1) modulo an irreducible polynomial (of degrednputt equal to 1 using our basic approach of taking mod-
/) on a Galois FieldF (2). In our implementation, we useular bucket intersections. We then generalize our method
tabulation to speed up the computatioruof .. The basic to largert in section V.
idea is to divide input keys into shorter characters. Then .
by precomputing the product efand each character we ~ Modular Bucket Intersections
can translate the computation ®f® z into a small num-
ber of table lookups. For example, with 8-bit characters,
a given 32-bit keyr can be divided into four characters:
T = T3Z2Z1Z9. According to the finite field arithmetic,
we haves ® T = a @ T3ToZ Xy = GB?:OCL@(IL‘Z' < 81),
where ®' is the bit-wise XOR operation, an& is the
shift operation. Therefore, by precomputing 4 tables
t;[0..255], wheret;[y] = a ® (y < 814) (Vi = 0..3,
Yy = 0..255), we can efficiently compute ® = using
four table lookups:

by

\

Fig. 5. Each heavy change bucket reverse maps to a set of IP ad-
a® x = t3[zs] B tara] B t1[x1] B to[xo]. dressese.g., ~ 22° for our example k-ary sketch
At ¢t = 1 we have that there is at most one heavy bucket
We can apply the same approach to compfitand in each hash table. For a given heavy bucket in hash table
f~1 (with separate lookup tables). Depending on thesuppose we can obtain the sgtconsisting of all keys
amount of resource available, we can use different chgfat hash to the heavy bucket in tiehash table (Figure
8-bit characters so that the tables are small enough tg.fit. (e can determine the suspect keys by taking the
into the fast memoryX' x 4 x 4Bytes = 4K B for 32-bit intersection ;! A; of the bucket potentials. For> 0

IP address). Note that only IP mangling needs extra M&NE can do a modified intersection that is still quite simple.

ory and extra memory lookup, the modular hashing cgjyever each set; is expected to contai# elements.
be implemented efficiently without table lookup. For o e key space is assumed to be prohibiﬁvely large. It

so}ftwsretir:nplgrr;)etntﬁtion, twe udse 1t6'1P“ cha;ra;)cltelrs, r’ hi&hus difficult to efficiently obtain the set§, and more
Is faster than 8-bit characters due to fewer table l00kUpgic, 1 1o take theH-wise intersection of such large sets
We find that in practice, a bijective function with th'sefficientIQy. For the example of 32 bit IP address keys with

property effectively resolves the highly skewed distriby-"" 217 we are dealing with: = 2%, To determine
tion caused by the modular hash functions. Using the . ° ., . PR

source IP address of each flow as the key, we compare Which 2 elgzoments are in each séf, and to intersect
hashing distribution of the following three hashing met§&tS Of Siz&€ is too taxing on memory and speed.
ods with the real network flow traces: 1) modular hashing'vIOdUIar hashing solves this efficiency problem. First,

with no IP mangling, 2) modular hashing with MM transtO determine the setd; we can store a many-to-one re-

formation for IP mangling, and 3) direct hashing (a cony€rs€ lookup table for each hash functian Without
pletely random hash function). Figure 4 shows the distfiodular hashing this would requife(n - log i) storage
bution of the number of keys per bucket for each hashingace for each hash function. But with modular hash-
scheme. We observe that the key distribution of mo"d\gv we can implicitly store a reverse lookup table for
lar hashing with MM transformation is almost the sanf®y Storing the smaller reverse lookup tables of each of
as that of direct hashing. The distribution for moduld® ¢ modular hash functiong; ,,. That is, we store a
hashing without IP mangling is highly skewed. Thus Imany-to-one reverse lookup tablg, [j] that maps each
mangling is very effective in randomizing the input keyl?eyj c [m%] to a list of (3)5 distinct values from
and removing hierarchical correlations among the keys. L m
the setn<]. We can store such reverse lookup tables in
" 1 o
Now we discuss how to perform the detection phasQe(q(log m)n) spatl:e. This gives a total space complex
of the change detection process. As discussed in ityeof O(H (logm)n«) for the H - ¢ hash functions. De-
overview, our approach is to takekaary sketch that haspending on the choice @f this offers various levels of im-
been updated with all data items in the input data stre@novement in space usage over the origi@éh - logm).
and output all suspect keys with respect to the sketch. Thatlodular hashing also allows for more efficient inter-
is, we solve the reverse sketch problem with respect to geetion of sets of bucket potentials. For each given
given sketch. The reverse sketch problem can alwayshueket the reverse lookup table gives gsets of size

IV. REVERSEHASHING: t =1

1
()9 corresponding to what we call thieodular bucket
potentials of each word. Denote the modular bucket po-
tential set for hash tablé and wordw as 4; ,,. These
sets give a compact representation of the set of bucket po-
tentials because a key is in 4; if and only if the w"
word of z is in A;,, for eachw from 1 to¢. In addi-

1
tion, these modular potential sets are only of size«,
compared to the sizé potential sets. Fon = 2°2,
m = 2, andq = 4, the modular potential sets are

of size onIyz = 32 each. This reduces the time for
taking the A intersections of the bucket potential sets
A; by allowing ¢ separateH-wise intersections of the
smaller sets4;,,. For example, suppose a heavy bucket
has the modular potentials setg 1), A; 2), A(i3)> A(ia)

for ¢ = 4. In the case off = 0 and H = 5 the in-
tersection involves four separate intersection operations:
Xj = Aay NAey) NAs) NAug N4, for j =
1,2,3,4, corresponding to four partitions of the IP ad-
dress. The resultant intersections from the four partitions

keys, i.e, anyri.z9.z3.24 such that each; € X;. Since

1
each set being intersected has sizg+ we can deter-
mine thesey different sets ofA set intersections in time

1
O(q- H(5:)%). In section V-D we discuss how to choose
the value forg with respect ton to make our algorithms Fig. 7. Given thegq sets I, and bucket index matri-
run as efficiently as possible. ces B, we can compute the setd, incrementally. The set
Ay containing ({a,d), (2,1,4,%,3)), ((a,d),(2,1,9,%,3)), and
({c,e),(2,2,2,1,3)) is depicted in (a). From this we determine the
SetA3 CO”taining((a, da f): <27 17 43 *, 3))! ((a; d; g)a (27 17 9; *, 3))!
and ({c, e, h),(2,2,2,1,3)) shown in (b). Finally we computel,
containing({a, d, f, 1), (2,1, 4, *, 3)) shown in (c).

©)

V. REVERSEHASHING: GENERAL CASE

Intersection without union
/‘_

Fig. 6. For the case df= 2, various possibilities exist for taking the
intersection of each bucket’s potential keys
We now generalize our method of reverse hashing

exist extreme cases such that the Reverse Sketch Problem
cannot be solved for > 2 in polynomial time in bothy
andH in general, even when the size of the outpu®ig)
unlessP = NP.

However, if we choose random modular hash functions
as described in IV we can solve the problem efficiently
with high probability as discussed later. Next, we present
an algorithm to solve the reverse sketch problem forzany
that is assured to obtain the correct solution with a poly-
ngmial run time ing and A with very high probability.

the case where there are multiple heavy buckets in eﬁ\ch\lotation

hash table.

We use techniques similar to the modular bucket inter-T0 describe the algorithm we use, we define the fol-
sections fort = 1. However, fort > 2, the technique lowing notation. Let the’" hash table contaity heavy
must be extended. To understand the problem, consiflégkets. Let be the value of the largegt For each of
the simple case of = 2, as shown in Figure 6. There ardhe H hash table;, assign an arbitrary indexing of tie

now 1 = 25 possible ways to take thE-wise intersec-

heavy buckets and lef; € [m] be the index in hash table

tions discussed for the = 1 case. One possible heurist Of heavy bucket numbet. Also defines, (z) to be the

tic is to take the union of the possible keys of all hea

vy’ word of ag word integerz. For example, if the*”

change buckets for each hash table and then take the idi@avy bucket in hash tabieis t; ; = 5.3.0.2 for ¢ = 4,

sections of these unions. However, this can lead to a htigeno(ti,;) = 3.

number of keys output that do not fulfill the requirement For eachi € [H] and wordw, denote the reverse
of our problem. The case for> 2 is thus much more dif- mapping set of each modular hash functigp, by the
ficult than fort = 1. In fact, we have shown (proof omit-,,,; » ()5 tableh; L of Llogn bit words. That is, let
ted) that for arbitrary modular hash functions that evenly m ' a

distribute > keys to each bucket in each hash table, theizg‘;,},[j][k] denote thé: n7 bit key in the reverse mapping

Of j for hi . Further, leth}[j] = {z € [n7] | hiw(z) = Lemmali Akeyz = uy.as. - a4 € [n]is a suspect
it ’ key if and only if ((z1,z2, -+ ,z4),v) € A, for some

_ vectorv.
LetI, = {z | z € Uj_g h; plow(ti;)] for at least ectory

H —rvaluesi € [H]}. Thatis,l,, is the setof alk € [n%] B. Algorithm
such thatz is in the reverse mapping fas ,, for some
heavy bucket in at leadil — r of the H hash tables. We

occasionally refer to this set as thatersected modular . . h
potentials for word w. For instance, in Figure 7; has W€ iteratively create each,, starting from some basé.
three elements anfl has two. up until we haveA4,. We then output the set of heavy

For each word we also define the mappiBig which €hange keys via lemma (1). Intuitively, we start with
specifies for anyr € I,, exactly which heavy buckets,?OdeS["“S In dl?gu.re Z'l 'Sthessﬁ?“?”iAl' .ThE Im(s bde-
z occurs in for each hash table. In detaB,(z) = Ivveendl ar} 2.9'\’2 2 en the link pairs betweerf;(
<I.’“’[0] o, Lw{Ulz], - ’Iff[H_l] [z]) whereLy[i] 2] = 2)T6r1123 cg%igg %vatehe 3b’a?sg-caﬂ@ affects the performance
7 e [t | = e hylowtipf Ui} Thatis, .o algorithm. The size of the sdj is likely to be ex-
Ly[i][z] denotes the collection of indices ffj such that ,onentially large irf7. However, with good random hash-
z is in the modular bucket potential set for the heayy , the size ofA,, for w > 2 will be only polynomial in
bucket corresponding to the given index. The specigl’ , andt with high probability with the detailed algo-
character * is included so that no intersection of seighm and analysis below. Note we must choose a fairly
Ly, yields an empty set. For exampld3,(129) = gmall valuer to start with because the complexity of com-
({1,3,8},{5},{2,4}, {9}, {3, 2}) means that the reverse,ting the base case grows exponentially.in
mapping of thelt, 374, and8™ heavy bucket undey_y,

To solve the reverse sketch problem we first compute
the ¢ setsl,, and bucket index matriceB,,. From these

all contain the modular key 129. REVERSE HASH(r)

We can think of each vectorB,(z) as a set 1) Foreachu =1togq, set
of all H dimensional vectors such that thé" (L, Byw) = MODULARPOTENTI ALS(w, r).
entry is an element ofL,[i]lz]. For example, 2) Initialize A, = {. Foreachs € I, y € I, and cor-
B3(23) = ({1,3},{16},{*},{9},{2}) is indeed a respondingu € Bi(z) (] Ba(y), insert((z,y),v)
set of two vectors: ({1},{16},{*},{9},{2}) and into As.

({3}, {16}, {*},{9},{2}). We refer toB,(z) as the 3) For —any given A, set Ay, =

bucket index matrix for z, and a decomposed vector in a Ext end(Ay, Iy+1, Bw+1)-

setB,,(z) as abucket index vector for z. We note thatal- 4) Output all zy.z5.--- .14 € n] st

though the size of the bucket index vector set is exponen- ({z1,-..,24),v) € A, for somev.

tial in H, the bucket index matrix representation is only

polynomial in size and permits the operation of intersec- MOPULAR POTENTI IALS(“”T)

tion to be %erformeg in pog/nomial time. Such a set like 1) Create anf x n« table of setsl initialized to all

B can be viewed asmode in Figure 7. : - L
1IZ()Cé)fine the r intersection of tveo such sets to be contamf the S{D eg-"f[ll _ch?r?cte(; t* : (Illreate a $izq

: : array of countersitsinitialized to all zeros.

BN C={veBNC |wvhasat mostr of its H entries , . 1

equal to* }. For exampleB, (z) ()" Buws1(y) represents 2) Foreachi € [H], j € [t], andk € [(;¢)¢] insert

all of the different ways to choose a single heavy bucket h; ![o,(t;;)][k] into L[i][z]. If L[i][z] was empty,

from each of at least{ — r of the hash tables such that inéremenmits[x].

each chosen bucket containgn it's reverse mapping for 1 _ _ ,

the w'™ word andy for the w + 1" word. For instance, 3) Foreach € [n]s.t hits[z] > H —r, insertz into

in Figure 7,31(0’) nr Bz(d) _ ({2}’ {1}, {4}’ {*}’ {3}>, {w and Seth(:Ij) = <L[0] :I?],L[].][J?], R ,L[H —

which is denoted as lnk in the figure. Note there is no 4 é[ﬂﬂ]f I B

such link betweerB (a) and By(e). Intuitively, thea.d) Output(ly, By).

sequence can be part of a heavy change key because th@seTeEnD(A .. T B

keys share common heavy buckets for at I¢ast r hash (Aw, L1, Bu1)

tables. In addition, itis clear that a keyc [n] is a suspect)

o o e kot Fand aniy .y Pw) 2 6 2) (OnSoEy € st (o)) g oo
Finally, we define the setd,, which we compute in our (1 Tu, Y) U“h*r Bui1(y)) into A 1’

algorithm to find the suspect keys. L&t = {({z1),v) | 3) OutbiJ.tA’ “’1’ ’ v Wk

2, € I andv € By(z;)}. Recursively defined,,;; = wil

{(%61,962, o ,$u£+1>av))} | EI_(xkl,fEég e ,IE%;)]; v) € Awl C. Complexity Analysis

an € By w . Take Figure 7 for example, _ : .

A, z (a,d, f,+z'1>,$(2,+11,4, %,3) is thg suspect key. E[;ch Lemma 2: The qumber of elements in each ggtis at

element of4,, can be denoted aspath in Figure 7. The most4L -t- (L£)a.

following lemma tells us that it is sufficient to compute Proof: Each element in I,, must occur in the mod-

A, to solve the reverse sketch problem. ular potential set for some bucket in at le&st- r of the

1) Initialize Ay 1 = 0.

H hash tables. Thus at lead},| - (H — r) of the ele- We can prove
ments in the multiset of modular potentials must bé,in

Since the number of elements in the multiset of modular T, < Z (m~2/0)2H+2 — p(y)?
potentials is at mosH - ¢ - (-x)« we get the following ab,c,d,u,w
inequality. ;
< npila. H - \H
n. 1 H n. 1 s m (m2/‘1) (1+m2/q)
Ll (H =1) € Ht-(2)7 = |L| € ——t-(=)7

Wwith —L- < ‘/52‘1, we haveE(Y) < n*9 and

m2/q

Next, we will show that the size ofl,, will be only Var(Y) < T, < n*/4. By Chebyshev Inequality, we

polynomial inH, ¢ andt. can then show that the number of bucket index vectors in
Lemma 3: With properm andt, the number of bucket A2 is O(n?/?) with high probability. L
index vectors ind, is O(n2/7) with high probability. Given Lemma 3, the more heavy buckets we have to

Proof: For simplicity, below we assume= 0. (The consider, the biggem must be, and the more memory is
proof forr > 0 is similar but slightly more involved.) need_ed. Take the 32-bit IP address key as an example. In
1, 1, H o practice,t < m?/? works well. Wherg = 4 andt < 64,
For any vectow € [n<]*, b € [m<]?, u € [t]”, define we needm — 2'2. For the same, whent < 256, we
needm = 2!%, and whert < 1024, we needn = 220,
" L 0w (tifi) = Piw(alw]) = blw] This may look prohibitive. However, with the iterative ap-
Yop = _ forvie [H],Vw € [2], proach in Section V-E, we are able to detect many more
0 otherwise changes with smalt:. For example, we are able to de-
_ tect more than 1000 changes accurately with= 2'6
Clearly, Ay hasY =}, , , Y!, bucket index vectors. (1 5MB memory needed) as evidenced in the evaluations
We have Probh; ,,(a[w]) = blw]} = m~Y9. With (r?ectionsc\)/l). S]!ncehwednogln;]ally onlryll consider at m%st
i o = _ ,,—1/¢ the top 50 to a few hundred heavy changes, we can have
mangling, we Davi Prc{liu;gtﬁz}ﬂ) .b[iw]} — ™ 7 =212 with memory less than 100KB.
Therefore,E(Y;!,) = (m~*/9)""". This implies Lemma 4: With proper choices off, r, andm, the ex-
pected number of bucket index vectors Ay 1 is less
E(Y) = Z E(YY) =n?1 (t-m~HnH than that of4,, for w > 2.

’ That s, the expected number of link sequences with length
x+1is less than the number of link sequences with length
x whenz > 2.

Proof: For any bucket index vectar € A, for any
word z € [n'/9] for word w + 1, the probability forz
to be in the saméth (i € [H]) bucket is—-. Thus the

a,b,u

We now estimatéd/ar(Y). For anya,c € [né]z, u,v €
[t)H, definee(a, ¢) = [{w|w € [2] A a[w] = c[w]}|, and
e(u,v) = [{ili € [H] A uli] = v[i]}.

We have mi/a
probability for B(z) ()" v to be not null is at most x
BE(Yoyy - Yia) = — 7+ Given there are!/? possible words for word
0 w + 1, the probability for anw to be extensible tal, 1
b#dA (e(u,v) #0Vela,c) #0) is Cf , X —rt577 x n'/9. With properH, r andm for
(m—2/0)2H+2 anyn, we can easily have such probability to be smaller
b#dAe(u,v) =0Ae(a,c) =0 than 1. Then the number of bucket index vectorsijn ;
(m—2/q)2H+2—j—k is less than that ofi,,. [|
b=dAe(u,v) =jAe(a,c) =k Given the lemmas above, the running times for
MODULAR POTENTI ALS and step 2 oREVERSE HASH
Therefore, is O(n?/7). The running time oEXTENDis O(n%/7). So

the total running time i©)((q — 2) x n’/9).

Var(Y) = E(Y?) — E(Y)? _
D. Parameter Choices

u v 2
- Z E(Yyy - Yea) = B(Y) To make our scheme run efficiently and maintain accu-
@,b,u,¢,d,v racy for large values af, we need to carefully choose the
= —E(Y)+ Z (m~2/0)2H+2 4 parametersn, H, andg as functions of.. Our data struc-
i tures and algorithms for the streaming update phase use
bEdAe(u,v)=0Ae(a,c)=0 space and time polynomial iff, ¢, andm, while for the
Z (me/q)2H+27jfk change detection phlase they use space and time polyno-
a,b,6d 0,5,k mial in H, ¢, m, andn<. Thus, to maintain scalability, we

brdAe(u,v)=jAe(a,c)=k must choose our parameters such that all of these values

~EY)? 4T+ Ty are sufficiently smaller than.

9

However, we must also assure that duary sketch most, <. With our discussion in section V-D this is only
maintains a large degree of accuracy. In particular, thef@onstant. To handle largerwe propose the following
are two constraints we must adhere to. First, we neeghduristic. Suppose we can comfortably handle at rfost
to be very unlikely that two given keys hash to the sam@avy buckets per hash table. If a givgpercentage re-
bucket in all/ hash tables. Thus, for a given choice afy|ts’int > # buckets in one or more tables, sort all heavy
one bucket from each hash table, we want the expecfggkets in each hash table according to size. Next solve
number of keys that hash to the buckets; for com- the reverse sketch problem with respect to only the largest
pletely random hashing, to be sufficiently small. Secondheavy buckets from each table. For each key output, ob-
we cannot allow the the size of the space that the modulgh an estimate from a secoiedary sketch independent

keys map tomn 1, to drop below 2. To handle larger value§f the first. Update each key in the output by the negative
1 ._of the estimate provided by the second sketch. Having
for ¢, we need to keepn¢ even larger than 2 (Subsectio

V-C). For ai q A Yone this, once again choose the largebuckets from
-C). For given constantsandc we summarize our tWo gach hash table and repeat. Continue until there are no
constraints as follows.

n . ny Ll heavy buckets left that haven't been considered.
1) ml < € equivalent ta() m < m. One issue with this approach is that an early false pos-
2) mq > ¢, equivalent tan > ¢! itive (a key output that is not a heavy change key) will

First note that forn > log n, constraint one is fulfilled cause large numbers of false negatives since the (incor-

for H = ©(1%5"_) Both of these values are suﬁicientl)feCt) decrement of the buckets for the false positive will
loglogn - otentially cause many false negatives in successive itera-

small inn, so constraint (1) is easy to fulfill. We thu{i)ons. To help reduce this we can use the second sketch as

focus on constraint (2), which boils down to choosing fyeritier for any output keys to reduce the possibility of a
value forg and making the other parameters as small ggq positive in each iteration.

that choice allows. We consider two strategies.

Solution 1: Our first solution attempts to minimize V1. | MPLEMENTATION AND EVALUATION
the size of the largest of the four terms. This is) i o)) i
accomplished by setting = /logn. This yields: Inthis section, we will first discuss the implementation
— Jlogn m = VIogn and evaluation of streaming data recording in hardware.
4 & Then introduce the methodology and simulation results
na = 2viogn [— ?(\/log n) for heavy change detection accuracy and speed.

Forc = 2, m andn« are of the same complexity and . , ,
dominate the four values we are interested in. Any altd}- Hardware Implementation for Traffic Recording

nate choice ofy would raise the value of eithen orné. The Annapolis WILDSTAR Board is used to imple-

: : L t the original and reversiblg-ary sketch. This
This choice ofg thus minimizes the largest of the foufen . o ,
values. This gives the optimal solution when streamif .tf(S)rT7 coer;sclrs]ts 'tohf ;rg&esxsi![':é ng:;(c%?]?g%engtﬁ'n
update and change detection occur at similar frequencigaPS [171 with 2.0l Sy 9 ontained with
Solution 2: One issue with solution one is that the siZ@00 Configurable Logic Blocks (CLBS) interconnected
via a cross-bar along with memory modules. This de-

of the hash table is more than poly-logarithmiainSince . :
only the update procedure for the sketch executes at Yg{OPMent board is hosted by a Solaris Ultra-10 worksta-

: tion. The unit is implemented using the Synplify Pro 7.2.
work traffic speeds, we need to have a smaiieto ha\lle tool [18]. Such FPGA board only costs about $1000.

the entire sketch fit into fast memory while keeping The k-ary sketch hardware consists & hash units
reasonably small. Our solution is to spt= loglogn. each of which addresses a sindieelement array. For

This yields: o1 almost all configurations, delay is the bottleneck. There-
q= log lolgn m = (logn) (1) fore, we have optimized it using excessive pipelining.
ni — pioglogn H — O(ﬂn_) The resulting maximum throughput for 40-byte-packet

loglogn

Havina d d th | f lution 1, streams are presented i_n Table II. For the originalry
havsvrlrrllgdeet%reeas?fe of ?h\éa#aesg tg)étnesguoﬁg pOI\)//v_e sketch, we ach!eve a hlgh ba.ndW|dth of over 22 Gbps.
logarithmic inn. This should allow the update phase dFven for reversible hashing with IP mangling and mod-

the problem to be scalable to largeThe drawback is thatUlar hashing, we achieve 16.2 Gbps. Note that cur-
P 9 W ! rently, although the largest Xilinx FPGA contains a total

1

the value ofns is increased. However, this term does ngf 1mbits of block SRAM, due to its architecture only
come into play until the second phase of change detectigfito 600KBytes of this space can be efficiently utilized.
when we perform the actual detection. Since this iS N§jnce the deitoid approach requires more than 1MB to de-
performed for every packet, we can withstand larger tergagt 100 or more changes, it cannot even fit into the latest
for this phase. Fon = 232,264, the two arguably most FpGAs.
important casesy sl is 232/5 = 85 and264/6 = 1626, _
respectively. This is clearly quite manageable. B. Software Smulation Methodol ogy
E. Iterative Detection In this section we evaluate our schemes witflow

From our discussion in section V-C we have that our diaffic traces collected from a large edge router. The traces
tection algorithm can only effectively handieof size at are divided into five-minute intervals with the traffic size

TABLE Il

MAXIMUM SUPPORTED BANDWIDTH (GBPS) FOR ALL

40-BYTE-PACKET STREAMS(K = 4096)

Corresponding Change Threshold (%)
0.87 0.33 0.18 0.13 0.09 0.074 0.063 0.053 0.047

10

120

T T T T T T T T
Non-lterative Method —+—
Iterative Method ---x---

T

100

| [H=1]H=5] 5w /
Original k-ary sketch 28.800] 22.656 - ya
With modular hashing 23.360| 19.264 g /
Modular hashing+ IP mangling 17.088| 16.160 ©

: —

for each interval averaging about 7.5GB. Our metrics in-

clude speed, real positive, andfalse positive percentage. B tersttenn s Y

To verify our results, we also implemented a naive algbig. 9. Performance comparison of iterative vs. non-iterative methods
rithm to record per-flow volumes, and then find the heavy Corresponding Change Threshold (%)

changes as the ground truth. The real positive percent- 100+ 3 2 e S
age refers to the number of true positives reported by the \
detection algorithm divided by the number of real heavy *
change keys. The false positive percentage is the number %
of false positives output by the algorithm divided by the
number of keys output by the algorithm.

We use a-ary sketch with a variety of configurations
with different H, K andr. We also run our simulations
both with and without the iterative approach as described %
in section V-E. Finally, we stress test our schemes sepa-
rately with 1) two two-hpur traﬁ.lc files with 240 GB a‘V'Fig. 10. Results for 64 bit keys: SrcIP and DestIP address, resulting
erage volume, and 2) with 64-bit keys. in multi-dimensional analysis

The total memory consumption for update recordin . .
is only 2 x (numberoftables) x (numberofbins) x e false positive rate, but the extra origikaéry sketch

dbytes /bucket. It includes areversible k-ary sketch and Pounds the false positive percentage by eliminating false
aoriginal k-ary sketch. In our largest configuration, witfp0sitive during verification. The running time also in-
6 tables and 64K bins, our memory usage is 3MB. T&Eases for bigger, but only marginally.

smallest with 5 tables and 4K buckets only takes 160kB2) Effectiveness of iterative approach: ~ As analyzed
memory. When using 32-bit keys, we use the source [[PSection V-B, the running complexity will go exponen-
address of each flow as the key, andget 4. For our 64 tially high whent > m?/4. Otherwise, it only grows lin-

bit-key trials, we concatenate the source and destinat®sly with¢. This is indeed confirmed with our experi-
IP addresses of a flow, and get= 8. ment results as shown in Figure 9. For the experiments,

. . we use the best configuration from previous experiments:

C. Software Simulation Results)) H = 6, m = 64K, andr = 2. Note that the point of

1) Accuracy performance analysis: First, we test the deviation for the running time of the two approaches is at
performance with varyingn, H andr. We consider all apout250 ~ m2/9(256), and thus matches very well with
possible combinations fromn = 4K or 64K, H = 5 {ne theoretic analysis.
or 6, andr = 1 or 2. We vary the number of true heavy \ye implement the iterative approach by finding the
keys from 1 to 140 forn = 4K, and from 1 to 1000 for reshold that produces the desired number of changes
m = 64K by adjustingg. Both of these limits are muchtor the current iteration, detecting the offending keys us-
larger than then?/? bound and thus are achieved usingg that threshold, removing those keys from the sketch,
the iterative approach of Section V-E. | and repeating the process until the threshold equals the

As shown in Figure 8, all configurations produce vegyiginal threshold. Both the iterative and non-iterative ap-
accurate results: over a 95% true positive rate and I@ggach have similarly high accuracy as in Figure 8.
than a 1.1% false postive rate for = 64K, and over 3) Stress tests with larger dataset: We further did
a 90% true positive rate and less than a 4% false posititeess tests on our scheme with two 2-hour netflow traces
rate form = 4K. Among these configurations, tie= 6 and detected the heavy changes between them. Each
andr = 2 configuration gives the best result: over a 99%=mce has about 240 GB of traffic. Again, we have very
true positive percentage and less than a 0.5% false posikikgh accuracy for all configurations, especially with=
percentage form = 64K, and over a 95% true positiveg4 K, H = 6 andr = 2, which has over a 99% real posi-
percentage and less than a 2% false positive percenta@epercentage and less than a 1% false positive percent-
for m = 4K. Such trends remain for the stress tests aage as in Figure 8.
large key space size test discussed later. In each figure}) Results on larger key space size: Figure 10 shows
the z-axis is the number of heavy change keys and theie effectiveness of our algorithms for 64-bit keys con-
corresponding change threshold perceniage sisting of source IP and destination IP addresses. The true

Note that increase af, while being less tha@, im- positive percentage is over 97%. The false positive rate is
proves the true positive rate quite a bit. It also increasero for all the configurations.

94

True Positives Percentage

92

L L
10 20 30 40 50
Number of heavy changes

11

Corresponding Change Threshold (%) Corresponding Change Threshold (%) Corresponding Change Threshold (%)
185 06 036 024 019 014 011 009 0.08 0.07 3.52 1.81 1.31 1.02 0.82 0.69 0.58 087 033 018 0.3 009 0074 0.063 0.053 0.047
100 <1 ki L T T T 100 T K T T T 100
g T R g e - P
RN % = R g
o8 ® g 98
g G g o g
c BRI c c
3 96 N s g 9%
g 90 2
£ s 2
B o4 G g 94
€ g 8
]])
= 2 85 S n
= 92 | H=6,r=1 = = 92 | H=6,r=1 ——
H=6, =2 - H=6, r=1 —— H=6, =2 -
H=5, r=1 ---%--- H=6, 1=2 ---x--- H=5,r=1 -
H=5, r=2 & H=5, r=1 ---%--- H=5,r=2 &
90 1 1 1 1 1 1 1 1 1 1 80 1 1 1 1 1 90 1 L 1 1 1 1 1 1
50 150 250 350 450 550 650 750 850 950 20 40 60 80 100 120 140 50 150 250 350 450 550 650 750 850

Number of heavy changes Number of heavy changes Number of heavy changes

Corresponding Change Threshold (%) Corresponding Change Threshold (%) Corresponding Change Threshold (%)

18 06 036 024 019 0.14 0.11 009 0.08 0.07 3.52 181 131 1.02 0.82 0.69 0.58 0.87 033 018 0.3 0.09 0.074 0.063 0.053 0.047

oot T T T T T T T 8 P T T T T 3 e T T T T T T

H=6, r=2 --x--- 7L HE6, =2 xe H=6, r=2 --x---

H=5,r=1 ------ H=5,r=1 --—-*--- 2.5 | H=5r=1 %
] H=5,r=2 & Y o H=5,r=2 &
E’ 15 g 6 E’
= =
8 S 5 8 2
] 8]
a a L a
R g 4 £ 18
D z B
4 § 3 s 8 N a
o o *° * © fal
i} & . - i} X
S 05 Z 2 % < 2N @, o
i o & * X i B e Wl e

X o 05 - ragn s e
=) . e 1 e o :
0 & & & & - * * 1 Z 0 _ - - N N N 0 & & o - S 1
50 150 250 350 450 550 650 750 850 950 20 40 60 80 100 120 140 50 150 250 350 450 550 650 750 850
Number of heavy changes Number of heavy changes Number of heavy changes
— 916 _ 912 __ 916
m =2 m =2 m = 2'°, large dataset for stress tests

Fig. 8. True positive percentage and false positive percentage results for 12 bit buckets, 16 bit buckets, and a large dataset for stress tests.

5) Seed results: In section VI-A, we show that our Usually the work has focused on extracting certain data
reversiblek-ary sketch in hardware can sustain 16.2Gbpggregation functions with the use of sketches, like quan-
throughput for recording all-40-byte packet streams. fites and frequent items [12], distinct items [13] etc. In
this section, we show the running time for both recordinge context of networking, sketches have been applied to
and detection in software. detect IP stream metrics like heavy hitters [4] and quan-

With a Pentium IV 2.4 GHz machine with normatiles [5], [14] at networking streaming speeds.

DRAM memory, we record 2,827,318 items in 1.72 sec- As mentioned before, the closest work to ours is the
onds,i.e, 1,643,789 insertions/second. For the worst cad@toids approach [7]. Next, we will fully compare it with
scenario with all 40-byte packets, this translates to aroumd reversible:-ary sketch.

526 Mbps. These results are obtained from code that is . . .
not fully optimized and from a machine that is not dedf: Comparison with the deltoidsapproach

cated to this process. Our change detection is also veryable lll lists the efficiency for both approaches for
efficient. As shown in Figure 9, foK = 65536, it only both of the two phases of change detection, the update
takes 0.078 second for 50 changes, 0.42 second for pb@se and the detection phase. The complexities for the
changes, and 2.92 seconds for 200 changes which alrggstgrse sketch approach are derived using strategy 2 de-
covers about 0.2% of the total changes. To the extreswibe in section (V-D).

case of 1000 changes, it takes about 22 seconds. The advantage of our approach is in the update phase

In short, our evaluation results show that we were algéthe algorithm. The speed of updating the data structure
to infer the heavy change keys solely from theary per item in the stream needs to be as fast as the incoming
sketch accurately and efficiently, without explicitly stometwork traffic to be applied online. The actual number
ing any keys or taking a second pass over the data. of operations performed by our update versus the the del-

toids approach is asymptotically the same. However, in a
VII. RELATED WORK high speed online setting, the number of arithmetic oper-

Given today'’s traffic volume and link speeds, it is eations performed is rarely the bottleneck for performance.
ther too slow or too expensive to directly apply existing more accurate measure is the number of memory ac-
techniques on a per-flow basis [2], [6]. Therefore, mostsses and the size of the memory used. In both of these
existing high-speed network monitoring systems estimai@egories the reverse sketch has an advantage over the
the flow-level traffic through packet sampling [19], [20]deltoids approach.
but this has two shortcomings. First , sampling is still not In the case of memory accesses our approach can be
scalable; there are up #* simultaneous flows, even deimplemented to make only a single memory access per
fined only by source and destination IP addresses. Secdrash table. These accesses correspond to the insertion of
long-lived traffic flows, increasingly prevalent for peer-tadhe log m bit hashed key for each of thE hash tables.
peer applications [19], will be split up if the time betweefhhis is all that we need because our modular hash func-
sampled packets exceeds the flow timeout. tions can be represented with compact, randomly seeded

Applications of sketches in the data streaming commeguations. The hashing of thez log n modular keys per
nity have been researched quite extensively in the pastsh table thus only requires arithmetic operations, but not

12

TABLE 11l
A COMPARISON BETWEEN THEREVERSESKETCH METHOD AND THE DELTOIDS APFRROACH. HERE¢ DENOTES THE NUMBER OF HEAVY
CHANGE KEYS IN THE INPUT STREAM

Update Detection
memory memory accesse$ operations memory operations
1 oM N —3
Reverse SketcH @(%) o loghl)ogg —) O(logn) || ©(nTeelosn -loglogn) | O(n'eglogn -loglogn - t)
Deltoids O(logn - t) O(logn) O(logn) O(logn - t) O(logn - t)

memory access. On the other hand, the deltoids approa6Bpbs throughput on a single FPGA board even for all
must actually updaté®(logn) counters in its data struc-40-byte-packet streams. Evaluations with real network
ture per update. It thus cannot achieve our smaller numbraffic traces show that we can infer the keys for even 1000

of memory accesses. heavy changes with high accuracy in less than 22 seconds.
In the case of memory usage, our approach uses mem-
ory that is constant in the number of heavy change keys REFERENCES

t. The reason for this is because we can perform the itt] C. Estan, S. Savage, and G. Varghese, “Automatically inferring
erative detection described in section V-E. That is, us- patterns of resource consumption in network traffic,Pioc. of

. (log)M . ACM S GCOMM, 2003.
Ing ®(loglogn) memory we can only efficiently detect a [2] C. Estan and G. Varghese, “New directions in traffic measure-

constantt’ number of heavy changes. However, we can ment and accounting,” iRroc. of ACM SSGCOMM, 2002.
repeatedly find the approximately tdpheavy changes [3] G.S. Manku and R. Motwani, “Approximate frequency counts
keys until we have efficiently obtained our finished list. over data streams,” iRroc. of IEEE VLDB, 2002.

Thus, while our detection run time grows |inear|ytir0ur [4] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Sri-
memory usage does not. X/?_T)t%vgoosﬁggg? hierarchical heavy hitters in data streams,” in

The deltoids approach, on the other hand, cannot u ; : .

iterative detection and thus must increase the size of g' Scc’:m?]dei(F <:|<c|)3m’s S tMuthylj“ﬁhpag’D AT:' JtOht“SO”'
data structure to detect larger numbers of heavy changes. palscneck, , and . Srivasiava, ToIste S at stream-

. . ing speeds,” irfProceedings of ACM SGMOD, 2004.
In the case were the size of is set tolog n, we get that [6] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-

fort = w(log}?fgn) our scheme is asymptotically superior based change detection: methods, evaluation, and applications,”
to the deltoids method as far as memory used. We feg| in Proc. of ACM SGCOMM IMC, 2003. o
that such values farare reasonable. [7] G. Cormode and S. Muthukrishnan, “What's new: Finding sig-

As a practical comparison of speed and memory usage, l”gg;’:; dz'f(f)%f”\‘;vees d'g;ﬂ"’fg‘og‘f";g SEtgeTa;nosé 4H’°°' of IEEE
W.e consider the SOftwarelzlmplementatlon O.f our algorlth%] R. S. Tsay, “Outliers, level shifts, and variance changes time
with H = 6 andm = 2°°. For these settings, we use series,”Journal of Forecasting, vol. 7, pp. 1-20, 1988.
about 200 KB memory, and can insert 1,643,789 tems PRYj r. S. Tsay, “Time series model specification in the presence
second. We also achieved more tha9bé true positive outliers,” Journal of the American Statistical Association, vol.
percentage for up to 140 heavy changes. The deltoids ap- 81, pp. 132141, 1986.
proach only achieves an insertion rate of about 1,200,00@ C. Chen and L.-M. Liu, “Joint estimation of model parameters
items per second and uses between 1 and 3 MB to detect and outlier effects in time seriesJournal of the American Sta-
between 100 and 200 heavy changes with accuracy abovetistical Association, vol. 88, pp. 284297, 1993.

95% Note that a System with such size of memory Canr{éﬂ.] C. Chen and LM Liu, “Forecasting time series with outliers,”
be implemented in a single FPGA board. Journal of Forecasting, vol. 12, pp. 1335, 1993.

The advantage of the deltoids approach is that it is métél &: Cormode and S. Muthukrishnan, *improved data stream sum-
efficient in the detection phase, with run time and space rznoég'sesszngcﬁgg'r;(')%;kemh and its applications,” Tech. Rep.
usage only IoQanthmlc In t.he.key Spaee While our [18] Philippe Flajolet and G. Nigel Martin, “Probabilistic counting
method does not achieve this, its run time and space usage agorithms for data base applications,"Comput. Sygt. ., vol.
is significantly smaller than the key spage And since 31, no. 2, pp. 182-209, 1985.
this phase of change detection only needs to be done[pg- Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Mar-
riodically in the order of at most seconds, our detection tin. J. Strauss, “QuickSAND: Quick summary and analysis of

works well for key sizes of practical interest. network data,” Tech. Rep. 2001-43, DIMACS, 2001.
[15] Muthukrishnan, “Data streams: Algorithms and applications
VIIl. CONCLUSION (short),” inProc. of ACM SODA, 2003.

.r{16] Charles Robert HadlockField Theory and its Classical Prob-
Online heavy change detection is a powerful building™ |, Mathematical Association of America, 1978.

block for network anomaly detection, but has received lji7] xiiinx Inc., “SPEEDRouter v1.1 product specification,” 2001.
tle attention in research except the recérdry sketch- [18] syplicity Inc., “Synlipfy Pro,” http:/Aww.synplicity.com.

based scheme proposed in [6]. However, this schemg Nick Duffield, Carsten Lund, and Mikkel Thorup, “Properties
is not reversible. Thus we propose efficigmtersible and prediction of flow statistics from sampled packet streams,”
hashing schemes to infer the keys of culprit flows from in Proc. of ACM SGCOMM IMW, 2002.

sketches with negligible extra memory and small extiZf] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distribu-
memory access for recording streaming data - we obtain tions from sampled flow statistics,” KCM S GCOMM, 2003.

